$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

K-Means Clustering 기법과 원격탐사 자료를 활용한 탄소기반 글로벌 해양 생태구역 분류
Classification of Carbon-Based Global Marine Eco-Provinces Using Remote Sensing Data and K-Means Clustering 원문보기

대한원격탐사학회지 = Korean journal of remote sensing, v.39 no.5/1, 2023년, pp.1043 - 1060  

김영준 (울산과학기술원 지구환경도시건설공학과) ,  배덕원 (울산과학기술원 지구환경도시건설공학과) ,  임정호 (울산과학기술원 지구환경도시건설공학과) ,  정시훈 (울산과학기술원 지구환경도시건설공학과) ,  추민기 (울산과학기술원 지구환경도시건설공학과) ,  한대현 (울산과학기술원 지구환경도시건설공학과)

초록
AI-Helper 아이콘AI-Helper

최근 기후변화의 가속화로 바다에 의한 탄소의 흡수 작용을 칭하는 '블루 카본(blue carbon)'에 대한 관심이 많아지고 있지만, 탄소 순환의 핵심이 되는 해양 생태계에 대한 우리의 이해는 아직 부족한 실정이다. 본 연구는 탄소 순환을 고려한 글로벌 해양 생태 권역(marine eco-province)을 k-means clustering 기법을 활용하여 분류·분석하였다. 지난 20년 간(2001-2020) 위성을 활용하여 생산된 Carbon-based Productivity Model (CbPM) 순 일차 생산량(Net primary production, NPP), particulate inorganic and organic carbon (PIC and POC), 위성 관측과 재분석모델을 결합하여 생산한 해수면 염분(sea surface salinity, SSS) 및 온도(sea surface temperature, SST) 총 다섯가지 자료를 활용하였다. 최적화 과정을 거쳐 총 9개의 생태권역을 도출하였으며, 각 권역의 공간분포와 특성을 분석하였다. 이 중 5개의 권역은 주로 대양의 특성을 반영하고, 4개의 권역은 연안 및 고위도 해역의 특성을 반영하는 것으로 나타났다. 또한, 기존에 알려진 해양 생태 권역과의 정성적 비교를 통하여 탄소순환을 고려한 해양 생태권역의 특징을 상세히 분석하였다. 마지막으로 과거 5년 단위(2001-2005, 2006-2010, 2011-2015, 2016-2020)로 생태 권역의 변화를 분석하였으며, 연안생태계의 빠른 변화와 특히 담수유입으로 인해 생산량이 높고 생태적으로 중요한 권역의 감소를 확인하였다. 이러한 연구 결과는 탄소 순환 및 기후변화를 고려한 해양 생태 권역 분류 및 연안 관리에 대한 중요한 참고자료로 활용 될 수 있으며, 기후 변화에 취약한 지역에 대한 체계적인 관리 지침 개발에 활용될 수 있다.

Abstract AI-Helper 아이콘AI-Helper

An acceleration of climate change in recent years has led to increased attention towards 'blue carbon' which refers to the carbon captured by the ocean. However, our comprehension of marine ecosystems is still incomplete. This study classified and analyzed global marine eco-provinces using k-means c...

주제어

표/그림 (10)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 연구는 탄소순환을 고려한 글로벌 해양 생태권역을 분류하고자 하였다. 지난 20년(2001–2020)간 해색위성을 활용하여 관측된 NPP, PIC, POC, SSS, SST 자료를 활용하였으며, 널리 사용되는 비지도 분류기법인 k-means clustering 알고리즘을 사용하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (48)

  1. Akhil, V. P., Vialard, J., Lengaigne, M., Keerthi, M. G.,?Boutin, J., Vergely, J. L., and Papa., F., 2020.?Bay of Bengal Seasurface salinity variability?using a decade of improved SMOS re-processing.?Remote Sensing of Environment, 248, 111964.?https://doi.org/10.1016/j.rse.2020.111964 

  2. Balch, W. M., Gordon, H. R., Bowler, B. C., Drapeau,?D. T., and Booth, E. S., 2005. Calcium carbonate?measurements in the surface global ocean based?on moderate-resolution imaging spectroradiometer?data. Journal of Geophysical Research: Oceans,?110(C7). https://doi.org/10.1029/2004JC002560 

  3. Balch, W. M., and Mitchell, C., 2023. Remote sensing?algorithms for particulate inorganic carbon (PIC)?and the global cycle of PIC. Earth-Science Reviews, 104363. https://doi.org/10.1016/j.earscirev.2023.104363 

  4. Basu, S., and Mackey, K. R., 2018. Phytoplankton as key?mediators of the biological carbon pump: Their?responses to a changing climate. Sustainability,?10(3), 869. https://doi.org/10.3390/su10030869 

