$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

증강현실을 활용한 소집단 학습에서 나타나는 중학생의 지식 형성 담화 유형과 지식 형성 과정 탐색
An Exploration for Types of Knowledge Building Discourse and Knowledge Building Processes in Middle School Students' Small Group Learning Using Augmented Reality 원문보기

한국과학교육학회지 = Journal of the Korean association for science education, v.43 no.2, 2023년, pp.125 - 137  

송나윤 (서울대학교 교육종합연구원) ,  이예진 (서울대학교) ,  신기덕 (서울대학교) ,  노태희 (서울대학교)

초록
AI-Helper 아이콘AI-Helper

이 연구에서는 증강현실을 활용한 소집단 학습에서 나타나는 중학생의 지식 형성 담화의 유형과 지식 형성 과정을 탐색하였다. 서울시 소재의 남녀공학 중학교 2학년 학생 8명이 증강현실을 활용하여 용해도 개념, 끓는점과 녹는점 개념에 대한 소집단 학습에 참여하였다. 수업은 2차시에 걸쳐 이루어졌으며 모두 녹음 및 녹화하였다. 이후, 연구에 참여한 학생들은 반구조화된 면담에 참여하였다. 지식 형성 담화의 유형에서 지식 공유와 지식 구성의 비율은 비슷하게 나타났다. 지식 공유에서는 기초 수준의 토의, 증강현실의 핵심 요소 확인의 순으로 나타났고, 사전 지식의 회상은 거의 나타나지 않았다. 지식 구성에서는 심화 수준의 토의가 가장 높았고, 그다음으로 다른 수준에서의 공유 및 비판과 현재의 설명 수준을 넘어서려는 노력이 나타났으며, 두 요소의 비율은 유사하였다. 지식 공유의 하위 요소인 기초 수준의 토의와 증강현실의 핵심 요소 확인은 지식 구성의 하위 요소인 현재의 설명 수준을 넘어서려는 노력과 다른 수준에서의 공유 및 비판으로 발전되어 나타났다. 지식 형성 과정을 시각화했을 때, 모든 학생의 누적 영향 값 그래프는 우상향하는 형태로 나타났지만, 소집단별로 두 학생의 누적 영향 값은 차이가 나타나는 경우가 있었다. 이상의 연구 결과를 통해 증강현실을 활용한 중학생의 소집단 학습 촉진 방안을 제시하였다.

Abstract AI-Helper 아이콘AI-Helper

This study analyzed the types of knowledge building discourse and knowledge building processes in small group learning using augmented reality. Eight 8th grade students took classes using augmented reality in solubility, boiling and melting points. These classes were carried out twice and all the cl...

주제어

표/그림 (5)

참고문헌 (59)

  1. Arvaja, M., Hakkinen, P., Rasku-Puttonen, H., & Etelapelto, A. (2002).?Social processes and knowledge building during small group?interaction in a school science project. Scandinavian Journal of?Educational Research, 46(2), 161-179. 

  2. Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators?and Virtual Environments, 6(4), 355-385. 

  3. Benson, D. L., Wittrock, M. C., & Baur, M. E. (1993). Students'?preconceptions of the nature of gases. Journal of Research in Science?Teaching, 30(6), 587-597. 

  4. Bower, M., Howe, C., McCredie, N., Robinson, A., & Grover, D. (2014).?Augmented reality in education-cases, places and potentials.?Educational Media International, 51(1), 1-15. 

  5. Cai, S., Chiang, F.-K., & Wang, X. (2013). Using the augmented reality?3D technique for a convex imaging experiment in a physics course.?International Journal of Engineering Education, 29(4), 856-865. 

  6. Cai, S., Wang, X., & Chiang, F.-K. (2014). A case study of augmented?reality simulation system application in a chemistry course. Computers?in Human Behavior, 37, 31-40. 

  7. Chang, H.-Y., & Linn, M. C. (2013). Scaffolding learning from molecular?visualizations. Journal of Research in Science Teaching, 50(7), 858-886. 

