$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

SPECTRAL PROPERTIES OF THE NEUMANN-POINCARÉ OPERATOR AND CLOAKING BY ANOMALOUS LOCALIZED RESONANCE: A REVIEW 원문보기

Journal of the Korean Society for Industrial and Applied Mathematics, v.27 no.2, 2023년, pp.87 - 108  

SHOTA FUKUSHIMA (DEPARTMENT OF MATHEMATICS AND INSTITUTE OF APPLIED MATHEMATICS, INHA UNIVERSITY) ,  YONG-GWAN JI (SCHOOL OF MATHEMATICS, KOREA INSTITUTE FOR ADVANCED STUDY) ,  HYEONBAE KANG (DEPARTMENT OF MATHEMATICS AND INSTITUTE OF APPLIED MATHEMATICS, INHA UNIVERSITY) ,  YOSHIHISA MIYANISHI (DEPARTMENT OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCE, SHINSHU UNIVERSITY)

Abstract AI-Helper 아이콘AI-Helper

This is a review paper on recent development on the spectral theory of the Neumann-Poincaré operator. The topics to be covered are convergence rate of eigenvalues of the Neumann-Poincaré operator and surface localization of the single layer potentials of its eigenfunctions. Study on th...

주제어

참고문헌 (40)

  1. K. Ando, H. Kang, Y. Miyanishi and M. Putinar, Spectral analysis of Neumann-Poincare operator, Rev.?Roumaine Math. Pures Appl, Vol. LXVI (2021), 545-575. 

  2. H. Kang, Spectral Geometry and Analysis of the Neumann-Poincare Operator, a Review, In: Kang, NG.,?Choe, J., Choi, K., Kim, Sh. (eds) Recent Progress in Mathematics. KIAS Springer Series in Mathematics,?vol 1. Springer, Singapore, 2022. https://doi.org/10.1007/978-981-19-3708-8_4 

  3. D. Khavinson, M. Putinar and H.S. Shapiro, Poincare's variational problem in potential theory ' , Arch. Rational?Mech. Anal, 185 (2007), 143-184. 

  4. S. Fukushima, H. Kang and Y. Miyanishi, Decay rate of the eigenvalues of the Neumann-Poincare operator,?arXiv:2304.04772. 

  5. K. Ando and H. Kang, Analysis of plasmon resonance on smooth domains using spectral properties of the?Neumann-Poincare operator, Jour. Math. Anal. Appl, 435 (2016), 162-178. 

  6. H. Ammari, G. Ciraolo, H. Kang, H. Lee and G.W. Milton, Spectral theory of a Neumann-Poincare-type?operator and analysis of cloaking due to anomalous localized resonance, Arch. Rational Mech. Anal, 208?(2013), 667-692. 

  7. R. C. McPhedran and G. W. Milton, A review of anomalous resonance, its associated cloaking, and superlensing, C. R. Phy, 21 (2020), 409-423. 

  8. H. Ammari and H. Kang, Polarization and moment tensors with applications to inverse problems and effective?medium theory, Applied Mathematical Sciences, Vol. 162, Springer-Verlag, New York, 2007. 

  9. K. Ando, H. Kang and Y. Miyanishi, Exponential decay estimates of the eigenvalues for the Neumann-Poincare operator on analytic boundaries in two dimensions, J. Integr. Equ. Appl, 30 (2018), 473-489. 

  10. E. Bonnetier and H. Zhang, Characterization of the essential spectrum of the Neumann-Poincare operator in?2D domains with corner via Weyl sequences, Rev. Mat. Iberoam, 35 (2019), 925-948. 

  11. J. Helsing and K.-M. Perfekt, On the Polarizability and Capacitance of the Cube, Applied and Computational?Harmonic Analysis, 34 (2013), 445-468. 

  12. J. Helsing and K.-M. Perfekt, The spectra of harmonic layer potential operators on domains with rotationally?symmetric conical points, J. Math. Pures Appl, 118 (2018), 235--287. 

  13. H. Kang, M. Lim and S. Yu, Spectral resolution of the Neumann-Poincare operator on intersecting disks and?analysis of plasmon resonance, Arch. Rational Mech. Anal, 226(1) (2017), 83-115. 

  14. K.-M. Perfekt and M. Putinar, Spectral bounds for the Neumann-Poincare operator on planar domains with?corners, J. d'Analyse Math, 124 (2014), 39-57. 

  15. K.M. Perfekt and M. Putinar, The essential spectrum of the Neumann-Poincare operator on a domain with?corners, Arch. Rational Mech. Anal, 223 (2017), 1019-1033. 

  16. K.-M. Perfekt. Plasmonic eigenvalue problem for corners: limiting absorption principle and absolute continuity in the essential spectrum, J. Math. Pures Appl, 145 (2021), 130-162. 

  17. Y. Miyanishi, Weyl's law for the eigenvalues of the Neumann-Poincare operators in three dimensions: Will-more energy and surface geometry, Adv. Math, 406 (2022), 108547. 

