$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

모발 백발화와 관련된 melanin 생성을 촉진시키는 화합물의 연구동향
Research Trends on Compounds that Promote Melanin Production Related to Hair Graying 원문보기

생명과학회지 = Journal of life science, v.33 no.5, 2023년, pp.445 - 454  

김문무 (동의대학교 응용화학과)

초록
AI-Helper 아이콘AI-Helper

백발화는 자외선, melanin 세포 자극 호르몬(α-MSH), 줄기 세포 인자 성장인자(SCF), Wnt 및 endothelin-1 (ET-1)에 의하여 활성화되는 melanogenesis를 조절하는 신호 전달 경로가 제대로 작동하지 못하여 나타난 결과이다. 백발화를 예방하기 위하여, tyrosinase, tyrosine hydroxylase, tyrosinase-related protein (TRP)-1, TRP-2 및 microphthalmia-associated transcription factor (MITF)에 의하여 조절되는 melanogenesis를 자극하는 효과적인 합성 및 천연 화합물이 있다. 이러한 화합물은 백발화 예방을 위한 잠재성을 지니고 있다. 이 기사는 melanogenesis와 백발화와 관련된 신호 전달 경로에서 최근의 진전뿐 만 아니라 백발화의 문제를 해결하기 위한 핵심적인 전략에 대해 기술한다. 특히, 이글에서는 catalase 및 methionine sulfoxide reductase를 조절하는 항산화제, resveratrol, fisetin, quercetin 및 ginsenoside와 같은 sirtuin (SIRT) 1 activator와 같은 melanin 생성을 촉진하는 잠재적으로 효과적인 치료제에 대하여 설명한다. 또한 estrogen, androgen, progesterone 및 dihydrotestosterone를 포함하는 telomerase 발현 및 activator 뿐만 아니라, corticosteroids, calcineurin restrainer 및 palmitic acid methyl ester와 같은 백반증 억제제에 대하여 논의한다. 더불어 latanoprost, erlotinib, imatinib, tamoxifen, 및 levodopa와 같은 백발화를 억제할 수 있는 화합물에 대해서도 탐구한다. 결론적으로 이 기사는 모발 백발화와 관련된 melanin 생성을 촉진시키는 화합물에 대한 최근의 연구동향을 고찰한다.

Abstract AI-Helper 아이콘AI-Helper

Hair graying is the result of a malfunction in the signaling pathways that control melanogenesis, and it is activated by UV light, melanocyte-stimulating hormone (MSH), stem cell factor (SCF), Wnt, and endothelin-1 (ET-1). To prevent hair graying, synthetic and natural compounds can be used to stimu...

주제어

표/그림 (4)

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • 여기서는 백발화를 억제하는 과정에서 catalase, MSRA 및 MSRB와 같은 항산화 효소, SIRT와 같은 histone deacetylase, 백반증 억제제, telomere 길이와 telomerase의 중요성을 기술하였다. 뿐만 아니라, melanin 생성 촉진제, 모발 백발화 억제 항염증 약물, tyrosine kinase 억제제 및 바나나 껍질을 소개하였다. 최신 노화 기전에서는 IGF-1 신호경로, telomere 길이의 단축으로 세포노화 및 SIRT 신호경로가 핵심적인 역할을 하고있다.
  • 그다음 이러한 기전들을 기반으로 항노화 물질을 연구하여 해결책을 찾는 것이 바람직한 접근방법이다. 여기서는 백발화를 억제하는 과정에서 catalase, MSRA 및 MSRB와 같은 항산화 효소, SIRT와 같은 histone deacetylase, 백반증 억제제, telomere 길이와 telomerase의 중요성을 기술하였다. 뿐만 아니라, melanin 생성 촉진제, 모발 백발화 억제 항염증 약물, tyrosine kinase 억제제 및 바나나 껍질을 소개하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (76)

  1. Ali, M. H. and Awad, M. M. 2021. The effect of oxidative?stress on vitiligo patients. Indian J. Forensic Med. Toxicol.?15, 1848-1852. 

  2. Ambati, R. R. and Ramadan, M. F. 2021. Nigella sativa?seed extracts in functional foods and nutraceutical applications, pp.501-520. In: Ramadan, M.F. (eds), Black cumin?(Nigella sativa) seeds: Chemistry, Technology, Functionality, and Applications. Springer Nature: AG, Switzerland. 

  3. Anastassakis, K. 2022. The effects of aging on the hair?follicle, pp. 83-94. In: Anastassakis, K. (eds.), Androgenetic Alopecia From A to Z. Springer Nature: AG, Switzerland. 