  5. Behrenfeld, M. J., Boss, E., Siegel, D. A., and Shea, D.?M., 2005. Carbon-based ocean productivity and?phytoplankton physiology from space. Global?Biogeochemical Cycles, 19(1). https://doi.org/10.1029/2004GB002299 

  6. Budillon, G., Castagno, P., Aliani, S., Spezie, G., and?Padman, L., 2011. Thermohaline variability?and antarctic bottom water formation at the ross?sea shelf break. Deep Sea Research Part I:?Oceanographic Research Papers, 58(10), 1002-1018. https://doi.org/10.1016/j.dsr.2011.07.002 

  7. Calinski, T., and Harabasz, J., 1974. A dendrite method?for cluster analysis. Communications in Statisticstheory and Methods, 3(1), 1-27. https://doi.org/10.1080/03610927408827101 

  8. Chaitanya, A. V. S., Lengaigne, M., Vialard, J.,?Gopalakrishna, V. V., Durand, F., Kranthikumar,?C. et al., 2014. Salinity measurements collected?by fishermen reveal a "River in the Sea" flowing?along the Eastern Coast of India. Bulletin of the?American Meteorological Society, 95(12), 1897-1908. https://doi.org/10.1175/BAMS-D-12-00243.1 

  9. Chapman, E. J., Byron, C. J., Lasley-Rasher, R., Lipsky,?C., Stevens, J. R., and Peters, R., 2020. Effects?of climate change on coastal ecosystem food?webs: Implications for aquaculture. Marine?Environmental Research, 162, 105103. https://doi.org/10.1016/j.marenvres.2020.105103 

  10. Chen, Y., Dong, J., Xiao, X., Ma, Z., Tan, K., Melville,?D. et al., 2019. Effects of reclamation and natural?changes on coastal wetlands bordering China's?Yellow Sea from 1984 to 2015. Land Degradation?& Development, 30(13), 1533-1544. https://doi.org/10.1002/ldr.3322 

  11. Cowardin, L. M., 1979. Classification of wetlands and?deepwater habitats of the United States. Fish?and Wildlife Service, US Department of the?Interior. https://pubs.usgs.gov/publication/2000109 

  12. Cramer, A. N., and Katz, S. L., 2021. Primary production?and habitat stability organize marine communities.?Global Ecology and Biogeography, 30(1), 11-24.?https://doi.org/10.1111/geb.13192 

  13. Fournier, S., Chapron, B., Salisbury, J., Vandemark, D.,?and Reul, N., 2015. Comparison of spaceborne?measurements of sea surface salinity and colored?detrital matter in the Amazon Plume. Journal of?Geophysical Research: Oceans, 120(5), 3177-3192.?https://doi.org/10.1002/2014JC010109 

  14. Gomes, H. D. R., Xu, Q., Ishizaka, J., Carpenter, E. J.,?Yager, P. L., and Goes, J. I., 2018. The influence?of riverine nutrients in niche partitioning of?phytoplankton communities-A contrast between?the Amazon River Plume and the Changjiang?(Yangtze) River diluted water of the East China?Sea. Frontiers in Marine Science, 5. https://doi.org/10.3389/fmars.2018.00343 

  15. Gordon, H. R., Boynton, G. C., Balch, W. M., Groom,?S. B., Harbour, D. S., and Smyth, T. J., 2001.?Retrieval of coccolithophore calcite concentration?from SeaWiFS imagery. Geophysical Research?Letters, 28(8), 1587-1590. https://doi.org/10.1029/2000GL012025 

  16. Gouveia, N. A., Gherardi, D. F. M., Wagner, F. H., Paes,?E. T., Coles, V. J., and Aragao., L. E. O. C., 2019. The salinity structure of the Amazon River?Plume drives spatiotemporal variation of oceanic?primary productivity. Journal of Geophysical?Research: Biogeosciences, 124(1), 147-165. https://doi.org/10.1029/2018JG004665 

  17. Gregr, E. J., and Bodtker, K. M., 2007. Adaptive?classification of marine ecosystems: identifying?biologically meaningful regions in the marine?environment. Deep Sea Research Part I: Oceanographic Research Papers, 54(3), 385-402. https://doi.org/10.1016/j.dsr.2006.11.004 

  18. Guo, J., Wang, J., Xu, C., and Song, Y., 2022. Modeling?of spatial stratified heterogeneity. GIScience &?Remote Sensing, 59(1), 1660-1677. https://doi.org/10.1080/15481603.2022.2126375 

