$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

보령 갯벌의 인위적 영향 및 생물학적 요인에 따른 대형저서동물 군집 변화
Changes in Macrobenthic Community Depending on the Anthropogenic Impact and Biological Factors of Boryeong Tidal Flat, Korea 원문보기

바다 : 한국해양학회지 = The sea : the journal of the Korean society of oceanography, v.28 no.4, 2023년, pp.143 - 157  

전승렬 (국립수산과학원 갯벌연구센터) ,  옹기호 (제주대학교 해양생명과학과) ,  이지호 (국립수산과학원 갯벌연구센터) ,  정윤아 (국립수산과학원 갯벌연구센터) ,  구준호 (국립수산과학원 갯벌연구센터) ,  오광석 (해온부유생태연구소) ,  박종우 (국립수산과학원 갯벌연구센터)

초록
AI-Helper 아이콘AI-Helper

본 연구는 바지락과 쏙의 서식 구역이 대비되는 보령 주교 갯벌의 인위적인 환경 영향에 의한 저서동물 군집 특성을 확인하였다. 조사 기간 내 대형저서동물은 총 55종이 출현하였으며, 평균 서식밀도는 338 ind./m2, 생체량은 212.2 gWWt/m2이었다. 출현 종수는 상부(27종)에서 하부(37종)로 갈수록 증가하였고, 우점종은(상부: 둥근가시사자머리참갯지렁이, 중부: 고리버들갯지렁이, 하부: 바지락) 조위별로 다르게 나타났다. 집괴분석과 다차원척도법을 이용한 상위 10종의 저서동물 군집구조는 하부의 바지락 어장과 쏙 서식공 밀도가 높은 중부 정점 중심의 두 그룹으로 나뉘며, 특정 생물 종의 영향을 반영하였다. 쏙 서식 공간의 퇴적물 입도 조성은 변동 폭이 컸으나 연간 유지되었으며, 분급은 2.1 𝜑로 낮아져 같은 입자로 구성된 비율이 증가하였다. 특히, 중부는 인위적인 영향이 높음에도 고리버들갯지렁이가 우점하고, 쏙 서식공 밀도와의 연관성을 보여 이는 종간 상호작용에 기인하는 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

This study confirmed the characteristics of macrobenthic community due to anthropogenic environmental changes in the Boryeong Jugyo tidal flat, where the habitat of manila clam (Ruditapes philippinarum) and mud shrimp (Upogebia major) is separated. The total number of occurring species was 55 during...

주제어

표/그림 (11)

참고문헌 (61)

  1. 충청남도, 2019. 어장 환경개선 지원사업. 바지락 어장 경운 작업일지. 

  2. 충청씨그랜트, 2017. 충청씨그랜트사업 최종보고서 제2권. 2014-0407, 403-451. 

  3. Arias, A., S.A. Woodin and H. Paxton, 2023. An Introduction to Diopatra, the amazing ecosystem engineering polychaete.?Biol., 12(7): 1027. 

  4. Bilyard, G.R., 1987. The value of benthic infauna in marine pollution monitoring studies. Mar. Pollut. Bull., 18(11):?581-585. 

  5. Borja, A., J. Franco and V. Perez, 2000. A Marine Biotic Index to establish the ecological quality of soft-bottom benthos?within European estuarine and coastal environments. Mar. Pollut. Bull., 40(12): 1100-1114. 

  6. Bray, J.R. and J.T. Curtis, 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr., 27:?325-349. 

  7. Can, E., T. Kevrekidis and B. Cihangir, 2009. Factors affecting monthly variation in population density of the capitellid?polychaete Heteromastus filiformis in a hyperhaline Mediterranean coastal lagoon. Trans. Wat. Bull., 3: 10-23. 

  8. Choi, J.W. and J.Y. Seo, 2007. Application of biotic indices to assess the health condition of benthic community in Masan?Bay, Korea. Ocean Polar Res., 29(4): 339-348. 

  9. Cigarria, J. and J.M. Fernandez, 2000. Management of Manila clam beds I. Influence of seed size, type of substratum and?pretection on initial mortality. Aquaculture, 182: 173-182. 

