$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

넓은 작동 온도범위를 가지는 V2O5-WO3/TiO2 SCR 촉매 개발을 위한 티타늄 이소프로폭사이드(TTIP) 활용 전략
Titanium Isopropoxide (TTIP) Treatment Strategy for V2O5-WO3/TiO2 SCR Catalysts with a Wide Operating Temperature 원문보기

공업화학 = Applied chemistry for engineering, v.34 no.4, 2023년, pp.357 - 364  

이재호 (경북대학교 에너지화학공학전공) ,  조광훈 (경북대학교 에너지화학공학전공) ,  이금연 (한국조선해양기자재연구원 적합성운영팀) ,  임창용 (경북대학교 에너지화학공학전공) ,  이영세 (경북대학교 에너지화학공학전공) ,  김태욱 (경북대학교 에너지화학공학전공)

초록
AI-Helper 아이콘AI-Helper

선택적 촉매 환원(SCR)은 질소산화물 배출을 줄이는 가장 효과적인 방법이지만, V2O5-WO3/TiO2 촉매가 좁은 작동온도 (300~400℃) 범위를 가지기 때문에, V2O5-WO3/TiO2 촉매의 작동 온도범위가 200~450℃인 새로운 촉매를 개발하였다. SCR 과정에서 생성되는 촉매 독인 황산암모늄은 350℃ 이상으로 가열함으로써 제거할 수 있다. 촉매 활성 부위의 수를 증가시키고 활성 물질의 분산을 촉진하기 위해 TiO2 지지체에 티타늄 이소프로폭사이드(TTIP) 처리를 여러 TTIP/TiO2 질량비로 진행하였다. 그 중 5 wt% TTIP 부하에서 높은 W 분산성으로 인해 열 안정성이 증가하였고 V5+가 형성되어 최적의 성능을 보였다. 5 wt% TTIP 부하로 처리된 촉매를 One-step co-precipitation으로 제조하였을 때 기존의 방법보다 더 나은 V-OH와 W-OH 분산 및 상호작용 향상이 나타나 더 낮은 온도에서 높은 촉매 활성으로 인해 향상된 성능을 보였다. 이를 향후 TTIP를 이용하여 TiO2촉매의 표면을 개선하려는 연구자에게 이해하기 쉽게 설명하고자 하였다.

Abstract AI-Helper 아이콘AI-Helper

Selective catalytic reduction (SCR) is the most effective method for reducing nitrogen oxide emissions, but the operating temperature range of V2O5-WO3/TiO2 catalysts is narrow (300~400℃). In this study, a new catalyst with an operating temperature range of 200~450℃ was developed. The ...

주제어

표/그림 (12)

참고문헌 (49)

  1. M. G. Lawrence and P. J. Crutzen, Influence of NO(x) emissions from ships on tropospheric photochemistry and climate, Nature, 402, 167-170 (1999). 

  2. S. C. Anenberg, J. Miller, R. Minjares, L. Du, D. K. Henze, F. Lacey, C. S. Malley, L. Emberson, V. Franco, Z. Klimont, and C. Heyes, Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets, Nature, 545, 467-471 (2017). 

  3. X. Yao, L. Zhang, L. Li, L. Liu, Y. Cao, X. Dong, F. Gao, Y. Deng, C. Tang, Z. Chen, L. Dong, and Y. Chen, Investigation of the structure, acidity, and catalytic performance of CuO/Ti 0.95 Ce 0.05 O 2 catalyst for the selective catalytic reduction of NO by NH 3 at low temperature, Appl. Catal. B: Environ., 150-151, 315-329 (2014). 

  4. L. Han, S. Cai, M. Gao, J. Hasegawa, P. Wang, J. Zhang, L. Shi, and D. Zhang, Selective catalytic reduction of NOx with NH 3 by using novel catalysts: State of the art and future prospects, Chem. Rev., 119, 10916-10976 (2019). 

  5. S. Roy, M. S. Hegde, and G. Madras, Catalysis for NOx abatement, Appl. Energy., 86, 2283-2297 (2009). 

  6. L. Chen, Z. Si, X. Wu, D. Weng, R. Ran, and J. Yu, Rare earth containing catalysts for selective catalytic reduction of NOx with ammonia: A review, J. Rare Earths, 32, 907-917 (2014). 

