최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기공업화학 = Applied chemistry for engineering, v.34 no.3, 2023년, pp.226 - 240
Hwan Kim (Hydrogen Energy Solution Center, Institute for Advanced Engineering) , Sunghyun Uhm (Hydrogen Energy Solution Center, Institute for Advanced Engineering)
This paper provides an overview of the trends and future directions in the development of anode materials for solid oxide fuel cells (SOFCs) using hydrocarbons as fuel, with the aim of enabling a decentralized energy supply. Hydrocarbons (such as natural gas and biogas) offer promising alternatives ...
I. Staffell, D. Scamman, A. V. Abad, P. Balcombe, P. E. Dodds, P. Ekins, N. Shah, and K. R. Ward, The role of hydrogen and fuel cells in the global energy system, Energy Environ. Sci., 12, 463-491 (2019).
A. Ajanovic, and R. Haas, Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector, Int. J. Hydrog. Energy, 46, 10049-10058 (2021).
J. D. Fonseca, M. Camargo, J.-M. Commenge, L. Falk, and I. D. Gil, Trends in design of distributed energy systems using hydrogen as energy vector: A systematic literature review, Int. J. Hydrog. Energy, 44, 9486-9504 (2019).
H. Lund, Renewable energy strategies for sustainable development, Energy, 32, 912-919 (2007).
S. Mekhilef, R. Saidur, and A. Safari, Comparative study of different fuel cell technologies, Renew. Sustain. Energy Rev., 16, 981-989 (2012).
V. Spallina, P. Nocerino, M. C. Romano, M. van Sint Annaland, S. Campanari, and F. Gallucci, Integration of solid oxide fuel cell (SOFC) and chemical looping combustion (CLC) for ultra-high efficiency power generation and CO 2 production, Int. J. Greenh. Gas Control., 71, 9-19 (2018).
S. C. Singhal, Advances in solid oxide fuel cell technology, Solid State Ion., 135, 305-313 (2000).
N. Q. Minh, Solid oxide fuel cell technology-features and applications, Solid State Ion., 174, 271-277 (2004).
R. O'hayre, S.-W. Cha, W. Colella, and F. B. Prinz, Fuel Cell Fundamentals, 3rd ed., John Wiley & Sons, New Jersey, USA (2016).
S. A. Saadabadi, B. Illathukandy, and P. V. Aravind, Direct internal methane reforming in biogas fuelled solid oxide fuel cell; The influence of operating parameters, Energy Sci. Eng., 9, 1232-1248 (2021).
N. Shi, Y. Xie, Y. Yang, S. Xue, X. Li, K. Zhu, D. Huan, R. Peng, C. Xia, and Y. Lu, Review of anodic reactions in hydrocarbon fueled solid oxide fuel cells and strategies to improve anode performance and stability, Mater. Renew. Sustain. Energy, 9, 1-18 (2020).
J. Ma, C. Jiang, P. A. Connor, M. Cassidy, and J. T. Irvine, Highly efficient, coking-resistant SOFCs for energy conversion using biogas fuels, J. Mater. Chem. A, 3, 19068-19076 (2015).
L. Shu, J. Sunarso, S. S. Hashim, J. Mao, W. Zhou, and F. Liang, Advanced perovskite anodes for solid oxide fuel cells: A review, Int. J. Hydrog. Energy, 44, 31275-31304 (2019).
H. Kim, Y. S. Chung, T. Kim, H. Yoon, J. G. Sung, H. K. Jung, W. B. Kim, L. B. Sammes, and J. S. Chung, Ru-doped barium strontium titanates of the cathode for the electrochemical synthesis of ammonia, Solid State Ion., 339, 115010 (2019).
X. M. Ge, S. H. Chan, Q. L. Liu, and Q. Sun, Solid oxide fuel cell anode materials for direct hydrocarbon utilization, Adv. Energy Mater., 2, 1156-1181 (2012).
