$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Immunogenic cell death in cancer immunotherapy 원문보기

BMB reports, v.56 no.5, 2023년, pp.275 - 286  

Minji Choi (Department of Biomedical Science and Engineering, Graduate School, Inha University) ,  Jisoo Shin (Department of Biomedical Science and Engineering, Graduate School, Inha University) ,  Chae-Eun Lee (Department of Biomedical Science and Engineering, Graduate School, Inha University) ,  Joo-Yoon Chung (Department of Biomedical Science and Engineering, Graduate School, Inha University) ,  Minji Kim (Department of Biomedical Science and Engineering, Graduate School, Inha University) ,  Xiuwen Yan (Affiliated Cancer Institute & Hospital and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University) ,  Wen-Hao Yang (Graduate Institute of Biomedical Sciences, China Medical University) ,  Jong-Ho Cha (Department of Biomedical Science and Engineering, Graduate School, Inha University)

Abstract AI-Helper 아이콘AI-Helper

Cancer immunotherapy has been acknowledged as a new paradigm for cancer treatment, with notable therapeutic effects on certain cancer types. Despite their significant potential, clinical studies over the past decade have revealed that cancer immunotherapy has low response rates in the majority of so...

주제어

표/그림 (3)

참고문헌 (122)

  1. 1 Swann JB Smyth MJ 2007 Immune surveillance of tumors J Clin Invest 117 1137 1146 10.1172/JCI31405 17476343 

  2. 2 Verma NK Wong BHS Poh ZS 2022 Obstacles for T-lymphocytes in the tumour microenvironment: therapeutic challenges, advances and opportunities beyond immune checkpoint EBioMedicine 83 104216 10.1016/j.ebiom.2022.104216 35986950 

  3. 3 Wang M Wang S Desai J Trapani JA Neeson PJ 2020 Therapeutic strategies to remodel immunologically cold tumors Clin Transl Immunology 9 e1226 10.1002/cti2.1226 2dea8cbb86c348f8bf8ac816c4d45a10 35136604 

  4. 4 Duan Q Zhang H Zheng J Zhang L 2020 Turning cold into hot: firing up the tumor microenvironment Trends Cancer 6 605 618 10.1016/j.trecan.2020.02.022 32610070 

  5. 5 Zhang J Huang D Saw PE Song E 2022 Turning cold tumors hot: from molecular mechanisms to clinical applications Trends Immunol 43 523 545 10.1016/j.it.2022.04.010 35624021 

  6. 6 Kaufman HL Kohlhapp FJ Zloza A 2015 Oncolytic viruses: a new class of immunotherapy drugs Nat Rev Drug Discov 14 642 662 10.1038/nrd4663 26323545 

  7. 7 Li K Zhang Z Mei Y 2022 Targeting the innate immune system with nanoparticles for cancer immunotherapy J Mater Chem B 10 1709 1733 10.1039/D1TB02818A 35179545 

  8. 8 Bazak R Houri M El Achy S Kamel S Refaat T 2015 Cancer active targeting by nanoparticles: a comprehensive review of literature J Cancer Res Clin Oncol 141 769 784 10.1007/s00432-014-1767-3 25005786 

  9. 9 Rosenbaum SR Wilski NA Aplin AE 2021 Fueling the fire: inflammatory forms of cell death and implications for cancer immunotherapy Cancer Discov 11 266 281 10.1158/2159-8290.CD-20-0805 33451983 

  10. 10 Liu M Wang L Xia X 2022 Regulated lytic cell death in breast cancer Cell Biol Int 46 12 33 10.1002/cbin.11705 34549863 

  11. 11 Chen GY Nunez G 2010 Sterile inflammation: sensing and reacting to damage Nat Rev Immunol 10 826 837 10.1038/nri2873 21088683 

  12. 12 Krysko DV Garg AD Kaczmarek A Krysko O Agostinis P Vandenabeele P 2012 Immunogenic cell death and DAMPs in cancer therapy Nat Rev Cancer 12 860 875 10.1038/nrc3380 23151605 

  13. 13 Ahmed A Tait SWG 2020 Targeting immunogenic cell death in cancer Mol Oncol 14 2994 3006 10.1002/1878-0261.12851 33179413 

