$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

미세먼지 처리에 따른 전나무, 중국단풍, 소나무, 굴참나무의 생리⋅생화학적 반응 및 흡착 특성
Physiological, Biochemical, and Adsorption Characteristics of Abies holophylla, Acer buergerianum, Pinus densiflora, and Quercus variabilis under Elevated Particulate Matter 원문보기

한국산림과학회지 = Journal of korean society of forest science, v.112 no.1, 2023년, pp.57 - 70  

우상헌 (서울시립대학교 환경원예학과) ,  이고은 (서울시립대학교 환경원예학과) ,  이종규 (서울시립대학교 환경원예학과) ,  곽명자 (서울시립대학교 환경원예학과) ,  임예지 (서울시립대학교 환경원예학과) ,  정수경 (서울시립대학교 환경원예학과) ,  제선미 (국립산림과학원 도시숲연구과) ,  장한나 (국립산림과학원 도시숲연구과) ,  손정아 (국립산림과학원 도시숲연구과) ,  오창영 (국립산림과학원 도시숲연구과) ,  김경하 (서울시립대학교 환경원예학과) ,  우수영 (서울시립대학교 환경원예학과)

초록
AI-Helper 아이콘AI-Helper

도시와 자연에 부정적인 영향을 끼치는 미세먼지에 대한 저감 연구가 점점 심화되고 있다. 이에따른 미세먼지 저감 대책 중 하나로써 도시 수목의 미세먼지 저감 연구가 활발히 진행되고 있다. 하지만 이와 관련하여 미세먼지에 의한 도시 수목의 피해 반응 연구는 부족한 실정이다. 본 연구는 도시 수목 중 전나무(Abies holophylla), 중국단풍(Acer buergerianum), 소나무(Pinus densiflora), 굴참나무(Quercus variabilis)에 대하여 고농도 미세먼지 처리로 나타나는 피해반응을 조사하기 위한 목적으로 수행되었다. 위 네 수종을 대상으로 식물생장조절챔버(phytotron)에서 시간 당 300 ㎍ m-3 농도의 미세먼지를 처리하여 각 수종의 생리적, 생화학적 변화 반응과 잎의 흡착면적을 측정하였다. 그리고 순광합성량, 기공전도도, 증산률, 엽록소 함량, ROS, MDA, 잎의 흡착면적에 대해서 상관 분석을 진행하여 상호 간의 관계를 살펴보았다. 연구 결과, 수종마다 생리·생화학적 반응과 흡착면적이 종 특이적으로 나타났다. 순광합성량의 경우 전나무에서 가장 큰 감소세를 보였으며 소나무와 굴참나무는 큰 변화를 나타내지 않았다. 굴참나무는 ROS의 변화 또한 미미하였다. 모든 수종에서 MDA 함량이 공통적으로 증가하였다. 4주 처리 이후 흡착면적에서 전나무는 잎의 앞면, 소나무는 잎의 뒷면에 높은 면적량을 나타냈다. 상관성 분석 결과 생리적 반응 요인들 간에 양의 상관관계가 있음을 확인하였고, 잎의 앞면에 높은 흡착면적을 보일수록 생리적 반응에 부정적인 영향이 있음을 확인하였다. 본 연구는 미세먼지 저감과 지속 가능한 도시 숲을 효율적으로 조성하기 위한 수종 선택의 기초 데이터를 제공한다.

Abstract AI-Helper 아이콘AI-Helper

In recent years, the frequency of warnings about particulate matter (PM) has gradually increased in Korea, along with an increase in its intensity. Because of their vast surface area, reactivity to external particles, and characteristics of their leaves, urban trees can act as biofilters, reducing P...