  19. Hong, G. H., Ahn, Y. H., Son, Y. B., Ryu, J. H., Kim, C.?J., Yang, D. B., Kim, Y. I., and Chung, C. S., 2011.?Particulate Organic Carbon (POC) Algorithms?for the southwestern part of the East Sea during?spring-summer period using MODIS Aqua. Korean?Journal of Remote Sensing, 27(2), 107-120. https://doi.org/10.7780/kjrs.2011.27.2.107 

  20. Hopkinson, B. M., Mitchell, B. G., Reynolds, R. A., Wang,?H., Selph, K. E., Measures, C. I. et al., 2007.?Iron limitation across chlorophyll gradients in the?southern Drake Passage: Phytoplankton responses?to iron addition and photosynthetic indicators of?iron stress. Limnology and Oceanography, 52(6),?2540-2554. https://doi.org/10.4319/lo.2007.52.6.2540 

  21. Jang, E., Kim, Y. J., Im, J., and Park, Y. G., 2021.?Improvement of SMAP sea surface salinity in?river-dominated oceans using machine learning?approaches. GIScience & Remote Sensing, 58(1),?138-160. https://doi.org/10.1080/15481603.2021.1872228 

  22. Kim, D. W., Park, Y. J., Jeong, J. Y., and Jo, Y. H., 2020. Estimation of hourly sea surface salinity?in the East China Sea using Geostationary Ocean?Color Imager measurements. Remote Sensing,?12, 5. https://doi.org/10.3390/rs12050755 

  23. Kim, H., Kim, J., and Paeng, D., 2015. Analysis of?surface sound channel by low salinity water and?its mid-frequency acoustic characteristics in the?East China Sea and the Gulf of Guinea. The?Journal of the Acoustical Society of Korea,?34(1), 1. https://doi.org/10.7776/ASK.2015.34.1.001 

  24. Kim, Y. S., Jang, C. J., and Son. Y., 2015. Interannual?variability of summer chlorophyll in the Southern?Ocean: ENSO effects. Ocean and Polar Research,?37(2), 149-159. https://doi.org/10.4217/OPR.2015.37.2.149 

  25. Longhurst, A. R., 2007. Chapter 1 - Toward an ecological?geography of the sea. Ecological geography of?the sea (2nd ed.), Elsevier, pp. 1-17. https://doi.org/10.1016/B978-0-12-455521-1.X5000-1 

  26. Pereira, M. P. S., Mendes, K. R., Justino, F., Couto, F., da?Silva, A. S., da Silva, D. F., and Malhado, A. C.?M., 2020. Brazilian dry forest (Caatinga) response?to multiple ENSO: The role of Atlantic and Pacific?Ocean. Science of the Total Environment, 705,?135717. https://doi.org/10.1016/j.scitotenv.2019.135717 

  27. Reygondeau, G., Cheung, W. W., Wabnitz, C. C.,?Lam, V. W., Frolicher, T., and Maury, O., 2020.?Climate change-induced emergence of novel?biogeochemical provinces. Frontiers in Marine?Science, 7, 657. https://doi.org/10.3389/fmars.2020.00657 

  28. Reygondeau, G., Longhurst, A., Martinez, E., Beaugrand,?G., Antoine, D., and Maury, O., 2013. Dynamic?biogeochemical provinces in the global ocean.?Global Biogeochemical Cycles, 27(4), 1046-1058.?https://doi.org/10.1002/gbc.20089 

  29. Ryan-Keogh, T. J., Thomalla, S. J., Chang, N., and?Moalusi, T., 2023. A new global oceanic multimodel net primary productivity data product.?Earth System Science Data Discussions, 2023,?1-34. https://doi.org/10.5194/essd-2023-244 

  30. Sayre, R. G., Wright, D. J., Breyer, S. P., Butler, K. A.,?Van Graafeiland, K., Costello, M. J. et al., 2017.?A three-dimensional mapping of the ocean based?on environmental data. Oceanography, 30(1),?90-103. https://www.jstor.org/stable/24897845 

  31. Sherman, K., 1986. Introduction to parts one and two:?Large marine ecosystems as tractable entities for?measurement and management. In Sherman, L.?M. Alexander (Eds.), Variability and Management?of Large Marine Ecosystems, Westview Press,?p. 319. 