  8. Chen, B., Resendes, M., Chai, C. S., & Hong, H. Y. (2017). Two tales?of time: Uncovering the significance of sequential patterns among?contribution types in knowledge-building discourse. Interactive?Learning Environments, 25(2), 162-175. 

  9. Cheng, M. M. W., & Gilbert, J. K. (2014). Students' visualization of metallic?bonding and the malleability of metals. International Journal of Science?Education, 36(8), 1373-1407. 

  10. Cheng, Y. W., Wang, Y., Cheng, I. L., & Chen, N. S. (2019). An in-depth?analysis of the interaction transitions in a collaborative augmented?reality-based mathematic game. Interactive Learning Environments,?27(5-6), 782-796. 

  11. Chiang, T. H., Yang, S. J., & Hwang, G. J. (2014). Students' online?interactive patterns in augmented reality-based inquiry activities.?Computers & Education, 78, 97-108. 

  12. Chiu, J. L., & Linn, M. C. (2012). The role of self-monitoring in learning?chemistry with dynamic visualizations. In A. Zohar, & Y. J. Dori?(Eds.), Metacognition in science education: Trends in current research?(pp. 133-163). Dordrecht, NL: Springer. 

  13. Choi, W., Ha, H., & Kim, H.-B. (2021). Exploring students' epistemological?framing shift and sophistication of models in a modeling-based?instruction in genetics. Biology Education, 49(2), 251-265. 

  14. Garzon, J., Kinshuk, Baldiris, S., Gutierrez, J., & Pavon, J. (2020). How?do pedagogical approaches affect the impact of augmented reality on?education? A meta-analysis and research synthesis. Educational?Research Review, 31, 100334. 

  15. Geelan, D., Larochelle, M., & Lemke, J. L. (2005). The laws of science.?In J. Wallace, & W. Louden (Eds.), Dilemmas of science teaching:?Perspectives on problems of practice (pp. 22-35). London, UK:?Routledge. 

  16. Georgiou, Y., & Kyza, E. A. (2021). Bridging narrative and locality in?mobile-based augmented reality educational activities: Effects of?semantic coupling on students' immersion and learning gains.?International Journal of Human-Computer Studies, 145, 102546. 

  17. Han, S., & Lim, C. I. (2020). Research trends on augmented reality education?in Korea from 2008 to 2019. Journal of Educational Technology, 36(3),?505-528. 

  18. Haug, B. S., & Odegaard, M. (2014). From words to concepts: Focusing?on word knowledge when teaching for conceptual understanding within?an inquiry-based science setting. Research in Science Education, 44(5),?777-800. 

  19. Hmelo-Silver, C. E. (2003). Analyzing collaborative knowledge construction:?Multiple methods for integrated understanding. Computers &?Education, 41(4), 397-420. 

  20. Hogan, K., Nastasi , B. K., & Pressley, M. (1999). Di scourse patterns and?collaborative scientific reasoning in peer and teacher-guided?discussions. Cognition and Instruction, 17(4), 379-432. 

  21. Ibanez, M. B., Di Serio, A., Villaran, D., & Kloos, C. D. (2014).?Experimenting with electromagnetism using augmented reality: Impact?on flow student experience and educational effectiveness. Computers?& Education, 71, 1-13. 

  22. Jeon, Y.-E., & Hong, H.-G. (2022). The effect of teaching and learning?method using mobile augmented reality(MAR) according to?scaffolding types on chemistry academic achievement, learning flow,?and learning motivation. Journal of Learner-Centered Curriculum and?Instruction, 22(15), 275-293. 

  23. Jeon, Y.-E., Ji, J.-Y., & Hong, H.-G. (2022). The effect of process oriented?guided inquiry learning using mobile augmented reality on science?achievement, science learning motivation, and learning flow in?chemical bond. Journal of the Korean Association for Science?Education, 42(3), 357-370. 