S. Tao, and J. T. Irvine, A redox-stable efficient anode for solid-oxide fuel cells, Nat. Mater., 2, 320-323 (2003).
P. Vernoux, M. Guillodo, J. Fouletier, and A. Hammou, Alternative anode material for gradual methane reforming in solid oxide fuel cells, Solid State Ion., 135, 425-431 (2000).
N. Danilovic, A. Vincent, J.-L. Luo, K. T. Chuang, R. Hui, and A. R. Sanger, Correlation of fuel cell anode electrocatalytic and ex situ catalytic activity of perovskites La 0.75 Sr 0.25 Cr 0.5 X 0.5 O 3-δ (XTi, Mn, Fe, Co), Chem. Mater., 22, 957-965 (2010).
S. McIntosh, and M. Van den Bossche, Influence of lattice oxygen stoichiometry on the mechanism of methane oxidation in SOFC anodes, Solid State Ion., 192, 453-457 (2011).
C. Aliotta, L. Liotta, F. Deganello, V. La Parola, and A. Martorana, Direct methane oxidation on La 1-x Sr x Cr 1-y Fe y O 3-δ perovskitetype oxides as potential anode for intermediate temperature solid oxide fuel cells, Appl. Catal. B: Environ., 180, 424-433 (2016).
Y. Liu, S. Wang, J. Qian, X. Xin, Z. Zhan, and T. Wen, A novel catalytic layer material for direct dry methane solid oxide fuel cell, Int. J. Hydrog. Energy, 38, 14053-14059 (2013).
F. Liu, L. Zhang, G. Huang, B. Niu, X. Li, L. Wang, J. Zhao, and Y. Jin, High performance ferrite-based anode La 0.5 Sr 0.5 Fe 0.9 Mo 0.1 O 3-δ for intermediate-temperature solid oxide fuel cell, Electrochim. Acta, 255, 118-126 (2017).
X. Zhou, N. Yan, K. T. Chuang, and J. Luo, Progress in La-doped SrTiO 3 (LST)-based anode materials for solid oxide fuel cells, RSC Adv., 4, 118-131 (2014).
K. B. Yoo, B. H. Park, and G. M. Choi, Stability and performance of SOFC with SrTiO 3 -based anode in CH 4 fuel, Solid State Ion., 225, 104-107 (2012).
S. Sengodan, S. Choi, A. Jun, T. H. Shin, Y.-W. Ju, H. Y. Jeong, J. Shin, J. T. Irvine, and G. Kim, Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells, Nat. Mater., 14, 205-209 (2015).
R. Dass, J.-Q. Yan, and J. Goodenough, Oxygen stoichiometry, ferromagnetism, and transport properties of La 2-x NiMnO 6+δ , Phys. Rev. B, 68, 064415 (2003).
M. K. Rath, and K.-T. Lee, Characterization of novel Ba 2 LnMoO 6 (Ln Pr and Nd) double perovskite as the anode material for hydrocarbon-fueled solid oxide fuel cells, J. Alloys Compd., 737, 152-159 (2018).
Y.-H. Huang, R. I. Dass, Z.-L. Xing, and J. B. Goodenough, Double perovskites as anode materials for solid-oxide fuel cells, Science, 312, 254-257 (2006).
P. Zhang, Y.-H. Huang, J.-G. Cheng, Z.-Q. Mao, and J. B. Goodenough, Sr 2 CoMoO 6 anode for solid oxide fuel cell running on H2 and CH 4 fuels, J. Power Sources, 196, 1738-1743 (2011).
N. Yu, T. Liu, X. Chen, M. Miao, M. Ni, and Y. Wang, Co-generation of liquid chemicals and electricity over Co-Fe alloy/perovskite anode catalyst in a propane fueled solid oxide fuel cell, Sep. Purif. Technol., 291, 120890 (2022).
K.-Y. Lai, and A. Manthiram, Self-regenerating Co-Fe nanoparticles on perovskite oxides as a hydrocarbon fuel oxidation catalyst in solid oxide fuel cells, Chem. Mater., 30, 2515-2525 (2018).
