$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 치어기 대서양참다랑어(Thunnus thynnus) 사료 내 아마인유의 이용성 평가
Evaluation of Dietary Supplementation with Linseed Oil for Juvenile Atlantic Bluefin Tuna Thunnus thynnus 원문보기

한국수산과학회지 = Korean journal of fisheries and aquatic sciences, v.56 no.5, 2023년, pp.741 - 748  

지승철 (국립수산과학원 아열대수산연구소) ,  임종호 (제주대학교 해양생명과학과) ,  신재형 (제주대학교 해양생명과학과) ,  이경준 (제주대학교 해양과학연구소)

Abstract AI-Helper 아이콘AI-Helper

This study evaluated the supplemental effects of linseed oil (LO) as a substitute for docosahexaenoic acid oil (DHAO) in the diet of juvenile Atlantic bluefin tuna. A control diet (DHA) was formulated to contain 65% enzyme-treated fish meal and 3% of DHAO. A LO diet was formulated to contain 1% LO r...

주제어

표/그림 (4)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • , 2020), 다양한 지질원의 첨가에 따른 소화율 연구는 미흡한 실정이다. 따라서, 본 연구는 참다랑어 사료 내 DHA 농축유의 33% (사료 내 1%)를 LO로 대체함에 따른 성장, 어체 지방산 분석, 소화율, 소화효소활성에 미치는 영향을 조사하고자 수행되었다.
본문요약 정보가 도움이 되었나요?

참고문헌 (41)

  1. Aguila J, Cuzon G, Pascual C, Domingues PM, Gaxiola G, Sanchez A and Rosas C. 2007. The effects of fish hydrolysate?(CPSP) level on Octopus maya (Voss and Solis) diet: digestive enzyme activity, blood metabolites, and energy balance.?Aquaculture 273, 641-655. https://doi.org/10.1016/j.aquaculture.2007.07.010. 

  2. AOAC (Association of Official Analytical Chemists). 2005.?Official Methods of Analysis. Arlington, VA, U.S.A., 1298.?https://doi.org/10.1002/0471740039.vec0284. 

  3. Benetti D, Partridge GJ and Buentello A. 2016. Chapter 8.?Tuna farming in Japan and Mexico In: Advances in Tuna?Aquaculture. Zohar Y, ed. Academic Press, Cambrige, MA,?U.S.A., 189-215. 

  4. Betancor MB, Ortega A, Gandara FDL, Tocher DR and Mourente G. 2017. Lipid metabolism-related gene expression pattern of Atlantic bluefin tuna (Thunnus thynnus L.) larvae fed?on live prey. Fish Physiol Biochem 43, 493-516. https://doi.org/10.1007/s10695-016-0305-4. 

  5. Betancor MB, Ortega A, de la Gandara F, Tocher DR and?Mourente G. 2019. Performance, feed utilization, and hepatic metabolic response of weaned juvenile Atlantic bluefin tuna (Thunnus thynnus L.): Effects of dietary lipid level?and source. Fish Physiol Biochem 45, 697-718. https://doi.org/10.1007/s10695-018-0587-9. 

  6. Bell JG, Tocher DR, Henderson RJ, Dick JD and Crampton?VO. 2003. Altered fatty acid compositions in Atlantic salmon (Salmo salar) fed diets containing linseed and rapeseed?oils can be partially restored by a subsequent fish oil finishing diet. J Nutr 133, 2793-2801. https://doi.org/10.1093/jn/133.9.2793. 

  7. Biswas A, Nakajima M, Nakao T, Takaoka O and Takii K. 2016.?Determination of suitable protein and lipid levels in diets for?Pacific bluefin tuna, Thunnus orientalis at grow-out stage.?Aquacult Sci 64, 281-288. https://doi.org/10.11233/aquaculturesci.64.281. 

  8. Biswas BK, Ji SC, Biswas AK, Seoka M, Kim YS and Takii?K. 2009. A suitable dietary sugar level for juvenile Pacific?bluefin tuna, Thunnus orientalis. Aquacult Sci 57, 99-108.?https://doi.org/10.11233/aquaculturesci.57.99. 

  9. Block BA, Teo SLH, Walli A, Boustany A, Micheael JW,?Stokesbury, Farwell CJ, Weng KC, Dewar H and Williams?TD. 2005. Electronic tagging and population structure of?Atlantic bluefin tuna. Nature 434, 111-1127. https://doi.org/10.1038/nature03463. 

  10. Borlongan IG. 1990. Studies on the digestive lipases of milkfish, Chanos chanos. Aquaculture 89, 315-325. https://doi.org/10.1016/0044-8486(90)90135-a. 

  11. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.?https://doi.org/10.1006/abio.1976.9999. 