  4. Aravinda Kumar, B. 2021. Dermatological pharmacology,?pp. 1129-1148. In: Paul, A., Anandabaskar, N., Mathaiyan,?J. and Raj, G. M. (eds.), Introduction to Basics of Pharmacology and Toxicology. Springer Nature: AG, Switzerland. 

  5. Arguelles, S., Guerrero-Castilla, A., Cano, M., Munoz, M.?F. and Ayala, A. 2019. Advantages and disadvantages of?apoptosis in the aging process. Ann. N. Y. Acad. Sci. 1443, 20-33. 

  6. Aviv, A. and Shay, J. W. 2018. Reflections on telomere?dynamics and ageing-related diseases in humans. Philos.?Trans R. Soc. Lond. B Biol. Sci. 373, 20160436. 

  7. Blackburn, E. H. 2005. Telomeres and telomerase: their?mechanisms of action and the effects of altering their?functions. FEBS Lett. 579, 859-862. 

  8. Buckingham, E. M. and Klingelhutz, A. J. 2011. The role?of telomeres in the ageing of human skin. Exp. Dermatol.?20, 297-302. 

  9. Chandrasekaran, A., Idelchik, M. D. P. S. and Melendez,?J. A. 2017. Redox control of senescence and age-related?disease. Redox Biol. 11, 91-102. 

  10. Commo, S., Gaillard, O. and Bernard, B. A. 2004. Human?hair greying is linked to a specific depletion of hair follicle?melanocytes affecting both the bulb and the outer root?sheath. Br. J. Dermatol. 150, 435-443. 

  11. Dai, D. M., He, Y., Guan, Q., Fan, Z. X., Zhu, Y., Wang,?J., Wu, S., Chen, J., Le, D. and Hu, Z. Q. 2023. Modeling?human gray hair by irradiation as a valuable tool to study?aspects of tissue aging. GeroScience 45, 1215-1230. 

  12. Feuerer, L., Lamm, S., Henz, I., Kappelmann-Fenzl, M.,?Haferkamp, S., Meierjohann, S., Hellerbrand, C., Kuphal,?S. and Bosserhoff, A. K. 2019. Role of melanoma inhibitory activity in melanocyte senescence. Pigment Cell?Melanoma Res. 32, 777-791. 

  13. Fischer, T. W., Slominski, A., Tobin, D. J. and Paus, R.?2008. Melatonin and the hair follicle. J. Pineal Res. 44, 1-15. 

  14. Flores, I., Cayuela, M. L. and Blasco, M. A. 2005. Effects?of telomerase and telomere length on epidermal stem cell?behavior. Science 309, 1253-1256. 

  15. Gomes, N. M., Ryder, O. A., Houck, M. L., Charter, S.?J., Walker, W., Forsyth, N. R., Austad, S. N., Venditti,?C., Pagel, M. and Shay, J. W. 2011. Comparative biology?of mammalian telomeres: hypotheses on ancestral states?and the roles of telomeres in longevity determination.?Aging Cell 10, 761-768. 

  16. Guryanov, I., Naumenko, E. and Fakhrullin, R. 2022. Hair?surface engineering: Combining nanoarchitectonics with?hair topical and beauty formulations. Appl. Surf. Sci. Adv.?7, 100188. 

  17. Heilmann-Heimbach, S., Hochfeld, L. M., Henne, S. K.?and Nothen, M. M. 2020. Hormonal regulation in male?androgenetic alopecia-Sex hormones and beyond: Evidence from recent genetic studies. Exp. Dermatol. 29, 814-827. 

  18. Huang, Q., Su, H., Qi, B., Wang, Y., Yan, K., Wang, X.,?Li, X. and Zhao, D. 2021. A SIRT1 activator, ginsenoside?Rc, promotes energy metabolism in cardiomyocytes and neurons. J. Am. Chem. Soc. 143, 1416-1427. 

  19. Iside, C., Scafuro, M., Nebbioso, A. and Altucci, L. 2020.?SIRT1 activation by natural phytochemicals: an overview.?Front. Pharmacol. 11, 1225. 

  20. Jeon, S. and Kim, M. M. 2021. The down-regulation of?melanogenesis via MITF and FOXO1 signaling pathways?in SIRT1 knockout cells using CRISPR/Cas9 system. J.?Biotechnol. 342, 114-127. 