  24. Kim, H. (2018) Augmented reality trends in educational research: Through?a systematic review of Korean literature. Journal of The Korean?Association of Information Education, 22(3), 397-407. 

  25. King, A. (1994). Guiding knowledge construction in the classroom: Effects?of teaching children how to question and how to explain. American?Educational Research Journal, 31(2), 338-368. 

  26. Kittleson, J. M., & Southerland, S. A. (2004). The role of discourse in group?knowledge construction: A case study of engineering students. Journal?of Research in Science Teaching, 41(3), 267-293. 

  27. Knain, E., Fredlund, T., & Furberg, A. (2021). Exploring student reasoning?and representation construction in school science through the lenses?of social semiotics and interaction analysis. Research in Science?Education, 51(1), 93-111. 

  28. Lamsa, J., Hamalainen, R., Koskinen, P., & Viiri, J. (2018). Visualising the?temporal aspects of collaborative inquiry-based learning processes in?technology-enhanced physics learning. International Journal of Science?Education, 40(14), 1697-1717. 

  29. Lee, J., Lee, B., & Noh, T. (2018). A comparison of middle school students'?macroscopic and microscopic conceptions related to the properties of?substances. Journal of the Korean Chemical Society, 62(3), 243-252. 

  30. Lee, J., Park, G., & Noh, T. (2020). Development and application of the?multiple representation-based learning strategies using augmented?reality on the concept of the particulate nature of matter. Journal of?The Korean Association For Science Education, 40(4), 375-383. 

  31. Lehesvuori, S., Viiri, J., Rasku-Puttonen, H., Moate, J., & Helaakoski, J.?(2013). Visualizing communication structures in science classrooms:?Tracing cumulativity in teacher-led whole class discussions. Journal?of Research in Science Teaching, 50(8), 912-939. 

  32. Lim, H., & Noh, T. (2001). Verbal interactions in heterogeneous small-group?cooperative learning. Journal of the Korean Association for Science?Education, 21(4), 668-676. 

  33. Lin, H. S., Cheng, H. J., & Lawrenz, F. (2000). The assessment of students?and teachers' understanding of gas laws. Journal of Chemical?Education, 77(2), 235. 

  34. Lin, T.-J., Duh, H. B.-L., Li, N., Wang, H.-Y., & Tsai, C.-C. (2013). An?investigation of learners' collaborative knowledge construction?performances and behavior patterns in an augmented reality simulation?system. Computers & Education, 68, 314-321. 

  35. Mercer, N. (1996). The quality of talk in children's collaborative activity?in the classroom. Learning and Instruction, 6(4), 359-377. 

  36. Na, J., & Yoon, H. (2021) Analysis of domestic and foreign science education?research trends using augmented reality-Focusing on implications for?research in elementary science education. Journal of Korean?Elementary Science Education, 40(1), 22-35. 

  37. Nachairit, A., & Srisawasdi, N. (2015). Using mobile augmented reality for?chemistry learning of acid-base titration: Correlation between?motivation and perception. In H. Ogata, W. Chen, S. C. Kong, & F.?Qiu (Eds.), Proceedings of the 23rd International Conference on?Computers in Education (pp. 519-528). Ishikawa, JP: Asia-Pacific?Society for Computers in Education. 

  38. Nattiv, A. (1994). Helping behaviors and math achievement gain of students?using cooperative learning. The Elementary School Journal, 94(3),?285-297. 

  39. Nichols, K., Gillies, R., & Hedberg, J. (2016). Argumentation-based?collaborative inquiry in science through representational work: Impact?on primary students' representational fluency. Research in Science?Education, 46(3), 343-364. 

  40. Nichols, K., Hanan, J., & Ranasinghe, M. (2013). Transforming the social?practices of learning with representations: A study of disciplinary?discourse. Research in Science Education, 43(1), 179-208. 

  41. Noddings, N. (1989). Theoretical and practical concerns about small groups?in mathematics. The Elementary School Journal, 89(5), 607-623. 