  7. B. Shen, F. Wang, B. Zhao, Y. Li, and Y. Wang, The behaviors of V 2 O 5 -WO 3 /TiO 2 loaded on ceramic surfaces for NH 3 -SCR, J. Ind. Eng. Chem., 33, 262-269 (2016). 

  8. J.-K. Lai and I. E. Wachs, A Perspective on the Selective Catalytic Reduction (SCR) of NO with NH 3 by Supported V 2 O 5 -WO 3 /TiO 2 catalysts, ACS Catal., 8, 6537-6551 (2018). 

  9. A. Marberger, M. Elsener, D. Ferri, and O. Krocher, VOx surface coverage optimization of V 2 O 5 /WO 3 -TiO 2 SCR catalysts by variation of the V loading and by aging, Catalysts, 5, 1704-1720 (2015). 

  10. F. Nakajima and I. Hamada, The state-of-the-art technology of NOx control, Catal. Today, 29, 109-115 (1996). 

  11. G. Busca, L. Lietti, G. Ramis, and F. Berti, Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review, Appl. Catal. B: Environ., 18, 1-36 (1998). 

  12. G. He, Z. Lian, Y. Yu, Y. Yang, K. Liu, X. Shi, Z. Yan, W. Shan, and H. He, Polymeric vanadyl species determine the low-temperature activity of V-based catalysts for the SCR of NO with NH 3 , Sci. Adv., 4, eaau4637 (2018). 

  13. C. Wang, S. Yang, H. Chang, Y. Peng and J. Li, Dispersion of tungsten oxide on SCR performance of V 2 O 5 WO 3 /TiO 2 : Acidity, surface species and catalytic activity, Chem. Eng. J., 225, 520-527 (2013). 

  14. Y. He, M. E. Ford, M. Zhu, Q. Liu, Z. Wu, and I. E. Wachs, Selective catalytic reduction of NO by NH 3 with WO 3 -TiO 2 catalysts: Influence of catalyst synthesis method, Appl. Catal. B: Environ., 188, 122-133 (2016). 

  15. Y. He, M. E. Ford, M. Zhu, Q. Liu, U. Tumuluri, Z. Wu, and I. E. Wachs, Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH 3 with V 2 O 5 -WO 3 /TiO 2 catalysts. Appl. Catal. B: Environ., 193, 141-150 (2016). 

  16. J. Liu, Y. Huo, X. Shi, Z. Liu, Y. Shan, Y. Yu, W. Shan, and H. He, Insight into the remarkable enhancement of NH 3 -SCR performance of Ce-Sn oxide catalyst by tungsten modification, Catal. Today, 410, 36-44 (2023). 

  17. M. Kobayashi and K. Miyoshi, WO 3 -TiO 2 monolithic catalysts for high temperature SCR of NO by NH 3 : Influence of preparation method on structural and physico-chemical properties, activity and durability, Appl. Catal. B: Environ., 72, 253-261 (2007). 

  18. L. J. Alemany, L. Lietti, N. Ferlazzo, P. Forzatti, G. Busca, E. Giamello, and F. Bregani, Reactivity and physicochemical characterization of V 2 O 5 -WO 3 /TiO 2 De-NOx catalysts, J. Catal., 155, 117-130 (1995). 

  19. P. D. Cozzoli, A. Kornowski, and H. Weller, Low-temperature synthesis of soluble and processable organic-capped anatase TiO 2 Nanorods, J. Am. Chem. Soc., 125, 14539-14548 

  20. K. C. Song and S. E. Pratsinis, The effect of alcohol solvents on the porosity and phase composition of titania, J. Colloid Interface Sci., 231, 289-298 (2000). 

  21. Y. Li and Q. Zhong, The characterization and activity of F-doped vanadia/titania for the selective catalytic reduction of NO with NH 3 at low temperatures, J. Hazard. Mater., 172, 635-640 (2009). 

  22. W. Qu, X. Liu, J. Chen, Y. Dong, X. Tang, and Y. Chen, Single-atom catalysts reveal the dinuclear characteristic of active sites in NO selective reduction with NH 3 , Nat. Commun., 11, 1532 (2020). 

  23. W. Qu, X. Liu, J. Chen, Y. Dong, X. Tang, and Y. Chen, Location and activity of VOx species on TiO 2 particles for NH 3 -SCR catalysis, Appl. Catal. B: Environ., 278, 119337 (2020). 

