$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Investigating Students' Profiles of Mathematical Modeling: A Latent Profile Analysis in PISA 2012 원문보기

Journal of the Korean Society of Mathematical Education. Series D: Research in mathematical education, v.26 no.3, 2023년, pp.235 - 252  

SeoJin Jeong (Department of Mathematics Gifted Education, Korea National University of Education) ,  Jihyun Hwang (Department of Mathematics Education, Korea National University of Education) ,  Jeong Su Ahn (Department of Mathematics Education, Korea National University of Education)

Abstract AI-Helper 아이콘AI-Helper

We investigated the classification of learner groups for students' mathematical modeling competency and analyzed the characteristics in each profile group for each country and variable using PISA 2012 data from six countries. With a perspective on measuring sub-competency, we applied the latent prof...

Keyword

표/그림 (8)

참고문헌 (35)

  1. Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52(3), 317-332.?https://doi.org/10.1007/BF02294359 

  2. Arminger, G., Stein, P., & Wittenberg, J. (1999). Mixtures of condition mean- and?covariance-structure models. Psychometrika, 64, 475-494.?https://doi.org/10.1007/BF02294568 

  3. Baek, D., & Lee, K. (2018). Role and significance of abductive reasoning in mathematical?modeling. Journal of Educational Research in Mathematics, 28(2), 221-240.?https://doi.org/10.29275/jerm.2018.05.28.2.221 

  4. Blum, W., & Ferri, R. B. (2009). Mathematical modelling: Can it be taught and?learnt? Journal of Mathematical Modelling and Application, 1(1), 45-58. 

  5. Blum, W., & Leiss, D. (2007). How do students and teachers deal with modelling problems??In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling?(ICTMA 12): Education, engineering and economics (pp. 222-231). Horwood.?https://doi.org/10.1533/9780857099419.5.221 

  6. Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling,?applications, and links to other subjects-State, trends and issues in mathematics?instruction. Educational Studies in Mathematics, 22(1), 37-68.?https://doi.org/10.1007/BF00302716 

  7. Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the?modelling process. Zentralblatt fur Didaktik der Mathematik, 38(2), 86-95.?https://doi.org/10.1007/BF02655883 

  8. Celeux, G., & Soromenho, G. (1996). An entropy criterion for assessing the number of?clusters in a mixture model. Journal of Classification, 13, 195-212. https://doi.org/10.1007/BF01246098 

  9. Chon, K., & Kim, S. (2019). A latent profile analysis of math attitudes. Journal of?Curriculum and Evaluation, 22(2), 319-339.?https://doi.org/10.29221/jce.2019.22.2.319 

  10. Clark, S. L., & Muthen, B. (2009). Relating latent class analysis results to variables not?included in the analysis. Retrieved from http://www.statmodel.com/download/relatinglca.pdf. 

  11. English, L., & Watters, J. (2005). Mathematical modelling in the early school years.?Mathematics Education Research Journal, 16(3), 58-79.?https://doi.org/10.1007/BF03217401 

  12. Galbraith, P. (2012). Models of modelling: Genres, purposes or perspectives. Journal of?Mathematical Modelling and Application, 4(8), 3-16. 

  13. Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages?during transitions in the modelling process. Zentralblatt fur Didaktik der?Mathematik, 38(2), 143-162. https://doi.org/10.1007/BF02655886 

  14. Gravemeijer, K., & Doorman, M. (1999). Context problems in realistic mathematics?education: A calculus course as an example. Educational Studies in Mathematics?39, 111-129. https://doi.org/10.1023/A:1003749919816 

  15. Haines, C., & Crouch, R. (2007). Mathematical modelling and applications: Ability and?competence frameworks. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss?(Eds.), Modelling and applications in mathematics education: The 14th ICMI?Study (pp. 417-424). Springer. https://doi.org/10.1007/978-0-387-29822-1_46 

  16. Hipp, J. R., & Bauer, D. J. (2006). Local solutions in the estimation of growth mixture?models. Psychological Methods, 11(1), 36-53. https://doi.org/10.1037/1082-989x.11.1.36 

