$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

노화관련 질환에 대한 후성유전의 역할
The Roles of Epigenetic Reprogramming in Age-related Diseases 원문보기

생명과학회지 = Journal of life science, v.33 no.9, 2023년, pp.736 - 745  

황선화 (경성대학교 약학대학 약학과) ,  김경민 (경성대학교 약학대학 반려생물학과) ,  김혜경 (경성대학교 약학대학 약학과) ,  박민희 (경성대학교 약학대학 약학과)

초록
AI-Helper 아이콘AI-Helper

노화란 세포 및 생리 기능이 점진적으로 손상되는 복잡한 과정이다. 알츠하이머, 동맥경화 및 갱년기와 같은 노화와 관련된 질병은 노화가 진행이 되면서 발생된다. 노화와 관련된 질환은 다양한 원인에 의해 발생된다. 그 중 유전적인 변화 없이 유전자 발현을 조절하는 후성유전의 변화는 노화, 그리고 노화와 관련된 질환의 발생에 중요한 조절자로 알려져있다. 이 리뷰에서는 후성유전의 변화가 노화 및 노화와 관련된 질병의 발전과 진행에 어떠한 역할을 하는지에 대해 서술하였다. 노화 중에 일어나는 유전적 변화의 분자적 기전과 이러한 변화가 노화와 관련된 질병에 미치는 영향, 특히 노화와 관련된 질환과 관련된 유전자 발현 양식을 조절하는 RNA 메틸화, DNA 메틸화 및 miRNA에 대해 중점적으로 초점을 맞추었다.

Abstract AI-Helper 아이콘AI-Helper

Aging is a complex biological process characterized by a gradual decline in cellular and physiological functions. This natural process is associated with age-related diseases, including Alzheimer's disease, atherosclerosis, and hypogonadism, which are significant health concerns among older individu...

주제어

표/그림 (2)

AI 본문요약
AI-Helper 아이콘 AI-Helper

성능/효과

  • In conclusion, this review emphasizes the significant role of epigenetic reprogramming in age-related diseases, mainly focusing on Alzheimer's disease, atherosclerosis, and hypogonadism

후속연구

  • Although epigenetic alterations represent an exciting and rapidly evolving field for understanding the underlying mechanisms of age-related diseases, numerous questions remain unanswered. In conclusion, a greater understanding of the epigenetic basis of age-associated disorders is needed to inform the development of new therapeutic intervention agents and prevention strategies targeting these diseases.
본문요약 정보가 도움이 되었나요?

참고문헌 (79)

  1. Alavian-Ghavanini, A. and Ruegg, J. 2018. Understanding?epigenetic effects of endocrine disrupting chemicals: from?mechanisms to novel test methods. Basic Clin. Pharmacol.?Toxicol. 122, 38-45. 

  2. Ali, M. M., Naquiallah, D., Qureshi, M., Mirza, M. I.,?Hassan, C., Masrur, M., Bianco, F. M., Frederick, P.,?Cristoforo, G. P. and Gangemi, A. 2022. DNA methylation?profile of genes involved in inflammation and autoimmunity correlates with vascular function in morbidly?obese adults. Epigenetics 17, 93-109. 

  3. Ansari, A., Maffioletti, E., Milanesi, E., Marizzoni, M.,?Frisoni, G. B., Blin, O., Richardson, J. C., Bordet, R.,?Forloni, G., Gennarelli, M. and Bocchio-Chiavetto, L.?2019. miR-146a and miR-181a are involved in the progression of mild cognitive impairment to Alzheimer's?disease. Neurobiol. Aging 82, 102-109. 

  4. Bartel, D. P. 2009. MicroRNAs: target recognition and?regulatory functions. Cell 136, 215-233. 

  5. Bayraktar, G., Yuanxiang, P., Confettura, A. D., Gomes,?G. M., Raza, S. A., Stork, O., Tajima, S., Suetake, I., Karpova,?A., Yildirim, F. and Kreutz, M. R. 2020. Synaptic control?of DNA methylation involves activity-dependent degradation of DNMT3A1 in the nucleus. Neuropsychopharmacology 45, 2120-2130. 