  32. Sherman, K., 2005. 1 - The large marine ecosystem?approach for assessment and management of?ocean coastal waters. Large Marine Ecosystems,?13, 3-16. https://doi.org/10.1016/S1570-0461(05)80025-4 

  33. Smitha, A., Sankar, S., and Satheesan, K., 2023. Impact?of tropical Indian Ocean warming on the surface?phytoplankton biomass at two significant coastal?upwelling zones in the Arabian Sea. Dynamics?of Atmospheres and Oceans, 104, 101401. https://doi.org/10.1016/j.dynatmoce.2023.101401 

  34. Sonnewald, M., Dutkiewicz, S., Hill, C., and Forget,?G., 2020. Elucidating ecological complexity:?Unsupervised learning determines global marine?eco-provinces. Science Advances, 6(22), eaay4740.?https://doi.org/10.1126/sciadv.aay4740 

  35. Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N.,?Ferdana, Z. A., Finlayson, M. A. X. et al., 2007.?Marine ecoregions of the world: A bioregionalization?of coastal and shelf areas. BioScience, 57(7),?573-583. https://doi.org/10.1641/B570707 

  36. Stramski, D., Reynolds, R. A., Babin, M., Kaczmarek,?S., Lewis, M. R., Rottgers, R. et al., 2008.?Relationships between the surface concentration?of particulate organic carbon and optical properties?in the eastern South Pacific and eastern Atlantic?Oceans. Biogeosciences, 5(1), 171-201. https://doi.org/10.5194/bg-5-171-2008 

  37. Tagliabue, A., Barrier, N., Du Pontavice, H., Kwiatkowski,?L., Aumont, O., Bopp, L. et al., 2020. An iron?cycle cascade governs the response of equatorial?Pacific ecosystems to climate change. Global?Change Biology, 26(11), 6168-6179. https://doi.org/10.1111/gcb.15316 

  38. Tagliabue, A., Kwiatkowski, L., Bopp, L., Butenschon,?M., Cheung, W., Lengaigne, M., and Vialard, J.,?2021. Persistent uncertainties in ocean net primary?production climate change projections at regional?scales raise challenges for assessing impacts on?ecosystem services. Frontiers in Climate, 3. https://doi.org/10.3389/fclim.2021.738224 

  39. Thakur, K. K., Vanderstichel, R., Barrell, J., Stryhn,?H., Patanasatienkul, T., and Revie, C. W., 2018.?Comparison of remotely-sensed sea surface?temperature and salinity products with in situ?measurements from British Columbia, Canada.?Frontiers in Marine Science, 5, 121. https://doi.org/10.3389/fmars.2018.00121 

  40. Thompson, K., Miller, K., Johnston, P., and Santillo, D., 2017. Storage of carbon by marine ecosystems?and their contribution to climate change mitigation?(Report No. 03-2017). Greenpeace Research?Laboratories. https://www.greenpeace.to/greenpeace/wp-content/uploads/2017/05/Carbon-in-Marine-Ecosystems-Technical-Report-March-2017-GRL-TRR-03-2017.pdf 

  41. Vichi, M., Allen, J. I., Masina, S., and Hardman-Mountford, N. J., 2011. The emergence of ocean?biogeochemical provinces: A quantitative assessment?and a diagnostic for model evaluation. Global?Biogeochemical Cycles, 25(2). https://doi.org/10.1029/2010GB003867 

  42. Yin, S., Wang, J., and Zeng, H., 2023. A bibliometric?study on carbon cycling in vegetated blue carbon?ecosystems. Environmental Science and Pollution?Research, 1-18. https://doi.org/10.1007/s11356-023-27816-2 

  43. Yoon, S. T., 2022. Responses of the Ross Sea to the?climate change: Importance of observations in the?Ross Sea, Antarctica. Ocean and Polar Research,?44(1), 69-82. https://doi.org/10.4217/OPR.2022004 

  44. Westberry, T. K., Silsbe, G. M., and Behrenfeld, M. J., 2023. Gross and net primary production in the?global ocean: An ocean color remote sensing?perspective. Earth-Science Reviews, 104322.?https://doi.org/10.1016/j.earscirev.2023.104322 

  45. Westberry, T., Behrenfeld, M. J., Siegel, D. A., and Boss,?E., 2008. Carbon-based primary productivity?modeling with vertically resolved photoacclimation.?Global Biogeochemical Cycles, 22(2). https://doi.org/10.1029/2007GB003078 

  46. Zhang, Y., Hepner, G. F., and Dennison, P. E., 2012.?Delineation of phenoregions in geographically?diverse regions using k-means++ clustering: A?case study in the Upper Colorado River Basin.?GIScience & Remote Sensing, 49(2), 163-181.?https://doi.org/10.2747/1548-1603.49.2.163 

  47. Zhang, Y., and West, N. E., 2021. Implement and analysis?on current ecosystem classification in Western?Utah of the United States & Yukon Territory of?Canada. Grasses and Grassland-New Perspectives.?http://dx.doi.org/10.5772/intechopen.100557 

  48. Zhao, Q., Basher, Z., and Costello, M. J., 2020. Mapping?near surface global marine ecosystems through?cluster analysis of environmental data. Ecological?Research, 35(2), 327-342. https://doi.org/10.1111/1440-1703.12060 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로