  12. Caballero MJ, Obach A, Rosenlund G, Montero D, Gisvold?M and Lzquierdo MS. 2002. Impact of different dietary?lipid sources on growth, lipid digestibility, tissue fatty acid?composition and histology of rainbow trout, Oncorhynchus?mykiss. Aquaculture 214, 253-271. https://doi.org/10.1016/S0044-8486(01)00852-3. 

  13. Carter CG, Bransden MP, Van Barneveld RJ and Clarke SM. 1999. Alternative methods for nutrition research on the?southern bluefin tuna, Thunnus maccoyii: In vitro digestibility. Aquaculture 179, 57-70. https://doi.org/10.1016/s0044-8486(99)00152-0. 

  14. Divakaran S, Obaldo, LG and Forster IP. 2002. Note on the?methods for determination of chromic oxide in shrimp feeds.?J Agric Food Chem 50, 464-467. https://doi.org/10.1021/jf011112s. 

  15. Erlanger B, Kokowsky N and Cohen W. 1961. The preparation and properties of two new chromogenic substrates of?trypsin. Arch Biochem Biophys 95, 271-278. https://doi.org/10.1016/0003-9861(61)90145-x. 

  16. Folch J, Lees M and Sloane-Stanley GH. 1957. A simple method?for the isolation and purification of total lipids from animal?tissues. J Biol Chem 226, 497-509. 

  17. Galindo A, Garrido D, Monroig O, Perez JA, Betancor MB,?Acosta NG, Kabeya N, Marrero MA, Bolanos A and Rodriguez C. 2021. Polyunsaturated fatty acid metabolism in three?fish species with different trophic level. Aquaculture 530, 735761. https://doi.org/10.1016/j.aquaculture.2020.735761. 

  18. Hsu KC. 2010. Purification of antioxidative peptides prepared?from enzymatic hydrolysates of tuna dark muscle by-product. Food Chem 122, 42-48. https://doi.org/10.1016/j.foodchem.2010.02.013. 

  19. Ishibashi YT, Honryo K, Saida A, Hagiwara S, Miyashita Y,?Sawada TO and Murata M. 2009. Artificial lighting prevents high night-time mortality of juvenile Pacific bluefin?tuna, Thunnus orientalis, caused by poor scotopic vision.?Aquaculture 293, 157-163. https://doi.org/10.1016/j.aquaculture.2009.04.029. 

  20. Ishihara K and Saito H. 1996. The Docosahexaenoic acid content of the lipid of juvenile bluefin tuna Thunnus thynnus?caught in the sea off Japanese coase. Fish Sci 62, 840-841.?https://doi.org/10.2331/fishsci.62.840. 

  21. ISSF (International seafood sustainability foundation). 2023.?ISSF Report: 85% of Global Tuna Catch Comes from?Stocks at Healthy Levels; 11% Requires Stronger Management. Retrieved from https://www.iss-foundation.org/blog/2023/03/08/issf-report-85-of-global-tuna-catchcomes-from-stocks-at-healthy-levels-11-requires-strongermanagement/ on Aug 10, 2023. 

  22. Ji SC, Shin JH, Kim DJ, Yang SG, Jeong MH, Kim JH and?Lee KJ. 2019. Dietary utilization of enzyme treated fish?meal as the main protein source for juvenile atlantic bluefin tuna Thunnus thynnus. JFMSE 31, 741-755. https://doi.org/10.13000/JFMSE.2019.6.31.3.741. 

  23. Ji SC, Shin JH, Kim DJ, Yang SG, Jeong MH, Kim JH and?Lee KJ. 2019. Effects of dietary utilization enzyme treated?fish meal for juvenile Pacific bluefin tuna Thunnus orientalis. JFMSE 29, 1365-1372. https://doi.org/10.13000/JFMSE.2017.29.5.1365. 

  24. Ji SC, Shin JH, Kim DJ, Jeong MH, Kim JH and Lee KJ. 2020.?Utilization of enzyme-treated fish meal and DHA oil in diets for juvenile Atlantic bluefin tuna Thunnus thynnus. Korean J Fish Aquat Sci 53, 181-190. https://doi.org/10.5657/KFAS.2020.0181 

  25. Ji SC, Takaoka O, Biswas AK, Seoka M, Ozaki K, Kohbara J and?Takii K. 2008. Dietary utility of enzyme-treated fish meal for?juvenile Pacific bluefin tuna Thunnus orientalis. Fish Sci 74,?54-61. https://doi.org/10.1111/j.1444-2906.2007.01475.x. 

  26. Kim MG, Lee CR, Shin JH, Lee BJ, Kim KW and Lee KJ. 2019.?Effects of fish meal replacement in extruded pellet diet on?growth feed utilization and digestibility in olive flounder?Paralichthys olivaceus. Korean J Fish Aquat Sci 52, 149-158. https://doi.org/10.5657/KFAS.2019.0149. 