  10. D'Andrea, A.F. and T.H. DeWitt, 2009. Geochemical ecosystem engineering by the mud shrimp Upogebia pugettensis?(Crustacea: Thalassinidae) in Yaquina Bay, Oregon: Density-dependent effercts on organic matter remineralization and?nutrient cycling. Limnol. Oceanogr., 54(6): 1911-1932. 

  11. Dauer, D.M., 1984. High resilience to disturbance of an estuarine polychaeta community. Bull. Mar. Sci., 34: 170-174. 

  12. Day, J.W.Jr., C.A.S. Hall, W.M. Kemp and A. Yanez-Arancibia, 1989. Estuarine Ecology, John Wiley, New York. 588 pp. 

  13. Folk, R.L., 1954. The distinction between grain size and mineral composition in sedimentary-rock nomenclature. J. Geol.,?62(4): 344-359. 

  14. Gray, J.S., R.S. Wu and Y.Y. Or, 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Mar.?Ecol. Progr. Ser., 238: 249-279. 

  15. Hong, J.S., 2013. Biology of the mud shrimp Upogebia major (de Haan, 1841), with particular reference to pest management?for shrimp control in Manila clam bed in the west coast of Korea. Ocean Polar Res., 35(4): 323-349. 

  16. Hou, W., X. Wei, W. Bai, Y. Zheng, Q. Tan, Z. Liu, B. Rong and C. Ge, 2023. Effects of Manila clam Ruditapes?philippinarum culture on the macrobenthic community. Front. Mar. Sci., 10: 1-12. 

  17. Howard, J.D. and R.W. Frey, 1975. Estuaries of the Georgia Coast, USA: sedimentology and biology. II. Regional?animal-sediment characteristics of Georgia estuaries. Senckenb. Mar., 7: 33-103. 

  18. Hwang, D.W., G. Kim and H.S. Yang, 2008. Active exchange of water and nutrients between seawater and shallow pore?water in intertidal sandflats. Ocean Sci. J., 43: 223-232. 

  19. Jang, S.Y. and H.C. Shin, 2016. Differences in the community structures of macrobenthic Polychaetes from farming grounds?and natural habitats in Gamak Bay. J. Korean Soc. Mar. Environ. Energy, 19(4): 297-309. 

  20. Jeon, S.R., G. Ong, J.H. Koo, J.W. Park, Y.C. Kim, H.D. Jeung and J.K. Cho, 2022. Comparison of the seawater-sediment?environment and habitat properties with variable mud shrimp Upogebia major burrow hole density and its influence on?recruitment and settlement in the Cheonsu Bay tidal flats. Korean J. Fish. Aquat. Sci., 55(2): 171-182. 

  21. Jung, R.H., D.W. Hwang, W.G. Kim, B.S. Koh, J.H. Song and H.G. Choi, 2010. Temporal variations in the sedimentation?rate and benthic environment of intertidal surface sediments around Byeonsan peninsula, Korea. Korean J. Fish. Aquat.?Sci., 43(6): 723-734. 

  22. Jung, R.H., I.S. Seo, W.C. Lee, H.C. Kim, S.R. Park, J.B. Kim, C.W. Oh and B.M. Choi, 2014. Community structure and?health assessment of macrobenthic assemblages at spring and summer in Cheonsu Bay, west coast of Korea. J. Korean?Soc. Oceanogr., The Sea, 19(4): 272-286. 

  23. Kanaya, G., T. Suzuki and E. Kikuchi, 2011. Spatiotemporal variations in macrozoobenthic assemblage structures in a?river-affected lagoon (Idoura Lagoon, Sendai Bay, Japan): Influences of freshwater inflow. Estuar. Coast. Shelf Sci., 92:?169-179. 

  24. Kinoshita, K., 2002. Burrow structure of the mud shrimp Upogebia major (Decapoda; Thalassinidea; Upogebiidae). J.?Crustac. Biol., 22(2): 474-480. 

  25. Korea Marine Environment Management Corporation (KOEM), 2015. National survey on marine ecosystem (Tidal flat?ecosystem). 348 pp. 

  26. Korea Marine Environment Management Corporation (KOEM), 2017. National survey on marine ecosystem (Tidal flat?ecosystem). 587 pp. 

  27. Korea Marine Environment Management Corporation (KOEM), 2019. National survey on marine ecosystem (Tidal flat?ecosystem). 448 pp. 