  14. 14 Serrano-Del Valle A Anel A Naval J Marzo I 2019 Immunogenic cell death and immunotherapy of multiple myeloma Front Cell Dev Biol 7 50 10.3389/fcell.2019.00050 5b1d0ae9069f43dab824049eb445a43e 31041312 

  15. 15 Legrand AJ Konstantinou M Goode EF Meier P 2019 The diversification of cell death and immunity: memento mori Mol Cell 76 232 242 10.1016/j.molcel.2019.09.006 31586546 

  16. 16 Bustin M 1999 Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins Mol Cell Biol 19 5237 5246 10.1128/MCB.19.8.5237 10409715 

  17. 17 Lui G Wong CK Ip M 2016 HMGB1/RAGE signaling and pro-inflammatory cytokine responses in non-HIV adults with active pulmonary tuberculosis PLoS One 11 e0159132 10.1371/journal.pone.0159132 cde6aba2678342458596ad80b36c2c9b 27434276 

  18. 18 Li L Lu YQ 2020 The regulatory role of high-mobility group protein 1 in sepsis-related immunity Front Immunol 11 601815 10.3389/fimmu.2020.601815 34657a372f49429fbe883e0c50c4f1e3 33552058 

  19. 19 Ge Y Huang M Yao YM 2021 The effect and regulatory mechanism of high mobility group box-1 protein on immune cells in inflammatory diseases Cells 10 1044 10.3390/cells10051044 d5a0c75fc44d45e0965eec6be9831aa7 33925132 

  20. 20 Klune JR Dhupar R Cardinal J Billiar TR Tsung A 2008 HMGB1: endogenous danger signaling Mol Med 14 476 484 10.2119/2008-00034.Klune 18431461 

  21. 21 Pandya UM Egbuta C Abdullah Norman TM 2019 The biophysical interaction of the danger-associated molecular pattern (DAMP) calreticulin with the pattern-associated molecular pattern (PAMP) lipopolysaccharide Int J Mol Sci 20 408 10.3390/ijms20020408 ea26aac3bf024ba5b3e4c9e177b8e6b1 30669362 

  22. 22 Obeid M Tesniere A Panaretakis T 2007 Ecto-calreticulin in immunogenic chemotherapy Immunol Rev 220 22 34 10.1111/j.1600-065X.2007.00567.x 17979837 

  23. 23 Wemeau M Kepp O Tesniere A 2010 Calreticulin exposure on malignant blasts predicts a cellular anticancer immune response in patients with acute myeloid leukemia Cell Death Dis 1 e104 10.1038/cddis.2010.82 21368877 

  24. 24 Obeid M Tesniere A Ghiringhelli F 2007 Calreticulin exposure dictates the immunogenicity of cancer cell death Nat Med 13 54 61 10.1038/nm1523 17187072 

  25. 25 Zunino B Rubio-Patino C Villa E 2016 Hyperthermic intraperitoneal chemotherapy leads to an anticancer immune response via exposure of cell surface heat shock protein 90 Oncogene 35 261 268 10.1038/onc.2015.82 25867070 

  26. 26 Murshid A Gong J Calderwood SK 2012 The role of heat shock proteins in antigen cross presentation Front Immunol 3 63 10.3389/fimmu.2012.00063 420455f61bb74b219a8fe758deb8a931 22566944 

  27. 27 van Eden W van der Zee R Prakken B 2005 Heat-shock proteins induce T-cell regulation of chronic inflammation Nat Rev Immunol 5 318 330 10.1038/nri1593 15803151 

  28. 28 Kovalchin JT Mendonca C Wagh MS Wang R Chandawarkar RY 2006 In vivo treatment of mice with heat shock protein, gp 96, improves survival of skin grafts with minor and major antigenic disparity Transpl Immunol 15 179 185 10.1016/j.trim.2005.07.003 16431284 

  29. 29 Amores-Iniesta J Barbera-Cremades M Martinez CM 2017 Extracellular ATP Activates the NLRP3 inflammasome and is an early danger signal of skin allograft rejection Cell Rep 21 3414 3426 10.1016/j.celrep.2017.11.079 29262323 

  30. 30 Venereau E Ceriotti C Bianchi ME 2015 DAMPs from cell death to new life Front Immunol 6 422 10.3389/fimmu.2015.00422 23c7a5ffba8b496fb670d7868e926991 26347745 