  6. Berezikov, E. 2011. Evolution of microRNA diversity and?regulation in animals. Nat. Rev. Genet. 12, 846-860. 

  7. Bokar, J. A., Shambaugh, M. E., Polayes, D., Matera, A.?G. and Rottman, F. M. 1997. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA?(N6-adenosine)-methyltransferase. RNA 3, 1233-1247. 

  8. Bradley-Whitman, M. A. and Lovell, M. A. 2013. Epigenetic changes in the progression of Alzheimer's disease.?Mech. Ageing Dev. 134, 486-495. 

  9. Chen, Y., Wang, J., Xu, D., Xiang, Z., Ding, J., Yang,?X., Li, D. and Han, X. 2021. m6A mRNA methylation?regulates testosterone synthesis through modulating autophagy in Leydig cells. Autophagy 17, 457-475. 

  10. Chen, Y., Wang, J., Xu, D., Xiang, Z., Ding, J., Yang, X.,?Li, D. and Han, X. 2021. m6A mRNA methylation regulates testosterone synthesis through modulating autophagy?in Leydig cells. Autophagy 17, 457-475. 

  11. Chew, H., Solomon, V. A. and Fonteh, A. N. 2020. Involvement of lipids in Alzheimer's disease pathology and?potential therapies. Front. Physiol. 11, 598. 

  12. Crews, D. and McLachlan, J. A. 2006. Epigenetics, evolution, endocrine disruption, health, and disease. Endocrinology 147, s4-s10. 

  13. Cui, Q., Shi, H., Ye, P., Li, L., Qu, Q., Sun, G., Sun, G.,?Lu, Z., Huang, Y., Yang, C. G., Riggs A. D., He, C. and?Shi, H. 2017. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell?Rep. 18, 2622-2634. 

  14. Dong, G., Yu, J., Shan, G., Su, L., Yu, N. and Yang, S.?2021. N6-Methyladenosine methyltransferase METTL3?promotes angiogenesis and atherosclerosis by upregulating the JAK2/STAT3 pathway via m6A reader IGF2BP1.?Front. Cell Dev. Biol. 9, 731810. 

  15. Fish, J. E., Santoro, M. M., Morton, S. U., Yu, S., Yeh,?R. -F., Wythe, J. D., Ivey, K. N., Bruneau, B. G., Stainier,?D. Y. and Srivastava, D. 2008. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell 15, 272-284. 

  16. Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., Walhovd, K. B. and Walhovd, K. B. and Alzheimer's Disease?Neuroimaging Initiative. 2014. What is normal in normal?aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. Prog. Neuro- biol. 117, 20-40. 

  17. Franchini, D. -M., Schmitz, K. -M. and Petersen-Mahrt,?S. K. 2012. 5-Methylcytosine DNA demethylation: more than losing a methyl group. Annu. Rev. Genet. 46, 419-441. 

  18. Fu, J., Cui, X., Zhang, X., Cheng, M., Li, X., Guo, Z.?and Cui, X. 2021. The role of m6A ribonucleic acid modification in the occurrence of atherosclerosis. Front. Genet. 12, 733871. 

  19. Fuso, A., Seminara, L., Cavallaro, R. A., D'Anselmi, F.?and Scarpa, S. 2005. S-adenosylmethionine/homocysteine?cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid?production. Mol. Cell. Neurosci. 28, 195-204. 

  20. Guo, F., Zhang, Y., Ma, J., Yu, Y., Wang, Q., Gao, P.,?Wang, L., Xu, Z., Wei, X. and Jing, M. 2022. m6A mRNA?methylation was associated with gene expression and lipid?metabolism in liver of broilers under lipopolysaccharide?stimulation. Front. Genet. 13, 818357. 

  21. Han, M., Liu, Z., Xu, Y., Liu, X., Wang, D., Li, F., Wang,?Y. and Bi, J. 2020. Abnormality of m6A mRNA methylation is involved in Alzheimer's disease. Front. Neurosci.?14, 98. 

  22. Harris, T. A., Yamakuchi, M., Ferlito, M., Mendell, J. T.?and Lowenstein, C. J. 2008. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1.?Proc. Natl. Acad. Sci. USA. 105, 1516-1521. 

  23. He, L. and Hannon, G. J. 2004. MicroRNAs: small RNAs?with a big role in gene regulation. Nat. Rev. Genet. 5,?522-531. 

