$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] T Cell Microvilli: Finger-Shaped External Structures Linked to the Fate of T Cells 원문보기

Immune network : official journal of the Korean association of immunobiologists, v.23 no.1, 2023년, pp.3.1 - 3.14  

Hye-Ran Kim (School of Life Sciences, Gwangju Institute of Science and Technology (GIST)) ,  Jeong-Su Park (School of Life Sciences, Gwangju Institute of Science and Technology (GIST)) ,  Won-Chang Soh (School of Life Sciences, Gwangju Institute of Science and Technology (GIST)) ,  Na-Young Kim (School of Life Sciences, Gwangju Institute of Science and Technology (GIST)) ,  Hyun-Yoong Moon (School of Life Sciences, Gwangju Institute of Science and Technology (GIST)) ,  Ji-Su Lee (School of Life Sciences, Gwangju Institute of Science and Technology (GIST)) ,  Chang-Duk Jun (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))

Abstract AI-Helper 아이콘AI-Helper

Microvilli are outer membrane organelles that contain cross-linked filamentous actin. Unlike well-characterized epithelial microvilli, T-cell microvilli are dynamic similar to those of filopodia, which grow and shrink intermittently via the alternate actin-assembly and -disassembly. T-cell microvill...

Keyword

참고문헌 (88)

  1. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML. The immunological?synapse: a molecular machine controlling T cell activation. Science 1999;285:221-227.? 

  2. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A. Three-dimensional segregation of supramolecular?activation clusters in T cells. Nature 1998;395:82-86.? 

  3. Stinchcombe JC, Bossi G, Booth S, Griffiths GM. The immunological synapse of CTL contains a secretory?domain and membrane bridges. Immunity 2001;15:751-761.? 

  4. Carlin LM, Eleme K, McCann FE, Davis DM. Intercellular transfer and supramolecular organization of?human leukocyte antigen C at inhibitory natural killer cell immune synapses. J Exp Med 2001;194:1507-1517.? 

  5. Dustin ML, Cooper JA. The immunological synapse and the actin cytoskeleton: molecular hardware for T?cell signaling. Nat Immunol 2000;1:23-29.? 

  6. Griffiths GM, Tsun A, Stinchcombe JC. The immunological synapse: a focal point for endocytosis and?exocytosis. J Cell Biol 2010;189:399-406.? 

  7. Dustin ML. T-cell activation through immunological synapses and kinapses. Immunol Rev 2008;221:77-89.? 

  8. Piragyte I, Jun CD. Actin engine in immunological synapse. Immune Netw 2012;12:71-83.? 

  9. Choudhuri K, Llodra J, Roth EW, Tsai J, Gordo S, Wucherpfennig KW, Kam LC, Stokes DL, Dustin?ML. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse. Nature?2014;507:118-123.? 

  10. Schamel WW, Alarcon B. Organization of the resting TCR in nanoscale oligomers. Immunol Rev?2013;251:13-20.? 

  11. Schamel WW, Arechaga I, Risueno RM, van Santen HM, Cabezas P, Risco C, Valpuesta JM, Alarcon B.?Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. J?Exp Med 2005;202:493-503.? 

  12. Molnar E, Swamy M, Holzer M, Beck-Garcia K, Worch R, Thiele C, Guigas G, Boye K, Luescher IF,?Schwille P, et al. Cholesterol and sphingomyelin drive ligand-independent T-cell antigen receptor?nanoclustering. J Biol Chem 2012;287:42664-42674. 

  13. Beck-Garcia K, Beck-Garcia E, Bohler S, Zorzin C, Sezgin E, Levental I, Alarcon B, Schamel WW.?Nanoclusters of the resting T cell antigen receptor (TCR) localize to non-raft domains. Biochim Biophys Acta?2015;1853:802-809.? 

  14. Crites TJ, Padhan K, Muller J, Krogsgaard M, Gudla PR, Lockett SJ, Varma R. TCR Microclusters pre-exist?and contain molecules necessary for TCR signal transduction. J Immunol 2014;193:56-67.? 

  15. Lillemeier BF, Mortelmaier MA, Forstner MB, Huppa JB, Groves JT, Davis MM. TCR and Lat are expressed on?separate protein islands on T cell membranes and concatenate during activation. Nat Immunol 2010;11:90-96.? 

  16. Siegers GM, Swamy M, Fernandez-Malave E, Minguet S, Rathmann S, Guardo AC, Perez-Flores V, Regueiro?JR, Alarcon B, Fisch P, et al. Different composition of the human and the mouse γδ T cell receptor explains?different phenotypes of CD3γ and CD3δ immunodeficiencies. J Exp Med 2007;204:2537-2544.? 