  18. Y. Miyanishi and G. Rozenblum, Eigenvalues of the Neumann-Poincare operator in dimension 3: Weyl's law?and geometry, Algebra i Analiz 31(2) (2019), 248-268; reprinted in St. Petersburg Math. J, 31(2) (2020),?371-386. 

  19. Y. Jung and M. Lim, A decay estimate for the eigenvalues of the Neumann-Poincare operator using the Grunsky coefficients, Proc. Amer. Math. Soc, 148 (2020), 591-600. 

  20. Y. Miyanishi and T. Suzuki, Eigenvalues and eigenfunctions of double layer potentials, Trans. Amer. Math.?Soc. 369 (2017), 8037-8059. 

  21. J. Delgado and M. Ruzhansky, Schatten classes on compact manifolds: kernel conditions, J. Funct. Anal,?267(3) (2014), 772-798. 

  22. S. Fukushima and H. Kang, Spectral structure of the Neumann-Poincare operator on axially symmetric functions, in preparation. 

  23. K. Ando, H. Kang, Y. Miyanishi and T. Nakazawa, Surface localization of plasmons in three dimensions and?convexity, SIAM J. Appl. Math, 81 (2021), 1020-1033. 

  24. Y. Ji and H. Kang, A concavity condition for existence of a negative value in Neumann-Poincare spectrum in?three dimensions, Proc. Amer. Math. Soc, 147 (2019), 3431-3438. 

  25. M. S. Birman and M. Z. Solomjak, Asymptotic behavior of the spectrum of pseudodifferential operators?with anisotropically homogeneous symbols, Vestnik Leningrad. Univ, (13 Mat. Meh. Astronom. vyp. 3), 169?(1977), 13-21. 

  26. G.W. Milton and N.-A.P. Nicorovici, On the cloaking effects associated with anomalous localized resonance,?Proc. R. Soc. A, 462 (2006), 3027-3059. 

  27. D. Chung, H. Kang, K. Kim and H. Lee, Cloaking due to anomalous localized resonance in plasmonic structures of confocal ellipses, SIAM J. Appl. Math, 74 (2014), 1691-1707. 

  28. H. Ammari, G. Ciraolo, H. Kang, H. Lee and G.W. Milton, Spectral theory of a Neumann-Poincare-type?operator and analysis of anomalous localized resonance II, Contemporary Math, 615 (2014), 1-14. 

  29. H. Ammari, H. Kang, and H. Lee, A boundary integral method for computing elastic moment tensors for?ellipses and ellipsoids, J. Comp. Math, 25 (1) (2007), 2-12. 

  30. V.D. Kupradze, Potential methods in the theory of elasticity, Daniel Davey & Co., New York, 1965. 

  31. K. Ando, Y. Ji, H. Kang, K. Kim and S. Yu, Spectral properties of the Neumann-Poincare operator and?cloaking by anomalous localized resonance for the elasto-static system, Euro. J. Appl. Math, 29 (2018), 189-225. 

  32. B.E.J. Dahlberg, C.E. Kenig and G.C. Verchota, Boundary value problems for the systems of elastostatics in?Lipschitz domains, Duke Math. J, 57(3) (1988), 795-818. 

  33. S. Fukushima, Y.-G. Ji, and H. Kang, A decomposition theorem of surface vector fields and spectral structure?of the Neumann-Poincare operator in elasticity, arXiv:2211.15879. 

  34. N.I. Muskhelishvili, Singular integral equations. Boundary problems of function theory and their application?to mathematical physics, Translated from the second (1946) Russian edition and with a preface by J. R. M.?Radok, Noordhoff International Publishing-Leyden, 1977. 

  35. A.P. Calderon, Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sc. USA, 74?(1977), 1324-1327. 

  36. L. Escauriaza, E. B. Fabes, and G. Verchota, On a regularity theorem for weak solutions to transmission?problems with internal Lipchitz boundaries, Proc. Amer. Math. Soc. 115 (4) (1992), 1069-1076. 

  37. G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz?domains, J. Funct. Anal, 59(3) (1984), 572-611. 

  38. K. Ando, H. Kang and Y. Miyanishi, Elastic Neumann-Poincare operators on three dimensional smooth?domains: Polynomial compactness and spectral structure, Int. Math. Res. Notices, 12 (2019), 3883-3900. 

  39. K. Ando, H. Kang and Y. Miyanishi, Convergence rate for eigenvalues of the elastic Neumann-Poincare?operator on smooth and real analytic boundaries in two dimensions, Jour. Math. Pures Appl, 140 (2020),?211-229. 

  40. G. Rozenblum, The Discrete Spectrum of the Neumann-poincare Operator in 3D Elasticity, J. Pseudo-Differ.?Oper. Appl. 14 (2023), article number 26. https://doi.org/10.1007/s11868-023-00520-y. 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로