주제어

표/그림 (8)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 연구는 전나무(Abies holophylla), 중국단풍(Acer buergerianum), 소나무(Pinus densiflora), 굴참나무(Quercus variabilis)의 네 수종을 대상으로 미세먼지 처리에 대한 수목 반응 특성을 알아보기 위해 실험을 진행하였다(Figure 1). 산림과학원 내 3년생 묘목을 조경용 상토(Forest bed soil, Nongkyung, Incheon, Korea)를 채운 9 L 플라스틱 포트에 이식하여 사용하였다.
  • , 1986). 이에 따라, 본 연구에서는 미세먼지 환경 조성이 가능한 공간에서 도시 주요 수목인 전나무(Abies holophylla), 중국단풍(Acer buergerianum), 소나무(Pinus densiflora), 굴참나무(Quercus variabilis) 묘목을 이용하여 각 수종별 미세먼지에 대한 생리적 및 생화학적 변화와 다음 수종들의 미세먼지 흡착능력에 대한 상관관계를 파악하고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (62)

  1. Abdulrahaman, A.A. and Oladele, F.A. 2009. Stomatal features and humidification potentials of Borassus aethiopum, Oreodoxa regia and Cocos nucifera. African Journal of Plant Science 3(4): 59-063. http://www.academicjournals.org/AJPS 

  2. Ahammed, G.J., Choudhary, S.P., Chen, S., Xia, X., Shi, K., Zhou, Y. and Yu, J. 2013. Role of brassinosteroids in alleviation of phenanthrene-cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. Journal of Experimental Botany 64(1): 199-213. https://doi.org/10.1093/JXB/ERS323 

  3. Alexieva, V., Sergiev, I., Mapelli, S. and Karanov, E. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment 24(12): 1337-1344. https://doi.org/10.1046/J.1365-3040.2001.00778.X 

  4. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24(1): 1-15. https://doi.org/10.1104/pp.24.1.1 

  5. Bui, H.T., Odsuren, U., Kwon, K.J., Kim, S.Y., Yang, J.C., Jeong, N.R. and Park, B.J. 2021. Assessment of air pollution tolerance and particulate matter accumulation of 11 woody plant species. Atmosphere 12(8): 1067. https://doi.org/10.3390/ATMOS12081067 

  6. Burkhardt, J. 2010. Hygroscopic particles on leaves: nutrients or desiccants? Ecological Monographs 80(3): 369-399. https://doi.org/10.1890/09-1988.1 

  7. Chaturvedi, R.K., Prasad, S., Rana, S., Obaidullah, S.M., Pandey, V. and Singh, H. 2013. Effect of dust load on the leaf attributes of the tree species growing along the roadside. Environmental Monitoring and Assessment 185(1): 383-391. https://doi.org/10.1007/S10661-012-2560-X/FIGURES/2 

  8. Chen, L., Liu, C., Zou, R., Yang, M. and Zhang, Z. 2016. Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment. Environmental Pollution 208: 198-208. https://doi.org/10.1016/J.ENVPOL.2015.09.006 

  9. Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences. In Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Routledge. https://doi.org/10.4324/9780203771587 

  10. Ferrini, F., Bussotti, F., Tattini, M. and Fini, A. 2014. Trees in the urban environment: response mechanisms and benefits for the ecosystem should guide plant selection for future plantings. Agrochimica 58(3): 234-246. 

  11. Flexas, J., Bota, J., Loreto, F., Cornic, G. and Sharkey, T. D. 2004. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology 6(3): 269-279. https://doi.org/10.1055/S-2004-820867/ID/90 

  12. Gomez-Arroyo, S., Cortes-Eslava, J., Loza-Gomez, P., Arenas-Huertero, F., Grutter de la Mora, M. and Morton Bermea, O. 2018. In situ biomonitoring of air quality in rural and urban environments of Mexico Valley through genotoxicity evaluated in wild plants. Atmospheric Pollution Research 9(1): 119-125. https://doi.org/10.1016/J.APR.2017.06.009 