  17. Wilson BS, Pfeiffer JR, Surviladze Z, Gaudet EA, Oliver JM. High resolution mapping of mast cell?membranes reveals primary and secondary domains of Fc(ε)RI and LAT. J Cell Biol 2001;154:645-658.? 

  18. Jung Y, Riven I, Feigelson SW, Kartvelishvily E, Tohya K, Miyasaka M, Alon R, Haran G. Threedimensional localization of T-cell receptors in relation to microvilli using a combination of?superresolution microscopies. Proc Natl Acad Sci U S A 2016;113:E5916-E5924.? 

  19. Cai E, Marchuk K, Beemiller P, Beppler C, Rubashkin MG, Weaver VM, Gerard A, Liu TL, Chen BC, Betzig?E, et al. Visualizing dynamic microvillar search and stabilization during ligand detection by T cells. Science?2017;356:eaal3118.? 

  20. Kim HR, Mun Y, Lee KS, Park YJ, Park JS, Park JH, Jeon BN, Kim CH, Jun Y, Hyun YM, et al. T cell?microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat?Commun 2018;9:3630-3648.? 

  21. Yi JC, Samelson LE. Microvilli set the stage for T-cell activation. Proc Natl Acad Sci U S A 2016;113:11061-11062.? 

  22. He HT, Lellouch A, Marguet D. Lipid rafts and the initiation of T cell receptor signaling. Semin Immunol?2005;17:23-33.? 

  23. Harder T. Lipid raft domains and protein networks in T-cell receptor signal transduction. Curr Opin?Immunol 2004;16:353-359.? 

  24. Cebecauer M. Role of lipids in morphogenesis of T-cell microvilli. Front Immunol 2021;12:613591.? 

  25. Ikenouchi J, Hirata M, Yonemura S, Umeda M. Sphingomyelin clustering is essential for the formation of?microvilli. J Cell Sci 2013;126:3585-3592.? 

  26. Ghosh S, Di Bartolo V, Tubul L, Shimoni E, Kartvelishvily E, Dadosh T, Feigelson SW, Alon R, Alcover?A, Haran G. ERM-dependent assembly of T cell receptor signaling and co-stimulatory molecules on?microvilli prior to activation. Cell Reports 2020;30:3434-3447.e6.? 

  27. Kim HR, Jun CD. T cell microvilli: sensors or senders? Front Immunol 2019;10:1753.? 

  28. Danielsen EM, Hansen GH. Lipid rafts in epithelial brush borders: atypical membrane microdomains?with specialized functions. Biochim Biophys Acta 2003;1617:1-9.? 

  29. Majstoravich S, Zhang J, Nicholson-Dykstra S, Linder S, Friedrich W, Siminovitch KA, Higgs HN.?Lymphocyte microvilli are dynamic, actin-dependent structures that do not require Wiskott-Aldrich?syndrome protein (WASp) for their morphology. Blood 2004;104:1396-1403.? 

  30. Gupton SL, Gertler FB. Filopodia: the fingers that do the walking. Sci STKE 2007;2007:re5.? 

  31. Yang C, Svitkina T. Filopodia initiation: focus on the Arp2/3 complex and formins. Cell Adhes Migr?2011;5:402-408. 

  32. Le Clainche C, Carlier MF. Regulation of actin assembly associated with protrusion and adhesion in cell?migration. Physiol Rev 2008;88:489-513.? 

  33. Berlin C, Bargatze RF, Campbell JJ, von Andrian UH, Szabo MC, Hasslen SR, Nelson RD, Berg EL,?Erlandsen SL, Butcher EC. α4 Integrins mediate lymphocyte attachment and rolling under physiologic?flow. Cell 1995;80:413-422.? 

  34. von Andrian UH, Hasslen SR, Nelson RD, Erlandsen SL, Butcher EC. A central role for microvillous?receptor presentation in leukocyte adhesion under flow. Cell 1995;82:989-999.? 

  35. Lange K. Fundamental role of microvilli in the main functions of differentiated cells: outline of an?universal regulating and signaling system at the cell periphery. J Cell Physiol 2011;226:896-927.? 

  36. Long H, Zhang F, Xu N, Liu G, Diener DR, Rosenbaum JL, Huang K. Comparative analysis of ciliary?membranes and ectosomes. Curr Biol 2016;26:3327-3335.? 

  37. Molday RS, Goldberg AF. Peripherin diverts ciliary ectosome release to photoreceptor disc?morphogenesis. J Cell Biol 2017;216:1227-1229.? 

  38. Wood CR, Rosenbaum JL. Ciliary ectosomes: transmissions from the cell's antenna. Trends Cell Biol?2015;25:276-285.? 

  39. Veziroglu EM, Mias GI. Characterizing extracellular vesicles and their diverse RNA contents. Front Genet?2020;11:700.? 