  28. Lee, J.H. and J. Ryu, 2018. Short-term variation in spatial distribution of the macrozoobenthic community near the Geum?river estuary, Korea. J. Korean Soc. Mar. Environ. Energy, 21(4): 368-380. 

  29. Marine Biodiversity Institute of Korea (MABIK), 2021. National list of marine species (Marine invertebrates). MABIK, 523 pp. 

  30. Ministry for Food, Agriculture, Forestry and Fisheries (MFAFF), 2012. A survey on current status of tidal flat fisheries in oil?spilled areas. 742 pp. 

  31. Ministry of Land, Transport and Maritime Affairs (MLTM), 2011. Basic survey of coastal wetland (Detailed investigation). 344 pp. 

  32. Ministry of Oceans and Fisheries (MOF), 2013. A study on the investigation of sand erosion prevention method and habitat?restoration of useful species in tidal flat. Sejong, Korea, 219 pp. 

  33. Ministry of Oceans and Fisheries (MOF), 2018. Marine environment standard methods. MOF, Sejong, Korea, 644 pp. 

  34. Muus, B.J., 1967. The fauna of Danish estuaries and lagoons: Distribution and ecology of dominating species in the shallow?reaches of the mesohaline zone. Meddelelser fra Danmarks Fiskeri-og Havundersogelser (Ny Serie) 5: 1-316. 

  35. National Institute of Fisheries Science (NIFS), 2017. Development of the best management strategies for Manila clam?aquaculture in tidal flat. 2017 Report of National Institute of Fisheries Science, 99 pp. 

  36. Nordberg, K., I.P. Asteman, T.M. Gallagher and A. Robijn, 2017. Recent oxygen depletion and benthic faunal change in?shallow areas of Sannas Fjord, Swedish west coast. J. Sea Res., 127: 46-62. 

  37. Oeschger, R. and B. Vismann, 1994. Sulphide tolerance in Heteromastus filiformis (Polychaeta): Mitochondrial adaptations.?Ophelia 40: 147-158. 

  38. Park, H.S., H.S. Lim and J.S. Hong, 2000. Spatio- and temporal patterns of benthic environment and macrobenthos?community on subtidal soft-bottom in Chonsu Bay, Korea. Korean J. Fish. Aquat. Sci., 33(3): 262-271. 

  39. Park, K.J., S. Heo, J.H. Lee, H.N. Oh and S.O. Ryu, 2018. Characteristics of seed occurrence and inhabited environments of?Manila clam, Ruditapes philippinarum beds in the west coast of Korea. Korean J. Malacol., 34(1): 17-29. 

  40. Pearson, T.H. and R. Rosenberg, 1978. Macrobenthic succession in relation to organic enrichment and pollution of the?marine environment. Oceanogr. Mar. Biol. Ann. Rev., 16: 229-311. 

  41. Pillay, D. and G.M. Branch, 2011. Bioengineering effects of burrowing thalassinidean shrimps on marine soft-bottom?ecosystems. Oceanogr. Mar. Biol. Ann. Rev., 49: 137-192. 

  42. Posey, M.H., B.R. Dumbauld and D.A. Armstrong, 1991. Effects of a burrowing mud shrimp, Upogebia pugettensis (Dana),?on abundances of macro-infauna. J. Exp. Mar. Biol. Ecol., 148(2): 283-294. 

  43. Ritter, C., P.A. Montagna and S. Applebaum, 2005. Short-term succession dynamics of macrobenthos in a salinity-stressed?estuary. J. Exp. Mar. Biol. Ecol., 323: 57-69. 

  44. Rosenberg, R. and H.C. Nilsson, 2005. Deterioration of soft-bottom benthos along the Swedish Skagerrak coast. J. Sea Res.,?54(3): 231-242. 

  45. Ryu, S.O., J.Y. Kim, J.H. Chang, Y.G. Cho, S.E. Shin and G.Y.N. Eun, 2006. A study on the transport mechanism of tidal?beach sediments I. Deukryang Bay, south coast of Korea. J. Korean Earth Sci. Soc., 27: 221-235. 

  46. Seo, I.S. and J.S. Hong, 2004. The community ecology of benthic macrofauna on the Cheokjeon tidal flat, Incheon Korea. 2.?Spatio-temporal distribution patterns of the major dominant species. J. Korean Soc. Oceanogr. The Sea, 9(3): 93-105. 