  21. Jeon, S., Kim, N. H., Koo, B. S., Kim, J. Y. and Lee,?A. Y. 2009. Lotus (Nelumbo nuficera) flower essential oil?increased melanogenesis in normal human melanocytes.?Exp. Mol. Med. 41, 517-524. 

  22. Jiang, S., Liao, Z. K., Jia, H. Y., Liu, X. M., Wan, J. and?Lei, T. C. 2021. The regional distribution of melanosomes?in the epidermis affords a localized intensive photoprotection for basal keratinocyte stem cells. J. Dermatol.?Sci. 103, 130-134. 

  23. Jo, S. K., Lee, J. Y., Lee, Y., Kim, C. D., Lee, J. H. and?Lee, Y. H. 2018. Three streams for the mechanism of hair?graying. Ann. Dermatol. 30, 397-401. 

  24. Kang, S. H. and Kim, M. M. 2021. Spermidine promotes?melanin production through a MITF signaling pathway.?Cell Biochem. Funct. 39, 536-545. 

  25. Ko, H. and Kim, M. M. 2019. TP53 tumor-suppressor gene?plays a key role in IGF1 signaling pathway related to the?aging of human melanocytes. Anticancer Res. 39, 2447-2451. 

  26. Kwon, E. J. and Kim, M. M. 2017. Agmatine modulates?melanogenesis via MITF signaling pathway. Environ.?Toxicol. Pharmacol. 49, 124-130. 

  27. Lai, T. P., Zhang, N., Noh, J., Mender, I., Tedone, E.,?Huang, E., Wright, W. E., Danuser, G. and Shay, J. W.?2017. A method for measuring the distribution of the?shortest telomeres in cells and tissues. Nat. Commun. 8, 1-14. 

  28. Lee, G. Y., Sohn, J. and Lee, S. J. V. 2021. Combinatorial?approach using Caenorhabditis elegans and mammalian?systems for aging research. Mol. Cells 44, 425-432. 

  29. Lee, S. H., Cho, M., Han, Y. J., Woo, Y. R., Cho, S. H.,?Lee, J. D. and Kim, H. S. 2022. Laser-induced mottled?hypopigmentation successfully treated with a combined?regimen of topical calcineurin inhibitors and fractional?CO2 laser. Dermatol. Sinica 40, 50. 

  30. Lu, Y., Tonissen, K. F. and Di Trapani, G. 2021.?Modulating skin colour: role of the thioredoxin and glutathione systems in regulating melanogenesis. Biosci. Rep.?41, 20210417. 

  31. Maddaleno, A. S., Camargo, J., Mitjans, M. and Vinardell,?M. P. 2021. Melanogenesis and melasma treatment. Cosmetics 8, 82. 

  32. Madeo, F., Carmona-Gutierrez, D., Hofer, S. J. and?Kroemer, G. 2019. Caloric restriction mimetics against?age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metabol. 29, 592-610. 

  33. Man, M. Q., Wakefield, J. S., Mauro, T. M. and Elias,?P. M. 2022. Regulatory role of nitric oxide in cutaneous?inflammation. Inflammation 45, 949-964. 

  34. Man, M. Q., Wakefield, J. S., Mauro, T. M. and Elias,?P. M. 2022. Role of nitric oxide in regulating epidermal?permeability barrier function. Exp. Dermatol. 31, 290-298. 

  35. Megna, M., Fabbrocini, G., Marasca, C. and Monfrecola,?G. 2016. Photodynamic therapy and skin appendage disorders: a review. Skin Appendage Disord. 2, 166-176. 

  36. Meng, F., Li, J., Rao, Y., Wang, W. and Fu, Y. 2018.?Gengnianchun extends the lifespan of Caenorhabditis elegans via the insulin/IGF-1 signaling pathway. Oxid. Med.?Cell Longev. 2018, 4740739. 

  37. Molagoda, I. M. N., Karunarathne, W. A. H. M., Park,?S. R., Choi, Y. H., Park, E. K., Jin, C. Y., Yu, H., Jo,?W. S., Lee, K. T. and Kim, G. Y. 2020. GSK-3β-targeting?fisetin promotes melanogenesis in B16F10 melanoma cells?and zebrafish larvae through β-catenin activation. Int. J.?Mol. Sci. 21, 312. 

  38. Nagpal, N. and Agarwal, S. 2020. Telomerase RNA processing: Implications for human health and disease. Stem?Cells 38, 1532-1543. 