  13. Guo, H., Wang, H., Liu, Q., An, H., Liu, C., Xia, X. and Yin, W. 2017. 15 N-labeled ammonium nitrogen uptake and physiological responses of poplar exposed to PM 2.5 particles. Environmental Science and Pollution Research 24(1): 500-508. https://doi.org/10.1007/s11356-016-7620-2 

  14. Hanslin, H.M., Przybysz, A., Slimestad, R. and Saebo, A. 2017. Stress acclimation and particulate matter accumulation in Pinus sylvestris saplings affected by moderate combinations of urban stressors. Science of The Total Environment 593-594: 581-591. https://doi.org/10.1016/J.SCITOTENV.2017.03.133 

  15. He, C., Qiu, K., Alahmad, A. and Pott, R. 2020. Particulate matter capturing capacity of roadside evergreen vegetation during the winter season. Urban Forestry & Urban Greening 48: 126510. https://doi.org/10.1016/J.UFUG.2019.126510 

  16. Heath, R.L. and Packer, L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125(1): 189-198. 

  17. Hirano, T., Kiyota, M. and Aiga, I. 1995. Physical effects of dust on leaf physiology of cucumber and kidney bean plants. Environmental Pollution 89(3): 255-261. https://doi.org/10.1016/0269-7491(94)00075-O 

  18. Hwang, H.J., Yook, S.J. and Ahn, K.H. 2011. Experimental investigation of submicron and ultrafine soot particle removal by tree leaves. Atmospheric Environment 45(38): 6987-6994. https://doi.org/10.1016/J.ATMOSENV.2011.09.019 

  19. Janhall, S. 2015. Review on urban vegetation and particle air pollution - Deposition and dispersion. Atmospheric Environment 105: 130-137. https://doi.org/10.1016/J.ATMOSENV.2015.01.052 

  20. Jo, H., Noulekoun, F., Khamzina, A., Chang, H. and Son, Y. 2022. Physiological and shoot growth responses of Abies holophylla and Abies koreana seedlings to open-field experimental warming and increased precipitation. Water 14(3): 356. https://doi.org/10.3390/W14030356/S1 

  21. Kwak, M.J., Lee, J., Kim, H., Park, S., Lim, Y., Kim, J.E., Baek, S.G., Seo, S.M., Kim, K.N. and Woo, S.Y. 2019. The removal efficiencies of several temperate tree species at adsorbing airborne particulate matter in urban forests and roadsides. Forests 10(11): 960. https://doi.org/10.3390/F10110960 

  22. Lee, J.K., Kim, D.Y., Park, S.H., Woo, S.Y., Nie, H. and Kim, S.H. 2021. Particulate matter (PM) adsorption and leaf characteristics of ornamental sweet potato (Ipomoea batatas L.) cultivars and two common indoor plants (Hedera helix L. and Epipremnum aureum Lindl. & Andre). Horticulturae 8(1): 26. https://doi.org/10.3390/HORTICULTURAE8010026 

  23. Lee, J.K., Woo, S.Y., Kwak, M.J., Park, S.H., Kim, H.D., Lim, Y.J., Park, J.H. and Lee, K.A. 2020. Effects of elevated temperature and ozone in Brassica juncea L.: growth, physiology and ROS accumulation. Forests 11(1): 68. https://doi.org/10.3390/F11010068 

  24. Leonard, R.J., McArthur, C. and Hochuli, D.F. 2016. Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban Forestry & Urban Greening 20: 249-253. https://doi.org/10.1016/J.UFUG.2016.09.008 

  25. Li, Y., Li, H., Li, Y. and Zhang, S. 2017. Improving wateruse efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat. The Crop Journal 5(3): 231-239. https://doi.org/10.1016/J.CJ.2017.01.001 

  26. Li, Y., Wang, Y., Wang, B., Wang, Y. and Yu, W. 2019. The response of plant photosynthesis and stomatal conductance to fine particulate matter (PM 2.5 ) based on leaf factors analyzing. Journal of Plant Biology 62(2): 120-128. https://doi.org/10.1007/s12374-018-0254-9 