  27. Lee SM. 2002. Apparent digestibility coefficients of various?feed ingredients for juvenile and grower rockfish (Sebastes?schlegeli). Aquaculture 207, 79-95. https://doi.org/10.1016/s0044-8486(01)00751-7. 

  28. Li Y, Ai Q, Mai K, Xu W, Deng J and Cheng Z. 2014. Comparison of high-protein soybean meal and commercial soybean?meal partly replacing fish meal on the activities of digestive?enzymes and aminotransferases in juvenile Japanese seabass, Lateolabrax japonicus (Cuvier, 1828). Aquac Res 45,?1051-1060. https://doi.org/10.1111/are.12042. 

  29. Li FJ, Lin X, Lin SM, Chen WY and Guan Y. 2016. Effects?of dietary fish oil substitution with linseed oil on growth,?muscle fatty acid and metabolism of tilapia (Oreochromis?niloticus). Aquac Nutr 22, 499-508. https://doi.org/10.1111/anu.12270. 

  30. Metcalfe LD and Schmitz AA. 1961. The rapid preparation?of fatty acid esters for gas chromatographic analysis. Anal?Chem 33, 363-364. https://doi.org/10.1021/ac60171a016. 

  31. NRC (National Research Council). 2011. Nutrient Requirements of Fish and Shrimp. The National Academies Press,?Washington D.C., U.S.A. https://doi.org/10.17226/13039. 

  32. Popa VM, Gruia A, Raba DN, Dumbrava D, Moldovan C, Bordean D and Mateescu. 2012. Fatty acids composition and?oil characteristics of linseed (Linum Usitatissimum L.) from?Romania. J Agroaliment Processes Technol 18, 136-140. 

  33. Refstie S, Olli JJ and Standal H. 2004. Feed intake, growth, and?protein utilization by post-smolt Atlantic salmon (Salmo?salar) in response to graded levels of fish protein hydrolysate in the diet. Aquaculture 239, 331-349. https://doi.org/10.1016/j.aquaculture.2004.06.015. 

  34. Sargent JR and Tacon AGJ. 1999. Development of farmed fish:?A nutritionally necessary alternative to meat. Proc Nutr Soc,?377-383. https://doi.org/10.1017/S0029665199001366. 

  35. Sawada T, Takahashi K and Hatano M. 1993. Molecular species?analysis of fish oil triglyceride by light scattering mass detector equipped liquid chromatograph II, triglyceride composition of tuna and bonito orbital fats. Nippon Susan Gakkaishi 56, 285-290. https://doi.org/10.2331/suisan.59.285. 

  36. Shin JH, Ji SC and Lee KJ. 2020. In vivo and in vitro digestibility of enzyme-treated fish meal for juvenile Atlantic bluefin?tuna thunnus thynnus. Korean J Fish Aquat Sci 53, 423-431.?https://doi.org/10.5657/KFAS.2020.0423. 

  37. Seoka M, Kurata M, Tamagawa R, Biswas AK, Biswas BK,?Yong ASK, Kim YS, Ji SC, Takii K and Kumai H. 2008. Dietary supplementation of salmon roephospholipid enhances?the growth and survival of Pacific bluefin tuna Thunnus?orientalis larvae and juveniles. Aquaculture 275, 225-234.?https://doi.org/10.1016/j.aquaculture.2007.12.027. 

  38. Takii K, Seoka M, Izumi M, Hosokawa H, Shimeno S, Ukawa?M and Kohbara J. 2007a. Apparent digestibility coefficient?and energy partition of juvenile Pacific bluefin tuna, Thunnus orientalis and chub mackerel, Scomber japonicus.?Aquacult Sci 55, 571-577. https://doi.org/10.11233/aquaculturesci1953.55.571. 

  39. Takii K, Seoka M, Ohara N, Nasu T, Oda S, Miyashita S, Ukawa M, Shimeno S and Hosokawa H. 2007b. Dietary utility of Chilean fish meal and pollack liver oil for juvenile?Pacific bluefin tuna. Aquacult Sci 55, 579-585. https://doi.org/10.11233/aquaculturesci1953.55.579. 

  40. Worthington CC. 1991. Worthington Enzyme Manual Related?Biochemical. Worthington Biochemical Corporation, Freehold Township, NJ, U.S.A. 

  41. Xie D, Chen C, Dong Y, You C, Wang S, Monroig O, Tocher D?and Li Y. 2021. Regulation of long-chain polyunsaturated?fatty acid biosynthesis in teleost fish. Prog Lipid Res 82, 101095. https://doi.org/10.1016/j.plipres.2021.101095. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로