  24. Herrup, K. 2015. The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci. 18, 794-799. 

  25. Hutvagner, G., McLachlan, J., Pasquinelli, A. E., Balint, E., Tuschl, T. and Zamore, P. D. 2001. A cellular function?for the RNA-interference enzyme Dicer in the maturation?of the let-7 small temporal RNA. Science 293, 834-838. 

  26. Insull Jr, W. 2009. The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. Am. J. Med. 122, S3-S14. 

  27. Jeong, H., Mendizabal, I., Berto, S., Chatterjee, P., Layman,?T., Usui, N., Toriumi, K., Douglas, C., Singh, D., Huh,?I., Preuss, T. M., Konopka, G. and Yi, S. V. 2021.?Evolution of DNA methylation in the human brain. Nat.?Commun. 12, 2021 

  28. Jian, D., Wang, Y., Jian, L., Tang, H., Rao, L., Chen, K.,?Jia, Z., Zhang, W., Liu, Y., Chen, X., Shen, X., Gao, C.,?Wang, S. and Li, M. 2020. METTL14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1?N6-methyladeosine modifications. Theranostics 10, 8939-8956. 

  29. Johnson, A. A. and Stolzing, A. 2019. The role of lipid?metabolism in aging, lifespan regulation, and age-related?disease. Aging Cell 18, e13048. 

  30. Johnson, C. D., Esquela-Kerscher, A., Stefani, G., Byrom,?M., Kelnar, K., Ovcharenko, D., Wilson, M., Wang, X.,?Shelton, J. and Shingara, J. 2007. The let-7 microRNA?represses cell proliferation pathways in human cells. Can- cer Res. 67, 7713-7722. 

  31. Kumar, P., Kumar, N., Thakur, D. S. and Patidar, A. 2010.?Male hypogonadism: Symptoms and treatment. J. Adv.?Pharm. Technol. Res. 1, 297-301. 

  32. Kurian, J. R. and Terasawa, E. 2013. Epigenetic control?of gonadotropin releasing hormone neurons. Front. Endocrinol. (Lausanne) 4, 61. 

  33. Libby, P. and Ridker, P. M. 2006. Inflammation and atherothrombosis: from population biology and bench research?to clinical practice. J. Am. Coll. Cardiol. 48, A33-A46. 

  34. Lindemer, E. R., Greve, D. N., Fischl, B. R., Augustinack,?J.C. and Salat, D. H. 2017. Regional staging of white matter signal abnormalities in aging and Alzheimer's disease.?Neuroimage Clin. 14, 156-165. 

  35. Long, J. K., Dai, W., Zheng, Y. W. and Zhao, S. P. 2019.?miR-122 promotes hepatic lipogenesis via inhibiting the?LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic?fatty liver disease. Mol. Med. 25, 1-13. 

  36. Mallat, Z., Besnard, S., Duriez, M., Deleuze, V., Emmanuel,?F., Bureau, M. F., Soubrier, F., Esposito, B., Duez, H.,?Fievet, C., Staels, B., Duverger, N., Scherman, D. and?Tedgui, A. 1999. Protective role of interleukin-10 in atherosclerosis. Circ. Res. 85, e17-e24. 

  37. Martin, L., Latypova, X., Wilson, C. M., Magnaudeix, A.,?Perrin, M. L., Yardin, C. and Terro, F. 2013. Tau protein?kinases: involvement in Alzheimer's disease. Ageing Res.?Rev. 12, 289-309. 

  38. Mastroeni, D., Grover, A., Delvaux, E., Whiteside, C., Coleman, P. D. and Rogers, J. 2010. Epigenetic changes?in Alzheimer's disease: decrements in DNA methylation.?Neurobiol. Aging 31, 2025-2037. 

  39. Mauer, J., Luo, X., Blanjoie, A., Jiao, X., Grozhik, A. V.,?Patil, D. P., Linder, B., Pickering, B. F., Vasseur, J. J.,?Chen, Q., Gross, S. S., Elemento, O., Elemento, O., Kiledjian, M. and Jaffrey, S. R. 2017. Reversible methylation?of m6Am in the 5' cap controls mRNA stability. Nature?541, 371-375. 