  27. Liu, H., Song, S., Zhang, H., Li, Y., Niu, L., Zhang, J. and Wang, W. 2022. Signaling transduction of ABA, ROS and Ca 2+ in plant stomatal closure in response to drought. International Journal of Molecular Sciences 23(23): 14824. https://doi.org/10.3390/IJMS232314824 

  28. Lu, T., Lin, X., Chen, J., Huang, D. and Li, M. 2019. Atmospheric particle retention capacity and photosynthetic responses of three common greening plant species under different pollution levels in Hangzhou. Global Ecology and Conservation 20: e00783. https://doi.org/10.1016/J.GECCO.2019.E00783 

  29. McDonald, A.G., Bealey, W.J., Fowler, D., Dragosits, U., Skiba, U., Smith, R.I., Donovan, R.G., Brett, H.E., Hewitt, C.N. and Nemitz, E. 2007. Quantifying the effect of urban tree planting on concentrations and depositions of PM 10 in two UK conurbations. Atmospheric Environment 41(38): 8455-8467. https://doi.org/10.1016/J.ATMOSENV.2007.07.025 

  30. National Institute of Environmental Research. 2021. Annual Report of Air Quality in Korea, 2020. 

  31. Nawahda, A., Yamashita, K., Ohara, T., Kurokawa, J. and Yamaji, K. 2012. Evaluation of premature mortality caused by exposure to PM 2.5 and ozone in East Asia: 2000, 2005, 2020. Water, Air and Soil Pollution 223(6): 3445-3459. https://doi.org/10.1007/S11270-012-1123-7/FIGURES/6 

  32. Neves, N.R., Oliva, M.A., da Cruz Centeno, D., Costa, A.C., Ribas, R.F. and Pereira, E.G. 2009. Photosynthesis and oxidative stress in the restinga plant species Eugenia uniflora L. exposed to simulated acid rain and iron ore dust deposition: Potential use in environmental risk assessment. Science of The Total Environment 407(12): 3740-3745. https://doi.org/10.1016/J.SCITOTENV.2009.02.035 

  33. Norby, R.J., Pastor, J. and Melillo, J.M. 1986. Carbon-nitrogen interactions in CO 2 -enriched white oak: physiological and long-term perspectives. Tree Physiology 2(1-2-3): 233-241. https://doi.org/10.1093/TREEPHYS/2.1-2-3.233 

  34. Nowak, D. J., Crane, D. E. and Stevens, J. C. 2006. Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening 4(3-4): 115-123. https://doi.org/10.1016/J.UFUG.2006.01.007 

  35. Pace, R. and Grote, R. 2020. Deposition and resuspension mechanisms into and from tree canopies: a study modeling particle removal of conifers and broadleaves in different cities. Frontiers in Forests and Global Change 3: 26. https://doi.org/10.3389/FFGC.2020.00026/BIBTEX 

  36. Park, S. et al. 2022. Relationship between leaf traits and PM-capturing capacity of major urban-greening species. Horticulturae 8(11): 1046. https://doi.org/10.3390/HORTICULTURAE8111046/S1 

  37. Popek, R., Przybysz, A., Gawronska, H., Klamkowski, K. and Gawronski, S.W. 2018. Impact of particulate matter accumulation on the photosynthetic apparatus of roadside woody plants growing in the urban conditions. Ecotoxicology and Environmental Safety 163: 56-62. https://doi.org/10.1016/j.ecoenv.2018.07.051 

  38. Rai, P.K. 2016. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicology and Environmental Safety 129: 120-136. https://doi.org/10.1016/J.ECOENV.2016.03.012 

  39. Rai, P.K., Panda, L.L.S., Chutia, B.M. and Singh, M.M. 2013. Comparative assessment of air pollution tolerance index (APTI) in the industrial (Rourkela) and non industrial area (Aizawl) of India: An ecomanagement approach. African Journal of Environmental Science and Technology 7(10): 944-948. https://doi.org/10.4314/ajest.v7i10. 

