$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

결함허용 양자 컴퓨팅을 위한 양자 오류 복호기 연구 동향
Research Trends in Quantum Error Decoders for Fault-Tolerant Quantum Computing 원문보기

전자통신동향분석 = Electronics and telecommunications trends, v.38 no.5, 2023년, pp.34 - 50  

조은영 (클라우드기반SW연구실) ,  온진호 (클라우드기반SW연구실) ,  김재열 (클라우드기반SW연구실) ,  차규일 (클라우드기반SW연구실)

Abstract AI-Helper 아이콘AI-Helper

Quantum error correction is a key technology for achieving fault-tolerant quantum computation. Finding the best decoding solution to a single error syndrome pattern counteracting multiple errors is an NP-hard problem. Consequently, error decoding is one of the most expensive processes to protect the...

주제어

표/그림 (10)

참고문헌 (56)

  1. 이종현 외, "양자 오류 정정 부호와 서피스 부호," 전자공학회지,?제46권 제9호, 2019, pp. 738-745. 

  2. 황용수 외, "결함허용 양자컴퓨팅 시스템 기술 연구개발 동향,"?전자통신동향분석, 제37권 제2호, 2022, pp. 1-10. 

  3. P. Das et al., "A scalable decoder micro-architecture?for fault-tolerant quantum computing," arXiv preprint,?CoRR, 2020, arXiv: 2001.06598. 

  4. D. Poulin, "Optimal and efficient decoding of concatenated quantum block codes," Phys. Rev. A, vol. 74,?no. 5, 2006, article no. 052333. 

  5. K. Meinerz et al., "Scalable neural decoder for topological surface codes," Phys. Rev. Lett., vol. 128, 2021,?article no. 080505. 

  6. R.E. Tarjan, "Efficiency of a good but not linear set?union algorithm," J. ACM, vol. 22, no. 2, 1975, pp. 215-225. 

  7. J.W. Harrington, "Analysis of quantum error-correcting?codes: Symplectic lattice codes and toric codes," Ph.D.?Thesis, California Institute of Technology, 2004. 

  8. N. Delfosse and N.H. Nickerson, "Almost-linear time?decoding algorithm for topological codes," Quantum,?vol. 5, 2021. 

  9. G. Duclos-Cianci and D. Poulin, "Fast decoders for?topological quantum codes," Phys. Rev. Lett. vol. 104,?2010, article no. 050504. 

  10. A.G. Fowler, "Minimum weight perfect matching of?fault-tolerant topological quantum error correction in?average O(1) parallel time," Quantum Info. Comput.,?vol. 15, 2015, pp. 145-158. 

  11. O. Higgott, "PyMatching: A python package for?decoding quantum codes with minimum-weight perfect?matching," ACM Trans. Quantum Comput., vol. 3, no. 3,?2022, pp. 1-16. 

  12. O. Higgott et al., "Sparse blossom: Correcting a million?errors per core second with minimum-weight matching,"?arXiv preprint, CoRR, 2023, arXiv: 2303.15933. 

  13. Y. Yuan et al., "A modified MWPM decoding algorithm?for quantum surface codes over depolarizing channels,"?arXiv preprint, CoRR, 2022, arXiv: 2202.11239. 

  14. N. Delfosse, "Hierarchical decoding to reduce hardware?requirements for quantum computing," arXiv preprint,?CoRR, 2020, arXiv: 2001.11427. 

  15. H. Anwar et al., "Fast decoders for qudit topological?codes," New J. Phys., vol. 16, no. 6, 2014. 

  16. S. Bravyi et al., "Quantum self-correction in the 3d?cubic code mode," Phys. Rev. Lett., vol. 111, no. 20,?2013. 

  17. G. Duclos-cianci et al., "Fault-tolerant renormalization?group decoder for abelian topological codes," arXiv?preprint, CoRR, 2013, arXiv: 1304.6100. 

  18. S. Varsamopoulos, "Neural network based decoders?for the surface code," Ph.D. Thesis, Delft University of?Technology, 2019. 

  19. A.J. Ferris et al., "Tensor networks and quantum error?correction," Phys. Rev. Lett., vol. 113, 2014, article no.?030501. 

  20. A.J. Ferris and D. Poulin, "Branching MERA codes: A?natural extension of classical and quantum polar codes,"?in Proc. IEEE Int. Symp. Inf. Theory, (Honolulu, HI,?USA), June 2014, pp. 1081-1085. 

  21. C.T. Chubb, "General tensor network decoding of?2D Pauli codes," arXiv preprint, CoRR, 2021, arXiv:?2101.04125. 

  22. S. Varsamopoulos et al., "Decoding small surface codes?with feedforward neural networks," Quantum Sci.?Technol., vol. 3, 2017, article no. 015004. 

  23. G. Torlai et al., "Neural decoder for topological codes,"?Phys. Rev. Lett., vol. 119, 2017, article no. 030501. 

  24. S. Krastanov et al., "Deep neural network probabilistic?decoder for stabilizer codes," Sci. Rep., vol. 7, 2017,?article no. 11003. 

  25. C. Chamberland et al., "Deep neural decoders for?near term fault-tolerant experiments," Quantum Sci.?Technol., vol. 3, no. 4, 2018, article no. 044002. 

  26. P. Baireuther et al., "Neural network decoder for?topological color codes with circuit level noise," New J.?Phys., vol. 21, 2019, article no. 013003. 

