$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Evaluation of Ku-band Ground-based Interferometric Radar Using Gamma Portable Radar Interferometer 원문보기

대한원격탐사학회지 = Korean journal of remote sensing, v.39 no.1, 2023년, pp.65 - 76  

Hee-Jeong, Jeong (Department of Geological Sciences, Pusan National University) ,  Sang-Hoon, Hong (Department of Geological Sciences, Pusan National University) ,  Je-Yun, Lee (Department of Geological Sciences, Pusan National University) ,  Se-Hoon, Song (Department of Geological Sciences, Pusan National University) ,  Seong-Woo, Jung (Department of Geological Sciences, Pusan National University) ,  Jeong-Heon, Ju (Department of Geological Sciences, Pusan National University)

Abstract AI-Helper 아이콘AI-Helper

The Gamma Portable Radar Interferometer (GPRI) is a ground-based real aperture radar (RAR) that can acquire images with high spatial and temporal resolution. The GPRI ground-based radar used in this study composes three antennas with a Ku-band frequency of 17.1-17.3 GHz (1.73-1.75 cm of wavelength)....

주제어

표/그림 (14)

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • Data processing was performed using commercial software of GAMMA to produce coherence and interferogram by applying the interferometric technique to the images obtained in the GPRI experiment. Multiple interferograms were generated, and the phase statistics of the 10-minute interval interferograms were calculated to examine whether a stable phase value was maintained during the GPRI experiment.
  • 14, 2022, was used as a reference image, and a total of 19 interferometric coherence images were produced with consecutive images acquired at 2-minute intervals. The coherence values were extracted from50 randomly selected points for each image, and the decorrelation in coherence over time was analyzed by averaging the coherence values for each image.
  • This study presents the characteristics and various observation modes ofthe GPRI Ku-band ground-based radar and provides the preliminary results of two experiments fulfilled in Geumjeong-gu, Busan. The study demonstrates the application of radar interferometry to the acquired images to produce coherence maps and interferograms and how precise phase values can be obtained through the GPRI observation for various temporal baselines. The statistical analysis of the interferometric phases obtained from a differential interferogram with a 10-minute interval indicates that maintenance of stable phase values is possible.
  • This study presents the characteristics and various observation modes ofthe GPRI Ku-band ground-based radar and provides the preliminary results of two experiments fulfilled in Geumjeong-gu, Busan. The study demonstrates the application of radar interferometry to the acquired images to produce coherence maps and interferograms and how precise phase values can be obtained through the GPRI observation for various temporal baselines.

대상 데이터

  • The Pusan National University campus area located at Geumjeong-gu, Busan, was selected as a study area to conduct experiments on the GPRI ground-based observation. Twice experiments were conducted, and in the first experiment, a total of 20 images were acquired for 40 minutes at 2-minute intervals.
본문요약 정보가 도움이 되었나요?

참고문헌 (23)

  1. Cabral-Cano, E., Dixon, T.H., Miralles-Wilhelm, F.,?Diaz-Molina, O., Sanchez-Zamora, O., and?Carande, R.E., 2008. Space geodetic imaging?of rapid ground subsidence in Mexico City.?Geological Society of America Bulletin, 120?(11-12), 1556-1566. https://doi.org/10.1130/B26001.1 

  2. Caduff, R., Schlunegger, F., Kos, A., and Wiesmann,?A., 2015. A review of terrestrial radar?interferometry for measuring surface change?in the geosciences. Earth Surface Processes?and Landforms, 40(2), 208-228. https://doi.org/10.1002/esp.3656 

  3. Cho, B.-L., Kong, Y.-K., Park, H.-G., and Kim, Y.-S., 2006. Automobile-based SAR/InSAR system?for ground experiments. IEEE Geoscience and?Remote Sensing Letters, 3(3), 401-405. https://doi.org/10.1109/LGRS.2006.873358 

  4. Colesanti, C. and Wasowski, J., 2006. Investigating?landslides with space-borne Synthetic Aperture?Radar (SAR) interferometry. Engineering?Geology, 88(3-4), 173-199. https://doi.org/10.1016/j.enggeo.2006.09.013 

  5. Kos, A., Strozzi, T., Stockmann, R., Wiesmann, A., and?Werner, C., 2013.Detection and characterization?Of rock slope instabilities using a portable radar?interferometer(GPRI). In: Margottini, C., Canuti,?P., Sassa, K.(eds), Landslide Scienceand Practice-Volume 2:Early Warning, Instrumentation and?Monitoring, Springer, pp. 325-329. https://doi.org/10.1007/978-3-642-31445-2_42 

  6. Lee, H.-Y., Sung, N.H., Kim, J.H., and Cho, S.J., 2007. Development a GB-SAR (I): system?configuration and interferometry. Korean?Journal of Remote Sensing, 23(4), 237-245.?https://doi.org/10.7780/kjrs.2007.23.4.237 

  7. Lee, J.-H., Lee, H.Y., Cho, S.J., Sung, N.H., and Kim,?J.H., 2010. Detection of artificial displacement?of a reflector by using GB-SAR interferometry?and atmospheric humidity correction. Korean?Journal of Remote Sensing, 26(2), 123-131.?https://doi.org/10.7780/kjrs.2010.26.2.123 

  8. Leva, D., Nico, G., Tarchi, D., Fortuny-Guasch, J., and?Sieber, A.J., 2003. Temporal analysis of a?landslide by means of a ground-based SAR?interferometer. IEEE Transactions on Geoscience?and Remote Sensing, 41(4), 745-752. https://doi.org/10.1109/TGRS.2003.808902 