  40. Meyer, K. D. and Jaffrey, S. R. 2017. Rethinking m6A?readers, writers, and erasers. Annu. Rev. Cell Dev. Biol.?33, 319-342. 

  41. Nahid, M. A., Satoh, M. and Chan, E. K. 2011. Mechanistic?role of microRNA-146a in endotoxin-induced differential?cross-regulation of TLR signaling. J. Immunol. 186, 1723-1734. 

  42. Navarro-Martin, L., Vinas, J., Ribas, L., Diaz, N., Gutierrez,?A., Di Croce, L. and Piferrer, F. 2011. DNA methylation?of the gonadal aromatase (cyp19a) promoter is involved?in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genet. 7, e1002447. 

  43. Nazarenko, M. S., Markov, A. V., Lebedev, I. N., Freidin,?M. B., Sleptcov, A. A., Koroleva, I. A., Frolov, A. V.,?Popov, V. A., Barbarash, O. L. and Puzyrev, V. P. 2015.?A comparison of genome-wide DNA methylation patterns?between different vascular tissues from patients with coronary heart disease. PLoS One 10, e0122601. 

  44. Oksanen, M., Petersen, A. J., Naumenko, N., Puttonen, K.,?Lehtonen, S., Gubert Olive, M., Shakirzyanova, A., Leskela, S., Sarajarvi, T., Viitanen, M., Rinne, J. O., Hiltunen, M.,?Haapasalo, A., Giniatullin, R., Tavi, P., Zhang, S. C.,?Kanninen, K. M., Hamalainen, R. H. and Koistinaho, J.?2017. PSEN1 mutant iPSC-derived model reveals severe astrocyte pathology in Alzheimer's Disease. Stem Cell?Reports 9, 1885-1897. 

  45. Pendleton, K. E., Chen, B., Liu, K., Hunter, O. V., Xie,?Y., Tu, B. P. and Conrad, N. K. 2017. The U6 snRNA?m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169, 824-835. e814. 

  46. Ragino, Y. I., Chernyavski, A. M., Polonskaya, Y. V.,?Volkov, A. M. and Kashtanova, E. V. 2012. Activity of?the inflammatory process in different types of unstable?atherosclerotic plaques. Bull. Exp. Biol. Med. 153, 186-189. 

  47. Rawluszko, A. A., Horbacka, K., Krokowicz, P. and?Jagodzinski, P. P. 2011. Decreased expression of 17beta-hydroxysteroid dehydrogenase type 1 is associated with?DNA hypermethylation in colorectal cancer located in the?proximal colon. BMC Cancer 11, 522. 

  48. Rayner, K. J., Sheedy, F. J., Esau, C. C., Hussain, F. N.,?Temel, R. E., Parathath, S., Van Gils, J. M., Rayner, A.?J., Chang, A. N., Suarez, Y., Fernandez-Hernando, C.,?Fisher, E. A. and Moore, K. J. 2011. Antagonism of miR33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest. 121, 2921-2931. 

  49. Remenyi, J., van den Bosch, M. W., Palygin, O., Mistry,?R. B., McKenzie, C., Macdonald, A., Hutvagner, G.,?Arthur, J. S., Frenguelli, B. G. and Pankratov, Y. 2013. miR132/212 knockout mice reveal roles for these miRNAs in?regulating cortical synaptic transmission and plasticity.?PLoS One 8, e62509. 

  50. Reza, A. M. M. T., Choi, Y. J., Han, S. G., Song, H.,?Park, C., Hong, K. and Kim, J. H. 2019. Roles of?microRNAs in mammalian reproduction: from the commitment of germ cells to peri-implantation embryos. Biol.?Rev. Camb. Philos. Soc. 94, 415-438. 

  51. Shen, W. B., Yang, J. J. and Yang, P. 2022. RNA hypomethylation and unchanged DNA methylation levels in the?cortex of ApoE4 carriers and Alzheimer's disease subjects.?Curr. Alzheimer Res. 19, 530-540. 

  52. Shima, H., Matsumoto, M., Ishigami, Y., Ebina, M., Muto,?A., Sato, Y., Kumagai, S., Ochiai, K., Suzuki, T. and?Igarashi, K. 2017. S-Adenosylmethionine synthesis is?regulated by selective N6-adenosine methylation and?mRNA degradation involving METTL16 and YTHDC1.?Cell Rep. 21, 3354-3363. 