  40. Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, Buzas K, Casal E, Cappello F,?Carvalho J, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell?Vesicles 2015;4:27066.? 

  41. Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol?2009;9:581-593.? 

  42. Osaki M, Okada F. Exosomes and their role in cancer progression. Yonago Acta Med 2019;62:182-190.? 

  43. Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci?2019;9:19.? 

  44. Rudraprasad D, Rawat A, Joseph J. Exosomes, extracellular vesicles and the eye. Exp Eye Res?2022;214:108892.? 

  45. van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical?relevance of extracellular vesicles. Pharmacol Rev 2012;64:676-705.? 

  46. Gutierrez-Vazquez C, Villarroya-Beltri C, Mittelbrunn M, Sanchez-Madrid F. Transfer of extracellular?vesicles during immune cell-cell interactions. Immunol Rev 2013;251:125-142.? 

  47. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol?2013;200:373-383.? 

  48. Corrado C, Raimondo S, Chiesi A, Ciccia F, De Leo G, Alessandro R. Exosomes as intercellular signaling?organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci 2013;14:5338-5366.? 

  49. Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic?information transfer and gene therapy. Hum Mol Genet 2012;21:R125-R134.? 

  50. Meldolesi J. Exosomes and ectosomes in intercellular communication. Curr Biol 2018;28:R435-R444.? 

  51. Wilson HL, Francis SE, Dower SK, Crossman DC. Secretion of intracellular IL-1 receptor antagonist (type?1) is dependent on P2X7 receptor activation. J Immunol 2004;173:1202-1208. 

  52. Kuo L, Freed EO. ARRDC1 as a mediator of microvesicle budding. Proc Natl Acad Sci U S A 2012;109:4025-4026.? 

  53. Puca L, Chastagner P, Meas-Yedid V, Israel A, Brou C. A-arrestin 1 (ARRDC1) and β-arrestins cooperate to?mediate Notch degradation in mammals. J Cell Sci 2013;126:4457-4468.? 

  54. Nabhan JF, Hu R, Oh RS, Cohen SN, Lu Q. Formation and release of arrestin domain-containing protein?1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad?Sci U S A 2012;109:4146-4151.? 

  55. Saliba DG, Cespedes-Donoso PF, Balint S, Compeer EB, Korobchevskaya K, Valvo S, Mayya V, Kvalvaag A,?Peng Y, Dong T, et al. Composition and structure of synaptic ectosomes exporting antigen receptor linked?to functional CD40 ligand from helper T cells. eLife 2019;8:e47528.? 

  56. Finetti F, Cassioli C, Baldari CT. Transcellular communication at the immunological synapse: a vesicular?traffic-mediated mutual exchange. F1000 Res 2017;6:1880.? 

  57. Zakharova L, Svetlova M, Fomina AF. T cell exosomes induce cholesterol accumulation in human?monocytes via phosphatidylserine receptor. J Cell Physiol 2007;212:174-181.? 

  58. Cai Z, Yang F, Yu L, Yu Z, Jiang L, Wang Q, Yang Y, Wang L, Cao X, Wang J. Activated T cell exosomes?promote tumor invasion via Fas signaling pathway. J Immunol 2012;188:5954-5961.? 

  59. Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, Raposo G, Hivroz C. TCR activation of human T?cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol 2002;168:3235-3241.? 

  60. Dustin ML, Springer TA. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1.?Nature 1989;341:619-624.? 

  61. Hsu CJ, Hsieh WT, Waldman A, Clarke F, Huseby ES, Burkhardt JK, Baumgart T. Ligand mobility?modulates immunological synapse formation and T cell activation. PLoS One 2012;7:e32398.? 

  62. Pelissier Vatter FA, Cioffi M, Hanna SJ, Castarede I, Caielli S, Pascual V, Matei I, Lyden D. Extracellular?vesicle- and particle-mediated communication shapes innate and adaptive immune responses. J Exp Med?2021;218:e20202579.? 

  63. Kong H, Kim SB. Exosomal communication between the tumor microenvironment and innate immunity?and its therapeutic application. Immune Netw 2022;22:e38.? 

  64. Besnard AG, Togbe D, Guillou N, Erard F, Quesniaux V, Ryffel B. IL-33-activated dendritic cells are critical?for allergic airway inflammation. Eur J Immunol 2011;41:1675-1686.? 

  65. Trevejo JM, Marino MW, Philpott N, Josien R, Richards EC, Elkon KB, Falck-Pedersen E. TNF-α-dependent maturation of local dendritic cells is critical for activating the adaptive immune response to?virus infection. Proc Natl Acad Sci U S A 2001;98:12162-12167.? 