  17. Hwang, J., & Ko, E. (2018). Investigating Korean students' different profiles of affective?constructs and engagements: a latent profile analysis on TIMSS 2015. Journal of?the Korean School Mathematics Society, 21(3), 207-225.?http://dx.doi.org/10.30807/ksms.2018.21.3.001 

  18. Hwang, S., & Son, T. (2021). Exploring middle school students' mathematics learning?motivation and influential factors using latent profile analysis. Educational?Research, 80, 275-294. https://doi.org/10.17253/swueri.2021.80..013 

  19. Iverson, A., French, B. F., Strand, P. S., Gotch, C. M., & McCurley, C. (2018).?Understanding school truancy: Risk-need latent profiles of adolescents. Assessment,?25(8), 978-987. https://doi.org/10.1177/1073191116672329 

  20. Jonassen, D. (2011). Supporting problem solving in PBL. Interdisciplinary Journal of?Problem-Based Learning, 5(2). 95-119. https://doi.org/10.7771/1541-5015.1256 

  21. Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on?modelling in mathematics education. Zentralblatt fur Didaktik der Mathematik,?38(3), 302-310. https://doi.org/10.1007/BF02652813 

  22. Kim, S., & Kim, K. (2004). Analysis on types and roles of reasoning used in the?mathematical modeling process. School Mathematics, 6(3), 283-299. 

  23. Lesh, R., & Lehrer, R. (2003). Models and modeling perspectives on the development of?students and teachers. Mathematical Thinking and Learning, 5(2-3), 109-129. https://doi.org/10.1080/10986065.2003.9679996 

  24. Lesh, R., & Zawojewski, J. (2007). Problem solving and modeling. In F. Lester (Ed.),?Second handbook of research on mathematics teaching and learning (pp. 763-804).?Information Age 

  25. Lo, Y., Mendell, N., & Rubin, D. (2001). Testing the number of components in a normal?mixture. Biometrika, 88(3), 767-778. https://doi.org/10.1093/biomet/88.3.767 

  26. Maass, K., & Gurlitt, J. (2011). LEMA-Professional development of teachers in relation?to mathematical modelling. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. A.?Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp.?629-639). Springer. https://doi.org/10.1007/978-94-007-0910-2_60 

  27. Marsh, H. W., Luedtke, O., Trautwein, U., & Morin, J.S.A. (2009). Classical latent profile?analysis of academic self-concept dimensions: Synergy of person- and variable-centered approaches to theoretical models of self-concept. Structural Equation?Modeling, 16, 191-225. https://doi.org/10.1080/10705510902751010 

  28. Muthen, L. K., & Muthen, B. O. (1998). Mplus (version 8.8) [Computer software].?Muthen & Muthen. 

  29. OECD. (2013). PISA 2012 assessment and analytical framework: Mathematics, reading,?science, problem solving and financial literacy. OECD Publishing.?https://doi.org/10.1787/9789264190511-en 

  30. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2),?461-464. 

  31. Sclove, S. L. (1987). Application of model-selection criteria to some problems in?multivariate analysis. Psychometrika, 52(3), 333-343.?https://doi.org/10.1007/BF02294360 

  32. Sriraman, B., & Lesh, R. A. (2006). Modeling conceptions revisited. Zentralblatt fur?Didaktik der Mathematik, 38(3), 247-254. https://doi.org/10.1007/BF02652808 

  33. Verschaffel, L., Greer, B., & De Corte, E. (2002). Everyday knowledge and mathematical?modeling of school word problems. In K. Gravemeijer, R. Lehrer, B. Van Oers, &?L. Verschaffel (Eds.), Symbolizing, modeling and tool use in mathematics?education (pp. 257-276). Springer Netherlands. https://doi.org/10.1007/978-94-017-3194-2_16 

  34. Yi, H., & Lee, Y. (2017). A latent profile analysis and structural equation modeling of the?instructional quality of mathematics classrooms based on the PISA 2012 results of?Korea and Singapore. Asia Pacific Education Review, 18, 23-39.?https://doi.org/10.1007/s12564-016-9455-4 

  35. Yoon, C., Thomas, M., & Dreyfus, T. (2011). Grounded blends and mathematical gesture?spaces: developing mathematical understandings via gestures. Educational Studies?in Mathematics, 78(3), 371-393. https://doi.org/10.1007/s10649-011-9329-y 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로