  39. O'Sullivan, J. D., Nicu, C., Picard, M., Cheret, J., Bedogni,?B., Tobin, D. J. and Paus, R. 2021. The biology of human?hair greying. Biol. Rev. 96, 107-128. 

  40. Park, H. E. H., Hwang, W., Ham, S., Kim, E., Altintas,?O., Park, S., Son, H. G., Lee, Y., Lee, D. and Heo, W.?D. 2021. A PTEN variant uncouples longevity from impaired fitness in Caenorhabditis elegans with reduced insulin/IGF-1 signaling. Nat. Commun. 12, 1-15. 

  41. Permatasari, N., Suwarno, A. R., Athallah, A. A., Balga,?A. I. and Baihaki, A. S. 2022. Human hair follicular stem?cell (HHFSC) in human hair follicular aging. Syntax?Literate; J. Ilmiah Indonesia 7, 3947-3953. 

  42. Prihatsari, F., Hidayati, H. B., Damayanti, D. and Budisulistyo, T. 2021. Hypopigmentation and subcutaneous fat?atrophy associated with corticosteroid injection: a case report. Anaesth. Pain Intensive Care 25, 807-811. 

  43. Rochette, P. J. and Brash, D. E. 2010. Human telomeres are hypersensitive to UV-induced DNA Damage and refractory to repair. PLoS Genet. 6, e1000926. 

  44. Rosenberg, A. M., Rausser, S., Ren, J., Mosharov, E. V.,?Sturm, G., Ogden, R. T., Patel, P., Soni, R. K., Lacefield,?C. and Tobin, D. J. 2021. Quantitative mapping of human?hair greying and reversal in relation to life stress. Elife?10, e67437. 

  45. Saitoh, Y., Tanaka, A. and Hyodo, S. 2021. Protective effects of polyvinylpyrrolidone-wrapped fullerene against?nitric oxide/peroxynitrite-induced cellular injury in human?skin keratinocytes. J. Nanosci. Nanotechnol. 21, 4579-?4585. 

  46. Salminen, A., Kaarniranta, K. and Kauppinen, A. 2021.?Insulin/IGF-1 signaling promotes immunosuppression via?the STAT3 pathway: impact on the aging process and?age-related diseases. Inflamm. Res. 70, 1043-1061. 

  47. Shosuke, I. and Kazumasa, W. 2003. Quantitative analysis?of eumelanin and pheomelanin in humans, mice, and other?animals: a comparative review. Pigment Cell Res. 16, 523-?531. 

  48. Seiberg, M. 2013. Age-induced hair greying-the multiple?effects of oxidative stress. Int. J. Cosmet. Sci. 35, 532-?538. 

  49. Serre, C., Busuttil, V. and Botto, J. M. 2018. Intrinsic and?extrinsic regulation of human skin melanogenesis and?pigmentation. Int. J. Cosmet. Sci. 40, 328-347. 

  50. Siddiqui, M. F. and Kim, M. M. 2021. SIRT7 gene knockout using CRISPR/Cas9 system enhances melanin production in the melanoma cells. Biochim. Biophys. Acta?Mol. Basis Dis. 1867, 166219. 

  51. Silva, P. T. and Atukorallaya, D. S. 2022. Inhibition of?Wnt/β-catenin signaling pathway on melanogenesis-insights from Zebrafish (Danio rerio). FASEB J. 36, S1. 

  52. Singh, R., Madke, B., Bansod, S. and Yadav, N. 2021.?Premature graying of hair: A concise review. Cosmoderma?1, 1-6. 

  53. Slominski, A. T., Hardeland, R., Zmijewski, M. A., Slominski,?R. M., Reiter, R. J. and Paus, R. 2018. Melatonin: A cutaneous perspective on its production, metabolism, and?functions. J. Invest. Dermatol. 138, 490-499. 

  54. Subedi, L., Gaire, B. P., Kim, S. Y. and Parveen, A. 2021.?Nitric oxide as a target for phytochemicals in anti-neuroinflammatory prevention therapy. Int. J. Mol. Sci. 22, 4771. 

  55. Sultana, T., Okla, M. K., Ahmed, M., Akhtar, N., AlHashimi, A., Abdelgawad, H. and Haq, I. U. 2021. Withaferin A: From ancient remedy to potential drug candidate.?Molecules 26, 7696. 

  56. Taormina, G. and Mirisola, M. G. 2015. Longevity: epigenetic and biomolecular aspects. Biomol. Concepts 6, 105-117. 

  57. Tobin, D. J. 2009. Aging of the hair follicle pigmentation?system. Int. J. Trichology 1, 83-93. 

  58. Tobin, D. J. and Paus, R. 2001. Graying: gerontobiology?of the hair follicle pigmentary unit. Exp. Gerontol. 36, 29-54. 