  24. J. Cao, X. Yao, L. Chen, K. Kang, M. Fu, and Y. Chen, Effects of different introduction methods of Ce 4 + and Zr 4 + on denitration performance and anti-K poisoning performance of V 2 O 5 -WO 3 /TiO 2 catalyst, J. Rare Earths, 38, 1207-1214 (2020). 

  25. W. Zhang, S. Qi, G. Pantaleo, and L. F. Liotta, WO 3 -V 2 O 5 active oxides for NOx SCR by NH 3 : Preparation methods, catalysts' composition, and deactivation mechanism-A review, Catalysts, 9, 527 (2019). 

  26. G. Lee, B. Ye, M. J. Lee, S. Y. Chun, B. Jeong, H. D. Kim, J. H. Lee, and T. Kim, Selective catalytic reduction of NOx by NH 3 over V 2 O 5 -WO 3 supported by titanium isopropoxide (TTIP)- treated TiO 2 , J. Ind. Eng. Chem., 109, 422-430 (2022). 

  27. G. Lee, B. Ye, W. G. Kim, J. I. Jung, K. Y. Park, B. Jeong, H. D. Kim, and T. Kim, V 2 O 5 -WO 3 catalysts treated with titanium isopropoxide using a one-step co-precipitation method for selective catalytic reduction with NH 3 , Catal. Today, 411-412, 113924 (2023). 

  28. L. Xu, C. Wang, H. Chang, Q. Wu, T. Zhang, and J. Li, New Insight into SO 2 poisoning and regeneration of CeO 2 -WO 3 /TiO 2 and V 2 O 5 -WO 3 /TiO 2 catalysts for low-temperature NH 3 -SCR, Environ. Sci. Technol., 52, 7064 (2018). 

  29. X. Zhao, Y. Yan, L. Mao, M. Fu, H. Zhao, L. Sun, Y. Xiao, and G. Dong, A relationship between the V 4 + /V 5 + ratio and the surface dispersion, surface acidity, and redox performance of V 2 O 5 -WO 3 / TiO 2 SCR catalysts, RSC Adv., 8, 31081-31093 (2018). 

  30. J. Melke, J. Martin, M. Bruns, P. Hugenell, A. Schokel, S. M. Isaza, F. Fink, P. Elsasser, and A. Fischer, Investigating the effect of microstructure and surface functionalization of mesoporous N-doped carbons on V 4 + /V 5 + kinetics, ACS Appl. Energy Mater., 3, 11627-11640 (2020). 

  31. K. Li, T. Chen, L. Yan, Y. Dai, Z. Huang, J. Xiong, D. Song, Y. Lv, and Z. Zeng, Design of graphene and silica co-doped titania composites with ordered mesostructure and their simulated sunlight photocatalytic performance towards atrazine degradation, Colloids Surf. A Physicochem., 422, 90-99 (2013). 

  32. L. Zong, G. Zhang, J. Zhao, F. Dong, J. Zhang, and Z. Tang, Morphology-controlled synthesis of 3D flower-like TiO 2 and the superior performance for selective catalytic reduction of NOx with NH 3 , Chem. Eng. J., 343, 500-511 (2018). 

  33. P. Forzatti, I. Nova, E. Tronconi, A. Kustov, and J. R. Thogersen, Effect of operating variables on the enhanced SCR reaction over a commercial V 2 O 5 -WO 3 /TiO 2 catalyst for stationary applications, Catal. Today, 184, 153-159 (2012). 

  34. B. Ye, M. J. Lee, S. Y. Chun, G. Lee., J. Kim., B. Jeong, T. Kim, and H. D. Kim, Promotional effect of surface treated N-TiO 2 as support for VOx-based catalysts on the selective catalytic reduction of NO using NH 3 , Appl. Surf. Sci., 560, 149934 (2021). 

  35. M. Shanmugam, A. Alsalme, A. Alghamdi, and R. Jayavel, Enhanced photocatalytic performance of the graphene-V 2 O 5 nanocomposite in the degradation of methylene blue dye under direct sunlight, ACS Appl. Mater. Interfaces, 7, 14905-14911 (2015). 