  31. 31 Ghiringhelli F Apetoh L Tesniere A 2009 Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors Nat Med 15 1170 1178 10.1038/nm.2028 19767732 

  32. 32 Kepp O Bezu L Yamazaki T 2021 ATP and cancer immunosurveillance EMBO J 40 e108130 10.15252/embj.2021108130 34121201 

  33. 33 Nyboe Andersen N Pasternak B Friis-Moller N Andersson M Jess T 2015 Association between tumour necrosis factor-alpha inhibitors and risk of serious infections in people with inflammatory bowel disease: nationwide Danish cohort study BMJ 350 h2809 10.1136/bmj.h2809 26048617 

  34. 34 Parameswaran N Patial S 2010 Tumor necrosis factor-alpha signaling in macrophages Crit Rev Eukaryot Gene Expr 20 87 103 10.1615/CritRevEukarGeneExpr.v20.i2.10 21133840 

  35. 35 Cervera-Carrascon V Siurala M Santos JM 2018 TNFa and IL-2 armed adenoviruses enable complete responses by anti-PD-1 checkpoint blockade Oncoimmunology 7 e1412902 10.1080/2162402X.2017.1412902 d89957be564a46b29a243aac324e3904 29721366 

  36. 36 Jiang C Niu J Li M Teng Y Wang H Zhang Y 2014 Tumor vasculature-targeted recombinant mutated human TNF-alpha enhanced the antitumor activity of doxorubicin by increasing tumor vessel permeability in mouse xenograft models PLoS One 9 e87036 10.1371/journal.pone.0087036 8bd34818776249cda38c7f80e195f21e 24466321 

  37. 37 Egberts JH Cloosters V Noack A 2008 Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis Cancer Res 68 1443 1450 10.1158/0008-5472.CAN-07-5704 18316608 

  38. 38 Cruceriu D Baldasici O Balacescu O Berindan-Neagoe I 2020 The dual role of tumor necrosis factor-alpha (TNF-alpha) in breast cancer: molecular insights and therapeutic approaches Cell Oncol (Dordr) 43 1 18 10.1007/s13402-019-00489-1 31900901 

  39. 39 Zhang W Borcherding N Kolb R 2020 IL-1 signaling in tumor microenvironment Adv Exp Med Biol 1240 1 23 10.1007/978-3-030-38315-2_1 32060884 

  40. 40 Chen L Zheng L Chen P Liang G 2020 Myeloid differentiation primary response protein 88 (MyD88): the central hub of TLR/IL-1R signaling J Med Chem 63 13316 13329 10.1021/acs.jmedchem.0c00884 32931267 

  41. 41 Nakamura K Smyth MJ 2017 Targeting cancer-related inflammation in the era of immunotherapy Immunol Cell Biol 95 325 332 10.1038/icb.2016.126 27999432 

  42. 42 Chen CJ Kono H Golenbock D Reed G Akira S Rock KL 2007 Identification of a key pathway required for the sterile inflammatory response triggered by dying cells Nat Med 13 851 856 10.1038/nm1603 17572686 

  43. 43 Platanias LC 2005 Mechanisms of type-I- and type-II-interferon-mediated signalling Nat Rev Immunol 5 375 386 10.1038/nri1604 15864272 

  44. 44 Zhu Y An X Zhang X Qiao Y Zheng T Li X 2019 STING: a master regulator in the cancer-immunity cycle Mol Cancer 18 152 10.1186/s12943-019-1087-y 73bd097f8b674b2b81d296eeb06cdb46 31679519 

  45. 45 Vacchelli E Sistigu A Yamazaki T Vitale I Zitvogel L Kroemer G 2015 Autocrine signaling of type 1 interferons in successful anticancer chemotherapy Oncoimmunology 4 e988042 10.4161/2162402X.2014.988042 26405588 

  46. 46 Zhang S Kohli K Black RG 2019 Systemic interferon-gamma increases MHC class I expression and T-cell infiltration in cold tumors: results of a phase 0 clinical trial Cancer Immunol Res 7 1237 1243 10.1158/2326-6066.CIR-18-0940 31171504 