  9. Luzi, G., Pieraccini, M., Mecatti, D., Noferini, L.,?Guidi, G., Moia, F., and Atzeni, C., 2004.?Ground-based radar interferometry for landslides?monitoring: atmospheric and instrumental?decorrelation sources on experimental data.?IEEE Transactions on Geoscience and Remote?Sensing, 42(11), 2454-2466. https://doi.org/10.1109/TGRS.2004.836792 

  10. Massonnet, D., Rossi, M., Carmona, C., Adragna, F.,?Peltzer, G., Feigl, K., and Rabaute, T., 1993.The?displacement field of the Landers earthquake?mapped by radar interferometry. Nature, 364?(6433), 138-142. https://doi.org/10.1038/364138a0 

  11. Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G.,?Hajnsek, I., and Papathanassiou, K.P., 2013.?A tutorial on synthetic aperture radar. IEEE?Geoscience and Remote Sensing Magazine,?1(1), 6-43. https://doi.org/10.1109/MGRS.2013.2248301 

  12. Park, S.W. and Hong, S.H., 2021. Nonlinear modeling?of subsidence from a decade of InSAR time?series. Geophysical Research Letters, 48(3), e2020GL090970. https://doi.org/10.1029/2020GL090970 

  13. Riesen, P., Strozzi, T., Bauder, A., Wiesmann, A., and?Funk, M., 2011. Short-term surface ice motion?variations measured with a ground-based?portable real aperture radar interferometer.?Journal of Glaciology, 57(201), 53-60. https://doi.org/10.3189/002214311795306718 

  14. Rosen, P.A., Hensley, S., Joughin, I.R., Li, F.K.,?Madsen, S.N., Rodriguez, E., and Goldstein, R.M., 2000. Synthetic aperture radar interferometry.?Proceedings of the IEEE, 88(3), 333-382.?https://doi.org/10.1109/5.838084 

  15. Strozzi, T., Raetzo, H., Wegmuller, U., Papke, J.,?Caduff, R., Werner, C., and Wiesmann, A., 2015.?Satellite and Terrestrial Radar Interferometry?For the Measurement of Slope Deformation. In:?Lollino, G., Manconi, A., Guzzetti, F., Culshaw,?M., Bobrowsky, P., Luino, F. (eds.), Engineering?Geology for Society and Territory - Volume 5,?Springer, pp. 161-165. https://doi.org/10.1007/978-3-319-09048-1_32 

  16. Strozzi, T., Werner, C., Wiesmann, A., and Wegmuller, U., 2011. Topography mapping with a portable real aperture radar interferometer. IEEE Geoscience?and Remote Sensing Letters, 9(2), 277-281.?https://doi.org/10.1109/LGRS.2011.2166751 

  17. Tarchi, D., Casagli, N., Moretti, S., Leva, D., and Sieber,?A.J., 2003. Monitoring landslide displacements?by using ground-based synthetic aperture radar?interferometry: Application to the Ruinon landslide?in the Italian Alps. Journal of Geophysical?Research: Solid Earth, 108(B8). https://doi.org/10.1029/2002JB002204 

  18. Voytenko, D., Dixon, T.H., Werner, C., Gourmelen, N.,?Howat, I.M., Tinder, P.C., and Hooper, A., 2012.?Monitoring a glacier in southeastern Iceland?with the portable terrestrial radar interferometer.?In Proceedings of the 2012 IEEE International?Geoscience and Remote Sensing Symposium,?Munich, Germany, July 22-27, pp. 3230-3232.?https://doi.org/10.1109/IGARSS.2012.6350736 

  19. Werner, C., Lowry, B., Wegmuller, U., Pugh, N., Schrock,?G., and Zhou, W., 2016.Deformation time-series?derived from terrestrial radar observations using?persistent scatterer interferometry in Seattle,?Washington. In Proceedings of the 2016 IEEE?International Geoscience and Remote Sensing?Symposium (IGARSS), Beijing, China, July?10-15, pp. 6835-6838. https://doi.org/10.1109/IGARSS.2016.7730784 

  20. Werner, C., Strozzi, T., Wiesmann, A., and Wegmuller, U., 2008a. GAMMA's portable radar interferometer.?In Proceedings of the 13th FIG Symposium on?Deformation Measurement and Analysis, Lisbon,?Portugal, May 12-15, pp. 1-10. 

  21. Werner, C., Strozzi, T., Wiesmann, A., and Wegmuller, U., 2008b. A real-aperture radar for ground-based?differential interferometry. In Proceedings of?the IGARSS 2008-2008 IEEE International?Geoscience and Remote Sensing Symposium,?Boston, MA, USA, July 7-11, pp. III-210-III-213. https://doi.org/10.1109/IGARSS.2008.4779320 

  22. Werner, C., Wiesmann, A., Strozzi, T., Kos, A., Caduff,?R., and Wegmiuler, U., 2012. The GPRI multimode differential interferometric radar for?ground-based observations. In Proceedings of?the EUSAR 2012; 9th European Conference on?Synthetic Aperture Radar, Nuremberg, Germany,?Apr. 23-26, pp. 304-307. 

  23. Wiesmann, A., Caduff, R., Strozzi, T., Papke, J., and?Matzler, C., 2014. Monitoring of dynamic?changes in alpine snow with terrestrial radar?imagery. In Proceedings of the 2014 IEEE?Geoscience and Remote Sensing Symposium,?Quebec City, QC, Canada, July 13-18, pp.?3662-3665. https://doi.org/10.1109/IGARSS.2014.6947277 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로