D. E. Fowler, A. C. Messner, E. C. Miller, B. W. Slone, S. A. Barnett, and K. R. Poeppelmeier, Decreasing the polarization resistance of (La, Sr) CrO 3-δ solid oxide fuel cell anodes by combined Fe and Ru substitution, Chem. Mater., 27, 3683-3693 (2015).
M. Qin, Y. Xiao, H. Yang, T. Tan, Z. Wang, X. Fan, and C. Yang, Ru/Nb co-doped perovskite anode: Achieving good coking resistance in hydrocarbon fuels via core-shell nanocatalysts exsolution, Appl. Catal. B: Environ., 299, 120613 (2021).
M. Wu, H. Yu, J. Ni, and C. Ni, Coke-resistant ferrite anode decorated with in-situ exsolved ceria for carbonaceous fuel oxidation, J. Power Sources, 552, 232266 (2022).
M. L. Faro, D. La Rosa, I. Nicotera, V. Antonucci, and A. S. Arico, Electrochemical investigation of a propane-fed solid oxide fuel cell based on a composite Ni-perovskite anode catalyst, Appl. Catal. B: Environ., 89, 49-57 (2009).
K.-H. Huang, and J. Yeh, A study on the multicomponent alloy systems containing equal-mole elements, M.Sc. Thesis, National Tsing Hua University, Hsinchu, China (1996).
B. Cantor, I. Chang, P. Knight, and A. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng., 375, 213-218 (2004).
J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, 299-303 (2004).
S. Senthil Kumar, and S. T. Aruna, Hydrocarbon compatible sofc anode catalysts and their syntheses: A review, Sustain. Chem., 2, 707-763 (2021).
J. K. Pedersen, T. A. Batchelor, A. Bagger, and J. Rossmeisl, High-entropy alloys as catalysts for the CO 2 and CO reduction reactions, ACS Catal., 10, 2169-2176 (2020).
T. Chen, W. G. Wang, H. Miao, T. Li, and C. Xu, Evaluation of carbon deposition behavior on the nickel/yttrium-stabilized zirconia anode-supported fuel cell fueled with simulated syngas, J. Power Sources, 196, 2461-2468 (2011).
P. Zhang, Z. Yang, Y. Jin, C. Liu, Z. Lei, F. Chen, and S. Peng, Progress report on the catalyst layers for hydrocarbon-fueled SOFCs, Int. J. Hydrog. Energy, 46, 39369-39386 (2021).
K. X. Lee, B. Hu, P. K. Dubey, M. Anisur, S. Belko, A. N. Aphale, and P. Singh, High-entropy alloy anode for direct internal steam reforming of methane in SOFC, Int. J. Hydrog. Energy, 47, 38372-38385 (2022).
D. Chen, Y. Huan, G. Ma, M. Ma, X. Wang, X. Xie, J. Leng, X. Hu, and T. Wei, High-entropy alloys FeCoNiCuX (X Al, Mo)-Ce 0.8 Sm 0.2 O 2 as high-performance solid oxide fuel cell anodes, ACS Appl. Energy Mater., 6, 1076-1084 (2023).
H. Iwahara, Y. Asakura, K. Katahira, and M. Tanaka, Prospect of hydrogen technology using proton-conducting ceramics, Solid State Ion., 168, 299-310 (2004).
L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu, Z. Cheng, and M. Liu, Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr 0.1 Ce 0.7 Y 0.2-x Yb x O 3-δ , Science, 326, 126-129 (2009).
E. Fabbri, L. Bi, D. Pergolesi, and E. Traversa, Towards the next generation of solid oxide fuel cells operating below 600 ℃ with chemically stable proton-conducting electrolytes, Adv. Mater., 24, 195-208 (2012).
B. Beyribey, H. Kim, and J. Persky, Electrochemical characterization of BaCe 0.7 Zr 0.1 Y 0.16 Zn 0.04 O 3-δ electrolyte synthesized by combustion spray pyrolysis, Ceram. Int., 47, 1976-1979 (2021).