  47. 47 Dovhey SE Ghosh NS Wright KL 2000 Loss of interferon-gamma inducibility of TAP1 and LMP2 in a renal cell carcinoma cell line Cancer Res 60 5789 5796 11059775 

  48. 48 Gangaplara A Martens C Dahlstrom E 2018 Type I interferon signaling attenuates regulatory T cell function in viral infection and in the tumor microenvironment PLoS Pathog 14 e1006985 10.1371/journal.ppat.1006985 352cb6df548545caacd04633bbe41048 29672594 

  49. 49 Coughlin CM Salhany KE Gee MS 1998 Tumor cell responses to IFNgamma affect tumorigenicity and response to IL-12 therapy and antiangiogenesis Immunity 9 25 34 10.1016/S1074-7613(00)80585-3 9697833 

  50. 50 Sistigu A Yamazaki T Vacchelli E 2014 Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy Nat Med 20 1301 1309 10.1038/nm.3708 25344738 

  51. 51 Karsch-Bluman A Feiglin A Arbib E 2019 Tissue necrosis and its role in cancer progression Oncogene 38 1920 1935 10.1038/s41388-018-0555-y 30390074 

  52. 52 Koren E Fuchs Y 2021 Modes of Regulated cell death in cancermodes of regulated cell death in cancer Cancer Discov 11 245 265 10.1158/2159-8290.CD-20-0789 33462123 

  53. 53 Galluzzi L Vitale I Aaronson SA 2018 Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018 Cell Death Differ 25 486 541 10.1038/s41418-017-0012-4 29362479 

  54. 54 Cai Z Jitkaew S Zhao J 2014 Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis Nat Cell Biol 16 55 65 10.1038/ncb2883 24316671 

  55. 55 Kaiser WJ idharan H Sr Huang C 2013 Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL J Biol Chem 288 31268 31279 10.1074/jbc.M113.462341 24019532 

  56. 56 Zhang Y Chen X Gueydan C Han J 2018 Plasma membrane changes during programmed cell deaths Cell Res 28 9 21 10.1038/cr.2017.133 29076500 

  57. 57 Günther C Martini E Wittkopf N 2011 Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis Nature 477 335 339 10.1038/nature10400 21921917 

  58. 58 Berghe TV Linkermann A Jouan-Lanhouet S Walczak H Vandenabeele P 2014 Regulated necrosis: the expanding network of non-apoptotic cell death pathways Nat Rev Mol Cell Biol 15 135 147 10.1038/nrm3737 24452471 

  59. 59 Murphy JM Czabotar PE Hildebrand JM 2013 The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism Immunity 39 443 453 10.1016/j.immuni.2013.06.018 24012422 

  60. 60 Aaes TL Kaczmarek A Delvaeye T 2016 Vaccination with necroptotic cancer cells induces efficient anti-tumor immunity Cell Rep 15 274 287 10.1016/j.celrep.2016.03.037 12e7c9eabdcf4753a2c5424185446077 27050509 

  61. 61 Park HH Kim HR Park SY 2021 RIPK3 activation induces TRIM28 derepression in cancer cells and enhances the anti-tumor microenvironment Mol Cancer 20 107 10.1186/s12943-021-01399-3 9649dec1a70f41ebb05ee81d7275fc5f 34419074 

  62. 62 Nicolè L Sanavia T Cappellesso R 2022 Necroptosis-driving genes RIPK1, RIPK3 and MLKL-p are associated with intratumoral CD3+ and CD8+ T cell density and predict prognosis in hepatocellular carcinoma J Immunother Cancer 10 e004031 10.1136/jitc-2021-004031 0a285e23f19c4f498713d63cb388c4d4 35264437 

  63. 63 Koo GB Morgan MJ Lee DG 2015 Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics Cell Res 25 707 725 10.1038/cr.2015.56 25952668 

  64. 64 Snyder AG Hubbard NW Messmer MN 2019 Intratumoral activation of the necroptotic pathway components RIPK1 and RIPK3 potentiates antitumor immunity Sci immunol 4 eaaw2004 10.1126/sciimmunol.aaw2004 31227597 

  65. 65 Werthmöller N Frey B Wunderlich R Fietkau R Gaipl US 2015 Modulation of radiochemoimmunotherapy-induced B16 melanoma cell death by the pan-caspase inhibitor zVAD-fmk induces anti-tumor immunity in a HMGB1-, nucleotide- and T-cell-dependent manner Cell Death Dis 6 e1761 10.1038/cddis.2015.129 25973681 

