$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

DNA 메틸화는 histone modification과 함께 DNA의 염기서열이 유지되면서 유전기능이 변화되고 자손까지 전달 될 수 있는 후생 유전의 중요한 한 부분이다. DNA 메틸화는 크로마틴의 구조를 변경시키는 과정을 통하여 유전자와 repetitive sequence의 표현을 억제시킬 수 있다. DNA 메틸화는 X-불활성화, 유전체 각인, 유전자 발현조절, 암 생성 등에 중요한 역할을 하는 것으로 밝혀졌고, DNA 메틸화 표지자 (DNA methylation marker)들은 종양의 진단과 치료에 대한 반응을 예측하는 지표로 활용되고 있다. 지금까지 많은 연구 성과에도 불구하고 DNA메틸화, 메틸화에 의한 gene silencing, DNA 메틸화의 표적부위 등에 대한 명확한 기전이 아직도 밝혀지지 않고 있어 향후 더 많은 기초적 연구가 필요할 것이다. 최근에는 후생 유전적 변화는 가역적이기 때문에 종양억제유전자를 억압하는 후생 유전적 변화를 제거한다면 그 종양억제유전자를 다시 활성화시킬 수 있다는 개념의 후생유전 치료법 연구로 DNA 메틸화 억제제와 histone deacetyaltion에 관여하는 HDAC의 억제제들이 항암제로서 개발되어 사용되고 있는데 향후 더 많은 약제 개발과 임상적 연구가 진행되어야 할 것이다.

Abstract AI-Helper 아이콘AI-Helper

Epigenetic is usually referring to heritable traits that do not involve changes to the underlying DNA sequence. DNA methylation is known to serve as cellular memory. and is one of the most important mechanism of epigenetic. DNA methylation is a covalent modification in which the target molecules for...

주제어

참고문헌 (48)

  1. KH Kang : Epigenetics;Understandings about DNA methylation in carcinogenesis. KMB Co. 2007 

  2. Weissbach A : A chronicle of DNA methylation.(1948- 1975). EXS 64 : 1, 1993 

  3. Singai R, Ginder GD : DNA methylation. Blood 93 : 4059, 1999 

  4. Miranda TB, Johnes PA : DNA methylation: the nuts and bolts of repression. J Cell Physiol 213 : 384, 2007 

  5. Bestor T, Laudano A, Mattaliano R et al : Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes in related to bacterial restriction methyltransferase. J Mol Biol 203 : 971, 1988 

  6. Okano M, Bell DW, Haber DA et al : DNA methyltransferase Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99 : 247, 1999 

  7. Xie S, Wang Z, Okano M et al : Cloning, expression and chromosome location of the human DNMT3 gene family. Gene 236 : 87, 1999 

  8. Chen T, Ueda Y, Xie S : A novel Dnmt3a isoform produced from an alternative promoter localizes to euchromatin and its exression correlates with active de novo methylation. J Biol Chem 277 : 38746, 2002 

  9. Hata K, Okano M, Lei H et al : Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to etablish maternal imprints in mice. Development 129 : 1983, 2002 

  10. Takai D, Jones PA : Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 99 : 3740, 2002 

  11. Ponger L : Determinants of CpG islands : expression in early embryo and isochore structure. Genome Res 11 : 1854, 2001 

  12. Sved J, Bird A : The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model. Proc Natl Acad Sci USA 87 : 4692, 1990 

  13. Dallosso AR, Hancock AL, Moorwood K et al : Genomic imprinting at the WT1 gene involves a novel coding transcript (AWT1) that shows deregulation in wilms tumors. Hum Mol Genet 13 : 405, 2004 

  14. Gronbaek K, Hother C, Jones PA : Epigenetic changes in cancer. APMIS 115 : 1030, 2007 

  15. Cheng MK, Disteche CM : Silence of the fathers: early X inactivation. BioEssays 26(8) : 821, 2004 

  16. McGrath J, Solter D : completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37 : 179, 1984 

  17. Heard E, Clerc P, Avner P : X-chromosome inactivation in mammals. Annu Rev Genet 31 : 571, 1997 

  18. Plath K, Mlynareczyk-Evans S, Nusinow D et al : Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet 36 : 233, 2002 

  19. Ohhata T, Hoki Y, Sasaki H et al : Tsix-deficient X chromosome does not undergo inactivation in the embryonic lineage in male: impliations for Tsix-independent silencing of Xist. Cytogeniet Genome Res 113 : 345, 2006 