L. Yang, Y. Choi, W. Qin, H. Chen, K. Blinn, M. Liu, P. Liu, J. Bai, T. A. Tyson, and M. Liu, Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells, Nat. Commun., 2, 357 (2011).
W. G. Coors, Protonic ceramic fuel cells for high-efficiency operation with methane, J. Power Sources, 118, 150-156 (2003).
Y. Feng, J. Luo, and K. T. Chuang, Propane dehydrogenation in a proton-conducting fuel cell, J. Phys. Chem. C, 112, 9943-9949 (2008).
Y. Feng, J.-L. Luo, and K. T. Chuang, Carbon deposition during propane dehydrogenation in a fuel cell, J. Power Sources, 167, 486-490 (2007).
C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori, and R. O'Hayre, Readily processed protonic ceramic fuel cells with high performance at low temperatures, Science, 349, 1321-1326 (2015).
C. Duan, R. J. Kee, H. Zhu, C. Karakaya, Y. Chen, S. Ricote, A. Jarry, E. J. Crumlin, D. Hook, and R. Braun, Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells, Nature, 557, 217-222 (2018).
S. Liu, K. T. Chuang, and J.-L. Luo, Double-layered perovskite anode with in situ exsolution of a Co-Fe alloy to cogenerate ethylene and electricity in a proton-conducting ethane fuel cell, ACS Catal., 6, 760-768 (2016).
B. Hua, N. Yan, M. Li, Y.-q. Zhang, Y.-f. Sun, J. Li, T. Etsell, P. Sarkar, K. Chuang, and J.-L. Luo, Novel layered solid oxide fuel cells with multiple-twinned Ni 0.8 Co 0.2 nanoparticles: the key to thermally independent CO 2 utilization and power-chemical cogeneration, Energy Environ. Sci., 9, 207-215 (2016).
X.-Z. Fu, J.-L. Luo, A. R. Sanger, Z.-R. Xu, and K. T. Chuang, Fabrication of bi-layered proton conducting membrane for hydrocarbon solid oxide fuel cell reactors, Electrochim. Acta, 55, 1145-1149 (2010).
M. Li, B. Hua, J.-l. Luo, J. Pu, B. Chi, and L. Jian, Carbon-tolerant Ni-based cermet anodes modified by proton conducting yttrium-and ytterbium-doped barium cerates for direct methane solid oxide fuel cells, J. Mater. Chem. A, 3, 21609-21617 (2015).
L. Wang, Y. Fan, J. Li, L. Shao, X. Xi, X.-Z. Fu, and J.-L. Luo, La 0.5 Sr 0.5 Fe 0.9 Mo 0.1 O 3-δ -CeO 2 anode catalyst for Co-Producing electricity and ethylene from ethane in proton-conducting solid oxide fuel cells, Ceram. Int., 47, 24106-24114 (2021).
P. Qiu, S. Sun, X. Yang, F. Chen, C. Xiong, L. Jia, and J. Li, A review on anode on-cell catalyst reforming layer for direct methane solid oxide fuel cells, Int. J. Hydrog. Energy, 46, 25208-25224 (2021).
A. D. Ballarini, S. R. de Miguel, E. L. Jablonski, O. A. Scelza, and A. A. Castro, Reforming of CH 4 with CO 2 on Pt-supported catalysts, Catal. Today, 107-108, 481-486 (2005).
A. K. Avetisov, J. R. Rostrup-Nielsen, V. L. Kuchaev, J. H. Bak Hansen, A. G. Zyskin, and E. N. Shapatina, Steady-state kinetics and mechanism of methane reforming with steam and carbon dioxide over Ni catalyst, J. Mol. Catal. A: Chem., 315, 155-162 (2010).
M. A. Nieva, M. M. Villaverde, A. Monzon, T. F. Garetto, and A. J. Marchi, Steam-methane reforming at low temperature on nickel-based catalysts, Chem. Eng. J., 235, 158-166 (2014).