  66. 66 Jiang X Stockwell BR Conrad M 2021 Ferroptosis: mechanisms, biology and role in disease Nat Rev Mol Cell Biol 22 266 282 10.1038/s41580-020-00324-8 33495651 

  67. 67 Lewerenz J Klein M Methner A 2006 Cooperative action of glutamate transporters and cystine/glutamate antiporter system Xc-protects from oxidative glutamate toxicity J Neurochem 98 916 925 10.1111/j.1471-4159.2006.03921.x 16771835 

  68. 68 Brigelius-Flohé R Maiorino M 2013 Glutathione peroxidases Biochim Biophys Acta 1830 3289 3303 10.1016/j.bbagen.2012.11.020 23201771 

  69. 69 Feng H Stockwell BR 2018 Unsolved mysteries: how does lipid peroxidation cause ferroptosis? PLoS Biol 16 e2006203 10.1371/journal.pbio.2006203 255652d9cc1b4e7c880c131bf61438c6 29795546 

  70. 70 Dixon SJ Lemberg KM Lamprecht MR 2012 Ferroptosis: an iron-dependent form of nonapoptotic cell death Cell 149 1060 1072 10.1016/j.cell.2012.03.042 22632970 

  71. 71 Louandre C Ezzoukhry Z Godin C 2013 Iron‐ dependent cell death of hepatocellular carcinoma cells exposed to sorafenib Int J Cancer 133 1732 1742 10.1002/ijc.28159 23505071 

  72. 72 Yang WS iRamaratnam R Sr Welsch ME 2014 Regulation of ferroptotic cancer cell death by GPX4 Cell 156 317 331 10.1016/j.cell.2013.12.010 24439385 

  73. 73 Yang WS Kim KJ Gaschler MM Patel M Shchepinov MS Stockwell BR 2016 Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis Proc Natl Acad Sci U S A 113 E4966 E4975 10.1073/pnas.1603244113 27506793 

  74. 74 Gaschler MM Andia AA Liu H 2018 FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation Nat Chem Biol 14 507 515 10.1038/s41589-018-0031-6 29610484 

  75. 75 Manz DH Blanchette NL Paul BT Torti FM Torti SV 2016 Iron and cancer: recent insights Ann N Y Acad Sci 1368 149 161 10.1111/nyas.13008 26890363 

  76. 76 Whitnall M Howard J Ponka P Richardson DR 2006 A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics Proc Natl Acad Sci U S A 103 14901 14906 10.1073/pnas.0604979103 17003122 

  77. 77 Chen SJ Kuo CC Pan HY Tsou TC Yeh SC Chang JY 2016 Desferal regulates hCtr1 and transferrin receptor expression through Sp1 and exhibits synergistic cytotoxicity with platinum drugs in oxaliplatin-resistant human cervical cancer cells in vitro and in vivo Oncotarget 7 49310 49321 10.18632/oncotarget.10336 27384479 

  78. 78 Wang W Green M Choi JE 2019 CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy Nature 569 270 274 10.1038/s41586-019-1170-y 31043744 

  79. 79 Bordini J Morisi F Elia AR 2020 Iron induces cell death and strengthens the efficacy of antiandrogen therapy in prostate cancer models Clin Cancer Res 26 6387 6398 10.1158/1078-0432.CCR-20-3182 32928793 

  80. 80 Zou Y Palte MJ Deik AA 2019 A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis Nat Commun 10 1617 10.1038/s41467-019-09277-9 30381869b6f34533b2be4a86cf0a583a 30962421 

  81. 81 Gout P Buckley A Simms C Bruchovsky N 2001 Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the xc− cystine transporter: a new action for an old drug Leukemia 15 1633 1640 10.1038/sj.leu.2402238 11587223 

  82. 82 Yu Y Xie Y Cao L 2015 The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents Mol Cell Oncol 2 e1054549 10.1080/23723556.2015.1054549 27308510 

  83. 83 Hassannia B Vandenabeele P Berghe TV 2019 Targeting ferroptosis to iron out cancer Cancer Cell 35 830 849 10.1016/j.ccell.2019.04.002 31105042 