  53. Shin, M. J., Jeon, Y. K. and Kim, I. J. 2018. Testosterone?and Sarcopenia. World J. Mens Health 36, 192-198. 

  54. Singal, R. and Ginder, G. D. 1999. DNA methylation.?Blood 93, 4059-4070. 

  55. Studentova, H., Indrakova, J., Petrova, P., Kaminek, M.,?Kalabova, H., Sramek, V., Adam, T. and Melichar, B.?2016. Risk factors of atherosclerosis during systemic therapy targeting vascular endothelial growth factor. Oncol.?Lett. 11, 939-944. 

  56. Surampudi, P. N., Wang, C. and Swerdloff, R. 2012.?Hypogonadism in the aging male diagnosis, potential benefits, and risks of testosterone replacement therapy. Int.?J. Endocrinol. 2012, 625434. 

  57. Taganov, K. D., Boldin, M. P., Chang, K. J. and Baltimore,?D. 2006. NF-κB-dependent induction of microRNA miR146, an inhibitor targeted to signaling proteins of innate?immune responses. Proc. Natl. Acad. Sci. USA. 103, 12481-12486. 

  58. Tan, L., Yu, J. T., Liu, Q. Y., Tan, M. S., Zhang, W.,?Hu, N., Wang, Y. L., Sun, L., Jiang, T. and Tan, L. 2014.?Circulating miR-125b as a biomarker of Alzheimer's?disease. J. Neurol. Sci. 336, 52-56. 

  59. Tang, J., Song, A., Pan, L., Miao, J., Li, Z. and Zhou,?Y. 2023. Study of DNA methylation of hsd17beta, er and?reproductive endocrine disrupting effects in female Chlamys?farreri under benzo [a] pyrene stress. Environ. Pollut. 328, 121667. 

  60. Tarantini, S., Tran, C. H. T., Gordon, G. R., Ungvari, Z.?and Csiszar, A. 2017. Impaired neurovascular coupling in?aging and Alzheimer's disease: contribution of astrocyte?dysfunction and endothelial impairment to cognitive?decline. Exp. Gerontol. 94, 52-58. 

  61. van Diepen, J. A., Berbee, J. F., Havekes, L. M. and?Rensen, P. C. 2013. Interactions between inflammation?and lipid metabolism: relevance for efficacy of anti-inflammatory drugs in the treatment of atherosclerosis.?Atherosclerosis 228, 306-315. 

  62. Wang, X., Lu, Z., Gomez, A., Hon, G. C., Yue, Y., Han,?D., Fu, Y., Parisien, M., Dai, Q., Jia, G., Ren, B., Pan,?T. and He, C. 2014. N 6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117-120. 

  63. Wang, X., Zhao, B. S., Roundtree, I. A., Lu, Z., Han, D.,?Ma, H., Weng, X., Chen, K., Shi, H. and He, C. 2015.?N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388-1399. 

  64. Wang, Y., Wang, Y., Gu, J., Su, T., Gu, X. and Feng,?Y. 2022. The role of RNA m6A methylation in lipid?metabolism. Front. Endocrinol. (Lausanne) 13, 866116. 

  65. West, M. J., Coleman, P. D., Flood, D. G. and Troncoso,?J. C. 1994. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease.?Lancet 344, 769-772. 

  66. Xie, R., Lin, X., Du, T., Xu, K., Shen, H., Wei, F., Hao,?W., Lin, T., Lin, X., Qin, Y., Wang, H., Chen, L., Yang,?S., Yang, J., Rong, X., Yao, K., Xiao, D., Jia, J. and Sun,?Y. 2016. Targeted disruption of miR-17-92 impairs mouse spermatogenesis by activating mTOR signaling pathway.?Medicine (Baltimore) 95, e2713. 

  67. Xie, S., Wang, Z., Okano, M., Nogami, M., Li, Y., He,?W. W., Okumura, K. and Li, E. 1999. Cloning, expression?and chromosome locations of the human DNMT3 gene?family. Gene 236, 87-95. 