  20. Heard E, Rougenulle C, Arnaud D et al : Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell 107 : 727, 2001 

  21. Tycko B, Morison JM : Physiological functions of imprinted genes. J Cell Physiol 192 : 245, 2002 

  22. Reik W, Walter J : Genomic imprinting: parental influence on the genome. Nat Rev Genet 2 : 21, 2001 

  23. Jaenisch R, Bird A : Epigenetic reulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33 suppl : 245, 2003 

  24. IIsles, AR, Holland AJ : Imprinted genes and mother-offspring interactions. Early Hum Dev 81(1) : 73, 2005 

  25. Constancia M : Resourceful imprinting. Nature 432(7013) : 53, 2004 

  26. Temple IK : Imprinting in human disease with special reference to transient neonatal diabetes and Beckwith- Wiedemann syndrome. Endocr Dev 12 : 113, 2007 

  27. Higashimoto K, Soejima H, Saito T et al : Imprinting disruption of the CDKN1C/KCNQ1OT1 domain: the molecular mechanisms causing Beckwith-Wiedemann syndrome and cancer. Cytogenet Genome Res 113 : 306, 2006 

  28. Galvan-Nanso M, Campistol J, Conill J et al : Analysis of the characteristics of epilepsy in 37 pateints with the molecular diagnosis of Angelman syndrome. Epileptic Disod 7 : 19, 2005 

  29. Haig D, Graham C : Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell 22 : 1045, 1991 

  30. Riggs AD, Jones PA : S-methylcytosine, gene regulation, and cancer. Adv Cancer Res 40 : 1, 1983 

  31. Johns PA, Baylin SB : The fundamental role of epigenetic events in cancer. Nat Rev Genet 3 : 415, 2002 

  32. Chalitchagorn K, Shuangshoti S, Hourpai N et al : Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene 23 : 8841, 2004 

  33. Ogishima T, Shiina H, Breault JE : Promoter CpG hypomethylation and transcription factor EGR1 hyperactivate heparanase expression in bladder cancer. Oncogene 24 : 6765, 2005 

  34. Okada H, Kimura MT, Tan D : Frequent trefoil factor 3 (TFF3) overexpression and promoter hypomethylation in mouse and human hepatocellular carcinomas. Int J Oncol 26 : 369, 2005 

  35. Smith IM, Mydlarz WK, Nithani SK : DNA global hypomethylation in squamouse cell head and neck cancer associated with smoking, alcohol comsumption and stage. Int J Cancer 15 : 1724, 2007 

  36. Wong TS, Man MW, Lam AK et al : The study of p16 and p15 gene methylation in head and neck squamous cell carcinoma and their quantitative evaluation in plasma by real-time PCR. Eur J Cancer 39 : 1881, 2003 

  37. Hong SH, Kim HG, Chung WB et al : DNA hypermethylation of tumor-related genes in gastric carcinoma. J Kor Med Sci 20 : 236, 2005 

  38. Marsit CJ, Kim DH, Liu M et al : Hypermethylation of RASSF1A and BLU tumor suppressor genes in non-small cell lung cancer: implications for tobacco smoking during adolescence. Int J Cancer 114 : 219, 2005 

  39. Maruyama R, Sugio K, Yoshino K et al : Hypermethylation of FHIT as a prognostic marker in nonsmall cell lung carcinoma. Cancer 100 : 1472, 2004 

  40. Li S, Rong M, Iacopetta B : DNA hypermethylation in breast cancer and its association with clinicopathological features. Cancer Lett 18 : 272, 2005 

  41. Yeo W, Wong WL, Wong N et al : High frequency of promoter hypermethylation of RASSF1A in tumorous and non-tumourous tissue of breast cancer. Pathology 37 : 125, 2005 

  42. Park HJ, Yu E. Shim YH : DNA methyltransferase expression and DNA hypermethylation in human hepatocellular carcinoma. Cancer Lett 233 : 271, 2006 

  43. Bai AH, Tong JH, To KF et al : Promoter hypermethylation of tumor-related genes in the progression of colorectal neoplasia. Int J Cancer 112 : 846, 2004 

  44. Lee S, Hwang KS, Lee HJ et al : Aberrant CpG island hypermethylation of multiple genes in colorectal neoplasia. Lab Invest 84 : 884, 2004 

  45. Ishida E, Nakamura M, Ikuta M et al : Promotor hypermethylation of p14ARF is a key alteration for progression of oral squamous cell carcinoma. Oral Oncol 41 : 614, 2005 

  46. Viswanathan M, Tsuchida N, Shanmugam G : Promoter hypermethylation profile of tumor-associated genes p16, p15, hMLH1, MGMT and E-cadherin in oral squamous cell carcinoma. Int J Cancer 105 : 41, 2003 

  47. Maruya SI, Issa JP, Weber RS et al : Differential methylation status of tumor-associated genes in head and neck squamous carcinoma: incidence and potential implications. Clin Cancer Res 10 : 3825, 2004 

  48. Puri SK, Si L, Fan CY et al : Aberrant promoter hypermethylation of multiple genes in head and neck squamous cell carcinoma. Am J Otolaryngol 26 : 12, 2005 

저자의 다른 논문 :

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로