  84. 84 Wen Q Liu J Kang R Zhou B Tang D 2019 The release and activity of HMGB1 in ferroptosis Biochem Biophys Res Commun 510 278 283 10.1016/j.bbrc.2019.01.090 30686534 

  85. 85 Ye F Chai W Xie M 2019 HMGB1 regulates erastin-induced ferroptosis via RAS-JNK/p38 signaling in HL-60/NRAS(Q61L) cells Am J Cancer Res 9 730 739 31105999 

  86. 86 Luo X Gong HB Gao HY 2021 Oxygenated phosphatidylethanolamine navigates phagocytosis of ferroptotic cells by interacting with TLR2 Cell Death Differ 28 1971 1989 10.1038/s41418-020-00719-2 33432112 

  87. 87 Raskov H Orhan A Christensen JP Gögenur I 2021 Cytotoxic CD8+ T cells in cancer and cancer immunotherapy Br J Cancer 124 359 367 10.1038/s41416-020-01048-4 32929195 

  88. 88 Efimova I Catanzaro E Van der Meeren L 2020 Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity J Immunother Cancer 8 e001369 10.1136/jitc-2020-001369 2a503d3f5540469a8ba20ba437a6ab07 33188036 

  89. 89 Song J Liu T Yin Y 2021 The deubiquitinase OTUD1 enhances iron transport and potentiates host antitumor immunity EMBO Rep 22 e51162 10.15252/embr.202051162 33393230 

  90. 90 Jiang Z Lim S-O Yan M 2021 TYRO3 induces anti-PD-1/PD-L1 therapy resistance by limiting innate immunity and tumoral ferroptosis J Clin Invest 131 e139434 10.1172/JCI139434 33855973 

  91. 91 Wang W Green M Choi JE 2019 CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy Nature 569 270 274 10.1038/s41586-019-1170-y 31043744 

  92. 92 Lang X Green MD Wang W 2019 Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11 ferroptosis connects radiotherapy and immunotherapy Cancer Discov 9 1673 1685 10.1158/2159-8290.CD-19-0338 31554642 

  93. 93 Wang H Cheng Y Mao C 2021 Emerging mechanisms and targeted therapy of ferroptosis in cancer Mol Ther 29 2185 2208 10.1016/j.ymthe.2021.03.022 33794363 

  94. 94 Aglietti RA Dueber EC 2017 Recent Insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions Trends Immunol 38 261 271 10.1016/j.it.2017.01.003 28196749 

  95. 95 Erkes DA Cai W Sanchez IM 2020 Mutant BRAF and MEK inhibitors regulate the tumor immune microenvironment via pyroptosis Cancer Discov 10 254 269 10.1158/2159-8290.CD-19-0672 31796433 

  96. 96 Yang D He Y Muñoz-Planillo R Liu Q Núñez G 2015 Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock Immunity 43 923 932 10.1016/j.immuni.2015.10.009 26572062 

  97. 97 Fink SL Cookson BT 2006 Caspase‐1‐dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages Cell Microbiol 8 1812 1825 10.1111/j.1462-5822.2006.00751.x 16824040 

  98. 98 Yu P Zhang X Liu N Tang L Peng C Chen X 2021 Pyroptosis: mechanisms and diseases Signal Transduct Target Ther 6 1 21 10.1038/s41392-021-00507-5 995383e34d6140f9a9190ce2dddc3c75 33384407 

  99. 99 Platnich JM Muruve DA 2019 NOD-like receptors and inflammasomes: a review of their canonical and non-canonical signaling pathways Arch Biochem Biophys 670 4 14 10.1016/j.abb.2019.02.008 30772258 

  100. 100 Shi J Zhao Y Wang Y 2014 Inflammatory caspases are innate immune receptors for intracellular LPS Nature 514 187 192 10.1038/nature13683 25119034 

  101. 101 Hornung V Ablasser A Charrel-Dennis M 2009 AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC Nature 458 514 518 10.1038/nature07725 19158675 

  102. 102 Chae JJ Wood G Masters SL 2006 The B30. 2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1β production Proc Natl Acad Sci U S A 103 9982 9987 10.1073/pnas.0602081103 16785446 