  59. Van Deursen, J. M. 2014. The role of senescent cells in?ageing. Nature 509, 439-446. 

  60. Van Neste, D. and Tobin, D. J. 2004. Hair cycle and hair?pigmentation: dynamic interactions and changes associated?with aging. Micron 35, 193-200. 

  61. Vedamurthy, M. 2006. Antiaging therapies. Indian J. Dermatol. Venereol. Leprol. 72, 183-186. 

  62. Victorelli, S., Lagnado, A., Halim, J., Moore, W., Talbot,?D., Barrett, K., Chapman, J., Birch, J., Ogrodnik, M. and?Meves, A. 2019. Senescent human melanocytes drive skin?ageing via paracrine telomere dysfunction. EMBO J. 38, e101982. 

  63. Videira, I. F. d. S., Moura, D. F. L. and Magina, S. 2013.?Mechanisms regulating melanogenesis. An. Bras. Dermatol.?88, 76-83. 

  64. Wan, P., Hu, Y. and He, L. 2011. Regulation of melanocyte?pivotal transcription factor MITF by some other transcription factors. Mol. Cell. Biochem. 354, 241-246. 

  65. Wang, K. Y., Chi, J. and Saif, M. W. 2021. Imatinib induced hypopigmentation and neutropenia in a patient with?gastric gastrointestinal stromal tumor. Arch. Med. Case?Rep. 4, 1-5. 

  66. Wang, Y. and Shi, J. 2021. P53 and DNA methylation?in the aging Process. J. Behav. Brain Sci. 11, 83-95. 

  67. Williams, R., Pawlus, A. D. and Thornton, M. J. 2020.?Getting under the skin of hair aging: the impact of the?hair follicle environment. Exp. Dermatol. 29, 588-597. 

  68. Wood, J. M., Decker, H., Hartmann, H., Chavan, B.,?Rokos, H., Spencer, J., Hasse, S., Thornton, M. J., Shalbaf,?M. and Paus, R. 2009. Senile hair graying: H2O2-mediated?oxidative stress affects human hair color by blunting methionine sulfoxide repair. FASEB J. 23, 2065-2075. 

  69. Xie, W., Pakdel, E., Liang, Y., Kim, Y. J., Liu, D., Sun,?L. and Wang, X. 2019. Natural eumelanin and its derivatives as multifunctional materials for bioinspired applications: A review. Biomacromolecules 20, 4312-4331. 

  70. Xuan, Y., Yang, Y., Xiang, L. and Zhang, C. 2022. The?role of oxidative stress in the pathogenesis of vitiligo: A?culprit for melanocyte death. Oxid. Med. Cell. Longev.?2022, 8498472. 

  71. Yale, K., Juhasz, M. and Mesinkovska, N. A. 2020.?Medication-induced repigmentation of gray hair: a systematic review. Skin Appendage Disord. 6, 1-10. 

  72. Yan, Y. and Huang, H. 2019. Interplay among PI3K/AKT,?PTEN/FOXO and AR signaling in prostate cancer. pp.?319-331. In: Scott M. D., Donald J. T. (eds), Prostate?Cancer. Springer Nature: AG, Switzerland. 

  73. Zeeshan, M., Sonthalia, S., Yadav, P., Gupta, P., Agrawal,?M., Bhatia, J., Jha, A. K. and Roy, P. K. 2022. Do oxidative stress and melanin accumulation contribute to the?pathogenesis of idiopathic guttate hypomelanosis: A prospective case-control study. J. Cosmet. Dermatol. 21, 1154-1162. 

  74. Zhang, J., Mou, Y., Gong, H., Chen, H. and Xiao, H. 2021.?Microphthalmia-associated transcription factor in senescence and age-related diseases. Gerontology 67, 708-717. 

  75. Zhao, P., Park, N., Alam, M. and Lee, S. 2022. Fuzhuan?brick Tea boosts melanogenesis and prevents hair graying?through reduction of oxidative stress via NRF2-HO-1?signaling. Antioxidants 11, 599. 

  76. Zhou, S., Zeng, H., Huang, J., Lei, L., Tong, X., Li, S.,?Zhou, Y., Guo, H., Khan, M. and Luo, L. 2021. Epigenetic?regulation of melanogenesis. Ageing Res. Rev. 69, 101349. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로