  42. Park, J., Park, Y., & Kang, S. (2013). Analysis of the level of cognitive?demands about concepts of the changes of state and kinetic theory?on 'Science 1' textbooks in junior high school (III). Journal of the?Korean Chemical Society, 57(5), 640-655. 

  43. Rincke, K. (2011). It's rather like learning a language: Development of talk?and conceptual understanding in mechanics lessons. International?Journal of Science Education, 33(2), 229-258. 

  44. Samon, S., & Levy, S. T. (2020). Interactions between reasoning about?complex systems and conceptual understanding in learning chemistry.?Journal of Research in Science Teaching, 57(1), 58-86. 

  45. Scardamalia, M., & Bereiter, C. (1993). Technologies for knowledge-building?discourse. Communications of the ACM, 36(5), 37-41. 

  46. Scardamalia, M., & Bereiter, C. (2014). Knowledge building and knowledge?creation: Theory, pedagogy, and technology. In R. K. Sawyer (Ed.),?The cambridge handbook of the learning sciences (pp. 397-417). New?York, NY: Cambridge University Press. 

  47. Shin, S., Kim, H., Noh, T., & Lee, J. (2020a). High school students' verbal?and physical interactions appeared in collaborative science concept?learning using augmented reality. Journal of the Korean Association?for Science Education, 40(2), 191-201. 

  48. Shin, S., Noh, T., & Lee, J. (2020b). An exploration of learning environment?for promoting conceptual understanding, immersion and situational?interest in small group learning using augmented reality. Journal of?the Korean Chemical Society, 64(6), 360-370. 

  49. Singer, J. E., Tal, R., & Wu, H. K. (2003). Students' understanding of the?particulate nature of matter. School Science and Mathematics, 103(1),?28-44. 

  50. Song, N., Shin, K. D., & Noh, T. (2022). Analysis of middle school students'?verbal and physical interactions of group size in small group learning?using augmented reality. Journal of the Korean Association for Science?Education, 42(5), 557-566. 

  51. Stieff, M. (2011). Improving representational competence using molecular?simulations embedded in inquiry activities. Journal of Research in?Science Teaching, 48(10), 1137-1158. 

  52. Thompson, K., Ashe, D., Carvalho, L., Goodyear, P., Kelly, N., & Parisio,?M. (2013). Processing and visualizing data in complex learning?environments. American Behavioral Scientist, 57(10), 1401-1420. 

  53. van Aalst, J. (2009). Distinguishing knowledge-sharing, knowledge-construction, and knowledge-creation discourses. International Journal?of Computer-Supported Collaborative Learning, 4(3), 259-287. 

  54. van Boxtel, C., van der Linden, J., & Kanselaar, G. (2000). Collaborative?learning tasks and the elaboration of conceptual knowledge. Learning?and Instruction, 10(4), 311-330. 

  55. Waldrip, B., Prain, V., & Carolan, J. (2010). Using multi-modal?representations to improve learning in junior secondary science.?Research in Science Education, 40(1), 65-80. 

  56. Wilkerson-Jerde, M. H., Gravel, B. E., & Macrander, C. A. (2015). Exploring?shifts in middle school learners' modeling activity while generating?drawings, animations, and computational simulations of molecular?diffusion. Journal of Science Education and Technology, 24(2),?396-415. 

  57. Yang, Y., van Aalst, J., Chan, C. K., & Tian, W. (2016). Reflective assessment?in knowledge building by students with low academic achievement.?International Journal of Computer-Supported Collaborative Learning,?11, 281-311. 

  58. Zhang, J., Scardamalia, M., Reeve, R., & Messina, R. (2009). Designs for?collective cognitive responsibility in knowledge-building communities.?The Journal of the Learning Sciences, 18(1), 7-44. 

  59. Zhu, G., Scardamalia, M., Moreno, M., Martins, M., Nazeem, R., & Lai,?Z. (2022). Discourse moves and emotion in knowledge building?discourse and metadiscourse. Frontiers in Education, 7, 900440. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로