  40. Ram, S.S., Majumder, S., Chaudhuri, P., Chanda, S., Santra, S.C., Maiti, P.K., Sudarshan, M. and Chakraborty, A. 2014. Plant canopies: Bio-monitor and trap for re-suspended dust particulates contaminated with heavy metals. Mitigation and Adaptation Strategies for Global Change 19(5): 499-508. https://doi.org/10.1007/S11027-012-9445-8/FIGURES/5 

  41. Saebo, A., Popek, R., Nawrot, B., Hanslin, H.M., Gawronska, H. and Gawronski, S.W. 2012. Plant species differences in particulate matter accumulation on leaf surfaces. Science of The Total Environment 427-428: 347-354. https://doi.org/10.1016/J.SCITOTENV.2012.03.084 

  42. Saha, D.C. and Padhy, P.K. 2012. Effect of particulate pollution on rate of transpiration in Shorea robusta at Lalpahari forest. Trees - Structure and Function 26(4): 1215-1223. https://doi.org/10.1007/S00468-012-0697-4/TABLES/6 

  43. Sala, A., Piper, F. and Hoch, G. 2010. Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytologist 186(2): 274-281. https://doi.org/10.1111/J.1469-8137.2009.03167.X 

  44. Sarabi, B., Fresneau, C., Ghaderi, N., Bolandnazar, S., Streb, P., Badeck, F.W., Citerne, S., Tangama, M., David, A. and Ghashghaie, J. 2019. Stomatal and non-stomatal limitations are responsible in down-regulation of photosynthesis in melon plants grown under the saline condition: Application of carbon isotope discrimination as a reliable proxy. Plant Physiology and Biochemistry 141: 1-19. https://doi.org/10.1016/J.PLAPHY.2019.05.010 

  45. Sgrigna, G., Baldacchini, C., Dreveck, S., Cheng, Z. and Calfapietra, C. 2020. Relationships between air particulate matter capture efficiency and leaf traits in twelve tree species from an Italian urban-industrial environment. Science of The Total Environment 718: 137310. https://doi.org/10.1016/J.SCITOTENV.2020.137310 

  46. Sharma, A.P. and Tripathi, B.D. 2009. Biochemical responses in tree foliage exposed to coal-fired power plant emission in seasonally dry tropical environment. Environmental Monitoring and Assessment 158(1-4): 197-212. https://doi.org/10.1007/S10661-008-0573-2/METRICS 

  47. Shohael, A.M., Ali, M.B., Yu, K.W., Hahn, E.J., Islam, R. and Paek, K.Y. 2006. Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in bioreactor. Process Biochemistry 41(5): 1179-1185. https://doi.org/10.1016/J.PROCBIO.2005.12.015 

  48. Sicard, P., De Marco, A., Dalstein-Richier, L., Tagliaferro, F., Renou, C. and Paoletti, E. 2016. An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in Southern European forests. Science of The Total Environment 541: 729-741. https://doi.org/10.1016/J.SCITOTENV.2015.09.113 

  49. Suzuki, N. and Mittler, R. 2006. Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiologia Plantarum 126(1): 45-51. https://doi.org/10.1111/J.0031-9317.2005.00582.X 

  50. Teke, G., Hubai, K., Diosi, D. and Kovats, N. 2020. Assessment of Foliar Uptake and Accumulation of Airborne Polyaromatic Hydrocarbons Under Laboratory Conditions. Bulletin of Environmental Contamination and Toxicology 104(4): 444-448. https://doi.org/10.1007/s00128-020-02814-z 