  47. Shaffer, P.L., 1983. Population Ecology of Heteromastus filiformis (Polychaeta: Capitellidae). Neth. J. Sea Res., 17:?106-125. 

  48. Shannon, C.E. and W. Weaver, 1949. The mathematical theory of communication, University of Illinois Press, Urbana, pp. 125. 

  49. Simpson, E.H., 1949. Measurement of diversity. Nature, 163: 688. 

  50. Sturdivant, S.K., R.D. Seitz and R.J. Diaz, 2013. Effects of seasonal hypoxia on macrobenthic production and function in the?Rappahannock River, Virginia, USA. Mar. Ecol. Prog. Ser., 490: 53-68. 

  51. Sumida, P.Y.G., A.Z. Guth, C.O. Quintana and M.S. Pires-Vanin, 2020. Distribution and sediment selection by the mud?shrimp Upogebia noronhensis (Crustacea: Thalassinidea) and the potential effects on the associated macroinfaunal?community. J. Mar. Sci. Eng., 8(12): 1032. 

  52. Tamaki, A., 1985. Inhibition of larval recruitment of Armandia sp. (Polychaeta: Opheliidae) by established adults of?Pseudopolydora paucibranchiata (Okuda) (Polychaeta: Spionidae) on an intertidal sand flat. J. Exp. Mar. Biol. Ecol., 87,?67-82 

  53. Tezuka, N., M. Kanematsu, K. Asami, K. Sakiyama, M. Hamaguchi and H. Usuki, 2013. Effect of salinity and substrate?grain size on larval settlement of the Asari clam (Manila clam, Ruditapes philippinarum). J. Exp. Mar. Biol. Ecol., 439:?108-112. 

  54. Thompson, D.S., 1995. Substrate additive studies for the development of hardshell clam habitat in waters of Puget Sound in?Washington State: An analysis of effects on recruitment, growth, and survival of the Manila clam, Tapes philippinarum,?and on the species diversity and abundance of existing benthic organisms. Estuaries, 18: 91-107. 

  55. Van Colen, C., F. Montserrat, M. Vincx, P.M.J. Herman, T. Ysebaert and S. Degraer, 2008. Macrobenthic recovery from?hypoxia in an estuarine tidal mudflat. Mar. Ecol. Prog. Ser., 372: 31-42. 

  56. Wildsmith, M.D., T.H. Rose, I.C. Potter, R.M. Warwick, K.R. Clarke and F.J. Valesini, 2009. Changes in the benthic?macroinvertbrate fauna of a large macrotidal estuary following extreme modifications aimed at reducing eutrophication.?Mar. Pollut. Bull., 58(9): 1250-1262. 

  57. Wotton, R.S. and B. Malmqvist, 2001. Feces in aquatic ecosystems: feeding animals transform organic matter into fecal?pellets, which sink or are transported horizontally by currents; these fluxes relocate organic matter in aquatic ecosystems.?Bioscience, 51(7): 537-544. 

  58. Yoon, S.P., J.H. Song., Y.S. Choi, K.J. Park, S.O. Chung and H.K. Han, 2014. The impact of sand addition to an intertidal?area for the development of the Manila clam, Ruditapes philippinarum habitat on benthic community structure (the case?of Ojjeom tidal flat in Gonam-myeon, Taean-gun). Korean J. Malacol., 30(3): 259-271. 

  59. Yoon, S.P., R.H. Jung, Y.J. Kim, S.G. Kim, M.K. Choi, W.C. Lee, H.T. Oh and S.J. Hong, 2009. Macrobenthic community?structure along the environmental gradients of Ulsan Bay, Korea. J. Korean Soc. Oceanogr., The Sea, 14(2): 102-117. 

  60. Ysebaert, T. and P.M.J. Herman, 2002. Spatial and temporal variation in benthic macrofauna and relationships with?environmental variables in an estuarine, intertidal soft-sediment environment. Mar. Ecol. Porg. Ser., 244: 105-124. 

  61. Zibrowius, H., 1991. Ongoing modification of the Mediterranean marine fauna and flora by the establishment of exotic?species. Mesogee, 51: 83-107. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로