  103. 103 Lu A Magupalli Venkat G Ruan J 2014 Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes Cell 156 1193 1206 10.1016/j.cell.2014.02.008 24630722 

  104. 104 Liu X Zhang Z Ruan J 2016 Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores Nature 535 153 158 10.1038/nature18629 27383986 

  105. 105 Kayagaki N Stowe IB Lee BL 2015 Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling Nature 526 666 671 10.1038/nature15541 26375259 

  106. 106 Shi J Zhao Y Wang K 2015 Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death Nature 526 660 665 10.1038/nature15514 26375003 

  107. 107 Wang Y Gao W Shi X 2017 Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin Nature 547 99 103 10.1038/nature22393 28459430 

  108. 108 Ding J Wang K Liu W 2016 Pore-forming activity and structural autoinhibition of the gasdermin family Nature 535 111 116 10.1038/nature18590 27281216 

  109. 109 Jiang M Qi L Li L Li Y 2020 The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer Cell Death Discov 6 1 11 10.1038/s41420-020-00349-0 33133646 

  110. 110 Aizawa E Karasawa T Watanabe S 2020 GSDME-dependent incomplete pyroptosis permits selective IL-1α release under caspase-1 inhibition iScience 23 101070 10.1016/j.isci.2020.101070 32361594 

  111. 111 Zhang Z Zhang Y Xia S 2020 Gasdermin E suppresses tumour growth by activating anti-tumour immunity Nature 579 415 420 10.1038/s41586-020-2071-9 32188940 

  112. 112 Zhou Z He H Wang K 2020 Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells Science 368 eaaz7548 10.1126/science.aaz7548 32299851 

  113. 113 Wang Q Wang Y Ding J 2020 A bioorthogonal system reveals antitumour immune function of pyroptosis Nature 579 421 426 10.1038/s41586-020-2079-1 32188939 

  114. 114 Li S Chen P Cheng B 2022 Pyroptosis predicts immunotherapy outcomes across multiple cancer types Clin Immunol 245 109163 10.1016/j.clim.2022.109163 36244669 

  115. 115 Pauken KE Wherry EJ 2015 Overcoming T cell exhaustion in infection and cancer Trends Immunol 36 265 276 10.1016/j.it.2015.02.008 25797516 

  116. 116 Lu H Dietsch GN Matthews MA 2012 VTX-2337 is a novel TLR8 agonist that activates NK cells and augments ADCC Clin Cancer Res 18 499 509 10.1158/1078-0432.CCR-11-1625 22128302 

  117. 117 Dietsch GN Lu H Yang Y 2016 Coordinated activation of toll-like receptor8 (TLR8) and NLRP3 by the TLR8 agonist, VTX-2337, ignites tumoricidal natural killer cell activity PLoS One 11 e0148764 10.1371/journal.pone.0148764 76249c953a2e4007813d22b488c7aa4a 26928328 

  118. 118 Monk BJ Brady MF Aghajanian C 2017 A phase 2, randomized, double-blind, placebo-controlled study of chemo-immunotherapy combination using motolimod with pegylated liposomal doxorubicin in recurrent or persistent ovarian cancer: a gynecologic oncology group partners study Ann Oncol 28 996 1004 10.1093/annonc/mdx049 28453702 

  119. 119 Gabrilovich DI Nagaraj S 2009 Myeloid-derived suppressor cells as regulators of the immune system Nat Rev Immunol 9 162 174 10.1038/nri2506 19197294 

  120. 120 Coward J Kulbe H Chakravarty P 2011 Interleukin-6 as a therapeutic target in human ovarian cancer Clin Cancer Res 17 6083 6096 10.1158/1078-0432.CCR-11-0945 21795409 

  121. 121 Dijkgraaf EM Santegoets SJ Reyners AK 2015 A phase I trial combining carboplatin/doxorubicin with tocilizumab, an anti-IL-6R monoclonal antibody, and interferon-alpha2b in patients with recurrent epithelial ovarian cancer Ann Oncol 26 2141 2149 10.1093/annonc/mdv309 26216383 

  122. 122 Birmpilis AI Paschalis A Mourkakis A 2022 Immunogenic cell death, damps and prothymosin alpha as a putative anticancer immune response biomarker Cells 11 1415 10.3390/cells11091415 a0d252a316844a5fb71c302cd1054f61 35563721 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로