  51. Tiwari, S., Chate, D.M., Srivastava, M.K., Safai, P.D., Srivastava, A.K., Bisht, D.S. and Padmanabhamurty, B. 2012. Statistical evaluation of PM10 and distribution of PM 1 , PM 2.5 and PM 10 in ambient air due to extreme fireworks episodes (Deepawali festivals) in megacity Delhi. Natural Hazards 61(2): 521-531. https://doi.org/10.1007/S11069-011-9931-4/FIGURES/6 

  52. van Heerden, P.D.R., Swanepoel, J.W. and Kruger, G.H.J. 2007. Modulation of photosynthesis by drought in two desert scrub species exhibiting C 3 -mode CO 2 assimilation. Environmental and Experimental Botany 61(2): 124-136. https://doi.org/10.1016/J.ENVEXPBOT.2007.05.005 

  53. Wagh, N.D., Shukla, P.V, Tambe, S.B. and Ingle, S.T. 2006. Biological monitoring of roadside plants exposed to vehicular pollution in Jalgaon city. Journal of Environmental Biology 27(2): 419-421. www.jeb.co.in 

  54. Wichink Kruit, R.J., Jacobs, A.F.G. and Holtslag, A.A.M. 2008. Measurements and estimates of leaf wetness over agricultural grassland for dry deposition modeling of trace gases. Atmospheric Environment 42(21): 5304-5316. https://doi.org/10.1016/J.ATMOSENV.2008.02.061 

  55. Woo, S.Y., Lee, D.K. and Lee, Y.K. 2007. Net photosynthetic rate, ascorbate peroxidase and glutathione reductase activities of Erythrina orientalis in polluted and non-polluted areas. Photosynthetica 2007 45(2): 293-295. https://doi.org/10.1007/S11099-007-0047-8 

  56. Yang, Q., Wang, H., Wang, J., Lu, M., Liu, C., Xia, X., Yin, W. and Guo, H. 2018. PM 2.5 -bound SO 4 2- absorption and assimilation of poplar and its physiological responses to PM 2.5 pollution. Environmental and Experimental Botany 153: 311-319. https://doi.org/10.1016/j.envexpbot.2018.06.009 

  57. Zhang, R.H., Li, J., Guo, S.R. and Tezuka, T. 2009. Effects of exogenous putrescine on gas-exchange characteristics and chlorophyll fluorescence of NaCl-stressed cucumber seedlings. Photosynthesis Research 100(3): 155-162. https://doi.org/10.1007/S11120-009-9441-3/FIGURES/3 

  58. Zhang, W., Feng, Z., Wang, X. and Niu, J. 2014. Elevated ozone negatively affects photosynthesis of current-year leaves but not previous-year leaves in evergreen Cyclobalanopsis glauca seedlings. Environmental Pollution 184: 676-681. https://doi.org/10.1016/J.ENVPOL.2013.04.036 

  59. Zhang, W., Li, Y., Wang, Q., Zhang, T., Meng, H., Gong, J. and Zhang, Z. 2022. Particulate matter and trace metal retention capacities of six tree species: implications for improving urban air quality. Sustainability 14(20): 13374. https://doi.org/10.3390/SU142013374/S1 

  60. Zhang, W., Zhang, Z., Meng, H. and Zhang, T. 2018. How does leaf surface micromorphology of different trees impact their ability to capture particulate matter? Forests 9(11): 681. https://doi.org/10.3390/F9110681 

  61. Zhang, X., Lyu, J., Han, Y., Sun, N., Sun, W., Li, J., Liu, C. and Yin, S. 2020. Effects of the leaf functional traits of coniferous and broadleaved trees in subtropical monsoon regions on PM 2.5 dry deposition velocities. Environmental Pollution 265: 114845. https://doi.org/10.1016/J.ENVPOL.2020.114845 

  62. Zhang, Z., Liu, J., Wu, Y., Yan, G., Zhu, L. and Yu, X. 2017. Multi-scale comparison of the fine particle removal capacity of urban forests and wetlands. Scientific Reports 2017 7(1): 1-13. https://doi.org/10.1038/srep46214 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로