N. A. K. Aramouni, J. G. Touma, B. A. Tarboush, J. Zeaiter, and M. N. Ahmad, Catalyst design for dry reforming of methane: Analysis review, Renew. Sustain. Energy Rev., 82, 2570- 2585 (2018).
Z. Zhan, and S. A. Barnett, An octane-fueled solid oxide fuel cell, Science, 308, 844-847 (2005).
W. Wang, R. Ran, and Z. Shao, Combustion-synthesized Ru-Al 2 O 3 composites as anode catalyst layer of a solid oxide fuel cell operating on methane, Int. J. Hydrog. Energy, 36, 755-764 (2011).
W. Wang, W. Zhou, R. Ran, R. Cai, and Z. Shao, Methane-fueled SOFC with traditional nickel-based anode by applying Ni/Al 2 O 3 as a dual-functional layer, Electrochem. Commun., 11, 194-197 (2009).
Z. Lyu, Y. Wang, Y. Zhang, and M. Han, Solid oxide fuel cells fueled by simulated biogas: Comparison of anode modification by infiltration and reforming catalytic layer, Chem. Eng. J., 393, 124755 (2020).
S. D. Angeli, G. Monteleone, A. Giaconia, and A. A. Lemonidou, State-of-the-art catalysts for CH 4 steam reforming at low temperature, Int. J. Hydrog. Energy, 39, 1979-1997 (2014).
C. Jin, C. Yang, F. Zhao, A. Coffin, and F. Chen, Direct-methane solid oxide fuel cells with Cu 1.3 Mn 1.7 O 4 spinel internal reforming layer, Electrochem. Commun., 12, 1450-1452 (2010).
X.-F. Ye, S. Wang, Z. Wang, L. Xiong, X. Sun, and T. Wen, Use of a catalyst layer for anode-supported SOFCs running on ethanol fuel, J. Power Sources, 177, 419-425 (2008).
P. Frontera, A. Macario, A. Aloise, P. Antonucci, G. Giordano, and J. Nagy, Effect of support surface on methane dry-reforming catalyst preparation, Catal. Today, 218, 18-29 (2013).
T. Wei, L. Jia, H. Zheng, B. Chi, J. Pu, and J. Li, LaMnO 3 -based perovskite with in-situ exsolved Ni nanoparticles: a highly active, performance stable and coking resistant catalyst for CO 2 dry reforming of CH 4 , Appl. Catal. A: Gen., 564, 199-207 (2018).
Z. Tao, M. Fu, and Y. Liu, A mini-review of carbon-resistant anode materials for solid oxide fuel cells, Sustain. Energy Fuels, 5, 5420-5430 (2021).
P. Li, B. Yu, J. Li, X. Yao, Y. Zhao, and Y. Li, Improved activity and stability of Ni-Ce 0.8 Sm 0.2 O 1.9 anode for solid oxide fuel cells fed with methanol through addition of molybdenum, J. Power Sources, 320, 251-256 (2016).
B. Hua, M. Li, J.-l. Luo, J. Pu, B. Chi, and J. Li, Carbon-resistant Ni-Zr 0.92 Y 0.08 O 2-δ supported solid oxide fuel cells using Ni-Cu-Fe alloy cermet as on-cell reforming catalyst and mixed methanesteam as fuel, J. Power Sources, 303, 340-346 (2016).
Z. Wang, Z. Wang, W. Yang, R. Peng, and Y. Lu, Carbon-tolerant solid oxide fuel cells using NiTiO 3 as an anode internal reforming layer, J. Power Sources, 255, 404-409 (2014).
Y.-F. Sun, J.-H. Li, S.-H. Cui, K.T. Chuang, and J.-L. Luo, Carbon deposition and sulfur tolerant La 0.4 Sr 0.5 Ba 0.1 TiO 3 -La 0.4 Ce 0.6 O 1.8 anode catalysts for solid oxide fuel cells, Electrochim. Acta, 151, 81-88 (2015).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.