  36. G. Martra, F. Arena, S. Coluccia, F. Frusteri, and A. Parmaliana, Factors controlling the selectivity of V 2 O 5 supported catalysts in the oxidative dehydrogenation of propane, Catal. Today, 63, 197-207 (2000). 

  37. F. Jin and Y. Li, A FTIR and TPD examination of the distributive properties of acid sites on ZSM-5 zeolite with pyridine as a probe molecule, Catal. Today, 145, 101-107 (2009). 

  38. D. Mohanadas, N. I. A. Zainudin, and Y. Sulaiman, A copper-based metal-organic framework/tungsten trioxide with improved coloration efficiency for electrochromic application, Chem. Eng. J., 428, 130989 (2022). 

  39. X. Liu, P. Jiang, Y. Chen, Y. Wang, Q. Ding, Z. Sui, H. Chen, Z. Shen, and X. Wu, A basic comprehensive study on synergetic effects among the metal oxides in CeO 2 -WO 3 /TiO 2 NH 3 -SCR catalyst, Chem. Eng. J., 421, 127833 (2021). 

  40. P. Karthik, V. Vinesh, A. R. Mahammed Shaheer, and B. Neppolian, Self-doping of Ti 3 + in TiO 2 through incomplete hydrolysis of titanium (IV) isopropoxide: An efficient visible light sonophotocatalyst for organic pollutants degradation, Appl. Catal. A: Gen., 585, 117208 (2019). 

  41. Z. Liu, S. Zhang, J. Li, J. Zhu, and L. Ma, Novel V 2 O 5 -CeO 2 /TiO 2 Catalyst with low vanadium loading for the selective catalytic reduction of NOx by NH 3 , Appl. Catal. B: Environ., 158-159, 11-19 (2014). 

  42. S. S. R. Putluru, L. Schill, A. Godiksen, R. Poreddy, S. Mossin, A. D. Jensen, and R. Fehrmann, Promoted V 2 O 5 /TiO 2 catalysts for selective catalytic reduction of NO with NH 3 at low temperatures, Appl. Catal. B: Environ., 183, 282-290 (2016). 

  43. H. Hu, S. Cai, H. Li, L. Huang, L. Shi, and D. Zhang, In Situ DRIFTs investigation of the low-temperature reaction mechanism over Mn-Doped Co 3 O 4 for the selective catalytic reduction of NOx with NH 3 , J. Phys. Chem. C, 119, 22924-22933 (2015). 

  44. R. Wu, L. Li, N. Zhang, J. He, L. Song, G. Zhang, Z. Zhang, and H. He, Enhancement of low-temperature NH 3 -SCR catalytic activity and H 2 O & SO 2 resistance over commercial V 2 O 5 - MoO 3 /TiO 2 catalyst by high shear-induced doping of expanded graphite, Catal. Today, 376, 302-310 (2021). 

  45. S. Li, W. Huang, H. Xu, T. Chen, Y. Ke, Z. Qu, and N. Yan, Alkali-induced deactivation mechanism of V 2 O 5 -WO 3 /TiO 2 catalyst during selective catalytic reduction of NO by NH 3 in aluminum hydrate calcining flue gas, Appl. Catal. B: Environ., 270, 118872 (2020). 

  46. J. Fan, P. Ning, Z. Song, X. Liu, L. Wang, J. Wang, H. Wang, K. Long, and Q. Zhang, Mechanistic aspects of NH 3 -SCR reaction over CeO 2 /TiO 2 -ZrO 2 -SO 4 2 - catalyst: In situ DRIFTS investigation, Chem. Eng. J., 334, 855-863 (2018). 

  47. X. Weng, X. Dai, Q. Zeng, Y. Liu, and Z. Wu, DRIFT studies on promotion mechanism of H 3 PW 12 O 40 in selective catalytic reduction of NO with NH 3 , J. Colloid Interface Sci., 461, 9-14 (2016). 

  48. W. S. Kijlstra, D. S. Brands, E. K. Poels, and A. Bliek, Mechanism of the selective catalytic reduction of NO with NH 3 over MnOx/Al 2 O 3 , J. Catal., 171, 208-218 (1997) 

  49. R. Ikan and B. Crammer, Organic chemistry, Compound Detection. In: R. A. Meyers (ed.). Encyclopedia of Physical Science and Technology, 3rd ed., 459-496, Academic Press, Cambridge, United States (2003). 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로