  68. Xu, X., Chen, W., Miao, R., Zhou, Y., Wang, Z., Zhang,?L., Wan, Y., Dong, Y., Qu, K. and Liu, C. 2015. miR-34a?induces cellular senescence via modulation of telomerase?activity in human hepatocellular carcinoma by targeting?FoxM1/c-Myc pathway. Oncotarget 6, 3988-4004. 

  69. Yamada, Y., Nishida, T., Horibe, H., Oguri, M., Kato, K.?and Sawabe, M. 2014. Identification of hypo-and hypermethylated genes related to atherosclerosis by a genome-wide analysis of DNA methylation. Int. J. Mol. Med.?33, 1355-63. 

  70. Yang, D., Wang, J., Xiao, M., Zhou, T. and Shi, X. 2016.?Role of Mir-155 in controlling HIF-1α level and promoting endothelial cell maturation. Sci. Rep. 6, 35316. 

  71. Yen, R. W., Vertino, P. M., Nelkin, B. D., Yu, J. J., ElDeiry, W., Cumaraswamy, A., Lennon, G. G., Trask, B.?J., Celano, P. and Baylin, S. B. 1992. Isolation and characterization of the cDNA encoding human DNA methyltransferase. Nucleic Acids Res. 20, 2287-2291. 

  72. Yi, R., Qin, Y., Macara, I. G. and Cullen, B. R. 2003.?Exportin-5 mediates the nuclear export of pre-microRNAs?and short hairpin RNAs. Genes Dev. 17, 3011-3016. 

  73. Ylitalo, E. B., Thysell, E., Landfors, M., Brattsand, M.,?Jernberg, E., Crnalic, S., Widmark, A., Hultdin, M., Bergh,?A., Degerman, S. and Wikstrom, P. 2021. A novel DNA?methylation signature is associated with androgen receptor?activity and patient prognosis in bone metastatic prostate cancer. Clin. Epigenetics 13, 133. 

  74. Zaina, S., Heyn, H., Carmona, F. J., Varol, N., Sayols,?S., Condom, E., Ramirez-Ruz, J., Gomez, A., Goncalves, I., Moran, S. and Esteller, M. 2014. DNA methylation map?of human atherosclerosis. Circ. Cardiovasc. Genet. 7, 692-700. 

  75. Zhang, X., Yang, S., Han, S., Sun, Y., Han, M., Zheng,?X., Li, F., Wei, Y., Wang, Y. and Bi, J. 2023. Differential?methylation of circRNA m6A in an APP/PS1 Alzheimer's?disease mouse model. Mol. Med. Rep. 27, 1-8. 

  76. Zhao, F., Xu, Y., Gao, S., Qin, L., Austria, Q., Siedlak,?S.L., Pajdzik, K., Dai, Q., He, C., Wang, W., O'Donnell,?J. M., Tang, B. and Zhu, X. 2021. METTL3-dependent?RNA m6A dysregulation contributes to neurodegeneration?in Alzheimer's disease through aberrant cell cycle events.?Mol. Neurodegener. 16, 1-25. 

  77. Zheng, G., Dahl, J. A., Niu, Y., Fedorcsak, P., Huang, C.?M., Li, C. J., Vagbo, C. B., Shi, Y., Wang, W. L., Song,?S. H., Lu, Z., Bosmans, R. P., Dai, Q., Hao, Y. J., Yang,?X., Zhao, W. M., Tong, W. M., Wang, X. J., Bogdan,?F., Furu, K., Fu, Y., Jia, G., Zhao, X., Liu, J., Krokan,?H. E., Krokan, H. E., Klungland, A., Yang, Y. G. and?He, C. 2013. ALKBH5 is a mammalian RNA demethylase?that impacts RNA metabolism and mouse fertility. Mol.?Cell 49, 18-29. 

  78. Zheng, Y., Li, Y., Ran, X., Wang, D., Zheng, X., Zhang,?M., Yu, B., Sun, Y. and Wu, J. 2022. Mettl14 mediates?the inflammatory response of macrophages in atherosclerosis through the NF-κB/IL-6 signaling pathway. Cell?Mol. Life Sci. 79, 311. 

  79. Zhu, T., Roundtree, I. A., Wang, P., Wang, X., Wang, L.,?Sun, C., Tian, Y., Li, J., He, C. and Xu, Y. 2014. Crystal?structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine. Cell Res. 24, 1493-1496. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로