  27. Y.H. Liu et al., "Neural belief-propagation decoders for?quantum error-correcting codes," Phys. Rev. Lett., vol.?122, 2019, article no. 200501. 

  28. T. Wagner et al., "Symmetries for a high-level neural?decoder on the toric code," Phys. Rev. A, vol. 102,?2020, article no. 042411. 

  29. X. Ni, "Neural network decoders for large-distance 2D?toric codes," Quantum, vol. 4, 2020. 

  30. S. Varona et al., "Determination of the semion code?threshold using neural decoders," Phys. Rev. A, vol.?102, 2020, article no. 032411. 

  31. S. Gicev et al., "A scalable and fast articial neural?network syndrome decoder for surface codes," arXiv?preprint, CoRR, 2021, arXiv: 2110.05854. 

  32. H.P. Nautrup et al., "Optimizing quantum error correction?codes with reinforcement learning," Quantum, vol. 3,?2019. 

  33. T. Fosel et al., "Reinforcement learning with neural?networks for quantum feedback," Phys. Rev. X, vol. 8, 2018, article no. 031084. 

  34. P. Andreasson et al., "Quantum error correction for?the toric code using deep reinforcement learning,"?Quantum, vol. 3, 2019. 

  35. D. Fitzek, "Error correction for depolarising noise on a?quantum system using deep RL," Master's Thesis at?Chalmers University of Technology, 2019. 

  36. D. Fitzek et al., "Deep Q-learning decoder for depolarizing noise on the toric code," Phys. Rev. Research, vol.?2, 2020, article no. 023230. 

  37. L. Domingo Colomer et al., "Reinforcement learning for?optimal error correction of toric codes," Phys. Lett. A,?vol. 384, 2020, article no. 126353. 

  38. R. Sweke et al., "Reinforcement learning decoders for?fault-tolerant quantum computation," arXiv preprint,?CoRR, 2018, arXiv: 1810.07207. 

  39. T. Hugo et al., "A NEAT quantum error decoder,"?SciPost Phys., vol. 11, 2021. 

  40. D. Horgan et al., "Distributed prioritized experience?replay," arXiv preprint, CoRR, 2018, arXiv: 1803.00933. 

  41. K. He et al., "Deep residual learning for image?recognition," in Proc. IEEE CVPR 2016, (Las Vegas, NV,?USA), June 2016, pp. 770-778. 

  42. R.S. Sutton et al., "Policy gradient methods for?reinforcement learning with function approximation," in?Advances in Neural Information Processing Systems,?MIT Press, Cambridge, Massachusetts, USA, 2000, pp.?1057-1063. 

  43. J.R. Wootton et al., "High threshold error correction?for the surface code," Phys. Rev. Lett., vol. 109, 2012,?article no. 160503. 

  44. A. Hutter et al., "Efficient markov chain monte carlo?algorithm for the surface code," Phys. Rev. A, vol. 89,?2014, article no. 022326. 

  45. F. Battistel et al., "Real-time decoding for fault-tolerant?quantum computing: Progress, challenges and outlook,"?arXiv preprint, CoRR, 2023, arXiv: 2303.00054. 

  46. A. Holmes et al., "NISQ+: Boosting quantum computing?power by approximating quantum error correction,"?in Proc. ACM/IEEE ISCA 2020, (Valencia, Spain), May?2020, pp. 556-569. 

  47. Y. Ueno et al., "QECOOL: On-line quantum error?correction with a superconducting decoder for surface?code," in Proc. ACM/IEEE DAC 2021, (San Francisco,?CA, USA), Dec. 2021, pp. 451-456. 

  48. P. Das et al., "LILLIPUT: A lightweight low-latency?lookup-table based decoder for near-term quantum?error correction," in Proc. ASPLOS 2022, (Lausanne,?Switzerland), Feb. 2021, pp. 541-553. 

  49. R.W.J. Overwater et al., "Neural-network decoders?for quantum error correction using surface codes: A?space exploration of the hardware cost-performance?tradeoffs," IEEE Trans. Quantum Engineering, vol. 3,?2022, pp. 1-19. 

  50. P. Das et al., "AFS: Accurate, fast, and scalable error-decoding for fault-tolerant quantum computers," in?Proc. IEEE HPCA 2022, (Seoul, Republic of Korea), Apr.?2022, pp. 259-273. 

  51. Y. Ueno et al., "QULATIS: A quantum error correction?methodology toward lattice surgery," in Proc. IEEE?HPCA 2022, (Seoul, Republic of Korea), Apr. 2022, pp.?274-287. 

  52. Y. Ueno et al., "NEO-QEC: Neural network enhanced?online superconducting decoder for surface codes,"?arXiv preprint, CoRR, 2022, arXiv: 2208.05758. 

  53. G.S. Ravi et al., "Better than worst-case decoding for?quantum error correction," in Proc. ASPLOS 2023, vol.?2, (Vancouver, Canada), Mar. 2023, pp. 88-102. 

  54. N. Liyanage et al., "Scalable quantum error correction?for surface codes using FPGA," arXiv preprint, CoRR,?2023, arXiv: 2301.08419. 

  55. L. Skoric et al., "Parallel window decoding enables?scalable fault tolerant quantum computation," arXiv?preprint, CoRR, 2023, arXiv: 2209.08552. 

  56. T. Xinyu et al., "Scalable surface code decoders with?parallelization in time," arXiv preprint, CoRR, 2022,?arXiv: 2209.09219. 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로