  66. Schall TJ, Bacon K, Toy KJ, Goeddel DV. Selective attraction of monocytes and T lymphocytes of the?memory phenotype by cytokine RANTES. Nature 1990;347:669-671.? 

  67. Smith CM, Wilson NS, Waithman J, Villadangos JA, Carbone FR, Heath WR, Belz GT. Cognate CD4 + ? T cell?licensing of dendritic cells in CD8 + ? T cell immunity. Nat Immunol 2004;5:1143-1148.? 

  68. Zhu DM, Dustin ML, Cairo CW, Thatte HS, Golan DE. Mechanisms of cellular avidity regulation in CD2-?CD58-mediated T cell adhesion. ACS Chem Biol 2006;1:649-658.? 

  69. Naseri M, Bozorgmehr M, Zoller M, Ranaei Pirmardan E, Madjd Z. Tumor-derived exosomes: the next?generation of promising cell-free vaccines in cancer immunotherapy. OncoImmunology 2020;9:1779991.? 

  70. Sun S, Hao H, Yang G, Zhang Y, Fu Y. Immunotherapy with CAR-modified T cells: toxicities and?overcoming strategies. J Immunol Res 2018;2018:2386187. 

  71. Perica K, Varela JC, Oelke M, Schneck J. Adoptive T cell immunotherapy for cancer. Rambam Maimonides?Med J 2015;6:e0004.? 

  72. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K. Immunobiology of?dendritic cells. Annu Rev Immunol 2000;18:767-811.? 

  73. Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat?Commun 2019;10:5408-5417.? 

  74. Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC?Med 2016;14:73.? 

  75. Almasbak H, Aarvak T, Vemuri MC. CAR T cell therapy: a game changer in cancer treatment. J Immunol Res?2016;2016:5474602.? 

  76. Anurathapan U, Leen AM, Brenner MK, Vera JF. Engineered T cells for cancer treatment. Cytotherapy?2014;16:713-733.? 

  77. Riviere I, Sadelain M. Chimeric antigen receptors: a cell and gene therapy perspective. Mol Ther?2017;25:1117-1124.? 

  78. Ho NI, Huis In 't Veld LG, Raaijmakers TK, Adema GJ. Adjuvants enhancing cross-presentation by?dendritic cells: the key to more effective vaccines? Front Immunol 2018;9:2874.? 

  79. McAleer JP, Vella AT. Understanding how lipopolysaccharide impacts CD4 T-cell immunity. Crit Rev?Immunol 2008;28:281-299.? 

  80. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245-252.? 

  81. Beacock-Sharp H, Donachie AM, Robson NC, Mowat AM. A role for dendritic cells in the priming of?antigen-specific CD4 + ? and CD8 + ? T lymphocytes by immune-stimulating complexes in vivo. Int Immunol?2003;15:711-720.? 

  82. Golebiewska JE, Wardowska A, Pietrowska M, Wojakowska A, Debska-Slizien A. Small extracellular?vesicles in transplant rejection. Cells 2021;10:2989.? 

  83. Dietrich J, Menne C, Lauritsen JP, von Essen M, Rasmussen AB, Odum N, Geisler C. Ligand-induced TCR?down-regulation is not dependent on constitutive TCR cycling. J Immunol 2002;168:5434-5440.? 

  84. Martinez-Martin N, Fernandez-Arenas E, Cemerski S, Delgado P, Turner M, Heuser J, Irvine DJ, Huang B,?Bustelo XR, Shaw A, et al. T cell receptor internalization from the immunological synapse is mediated by?TC21 and RhoG GTPase-dependent phagocytosis. Immunity 2011;35:208-222.? 

  85. von Essen M, Bonefeld CM, Siersma V, Rasmussen AB, Lauritsen JP, Nielsen BL, Geisler C. Constitutive?and ligand-induced TCR degradation. J Immunol 2004;173:384-393.? 

  86. Huang JF, Yang Y, Sepulveda H, Shi W, Hwang I, Peterson PA, Jackson MR, Sprent J, Cai Z. TCR-mediated?internalization of peptide-MHC complexes acquired by T cells. Science 1999;286:952-954.? 

  87. Park JS, Kim JH, Soh WC, Lee KS, Kim CH, Chung IJ, Lee S, Kim HR, Jun CD. Trogocytic-molting of T-cell?microvilli controls T-cell clonal expansion. bioRxiv. 2022. doi: 10.1101/2022.05.03.490404.? 

  88. Lee H, Kim SH, Lee JS, Yang YH, Nam JM, Kim BW, Ko YG. Mitochondrial oxidative phosphorylation?complexes exist in the sarcolemma of skeletal muscle. BMB Rep 2016;49:116-121. 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로