$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 오염준설토의 중금속 안정화를 위한 Hydrothermal Reaction의 최적 조건 도출
Deriving Optimal Conditions of Hydrothermal Reaction for Stabilizing Heavy Metals in Contaminated Dredged Soil

지하수토양환경 = Journal of soil and groundwater environment, v.29 no.1, 2024년, pp.63 - 71  

이선주 (서울시립대학교 환경공학부) ,  안현규 (환경시설관리주식회사) ,  조우리 (서울시립대학교 환경공학부) ,  김수희 (서울시립대학교 환경공학부) ,  이재영 (서울시립대학교 환경공학부)

Abstract AI-Helper 아이콘AI-Helper

Hydrothermal Reaction (HTR) was applied for the stabilization of contaminated soil with heavy metals, and then the test determined the optimal conditions for HTR. After HTR, the concentration of heavy metals in the contaminated soil increased. However, it was observed that the leachability potential...

Keyword

표/그림 (8)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • , 2023). 본 연구에서는 중금속 오염준설토의 안정화를 위한 HTR의 적용성을 평가하고, 최적 운전조건을 도출하고자 한다. HTR을 통한 안정화 효율은 독성 특성 침출 절차(Toxicity characteristic leaching procedure, TCLP), 인공 강우 용출 실험(Synthetic precipitation leaching procedure, SPLP)를 통한 용출 특성과 연속추출(Sequential extraction procedure, SEP)을 이용한 중금속 형태 변화를 분석하여 확인하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (52)

  1. Cho, J., 2021, Reactivity improvement characteristics of weathered feldspar through activation technique, J. Korean Geosynth.?Soc., 20(4), 33-41. 

  2. Cho, W., 2015, The Characteristics of Biochar with Food Waste?by Hydrothermal Carbonization, M.S. Dissertation, University?of Seoul Graduate School, Korea. 

  3. Choi, J., Kim, J.B., and Shin, W.S., 2019, The efficiency of?immobilization of metal(loid)s-contaminated dredged sediment :?effect of types of binder and natural environmental conditions,?KSWST Jour. Wat. Treat., 27(2), 3-16. 

  4. Chu, D.C., Kleib, J., Amar, M., Benzerzour, M., and Abriak,?N.E., 2022, Recycling of dredged sediment as a raw material for?the manufacture of Portland cement - Numerical modeling of?the hydration of synthesized cement using the CEMHYD3D?code, J. Build. Eng., 48, 103871. 

  5. EPA (U.S. Environmental Protection Agency), 1992, EPA?METHOD 1311: TOXICITY CHARACTERISTIC LEACHING PROCEDURE. 

  6. EPA (U.S. Environmental Protection Agency), 1994, EPA?METHOD 1312: SYNTHETIC PRECIPITATION LEACHING PROCEDURE. 

  7. EPA (U.S. Environmental Protection Agency), 1998, EPA's?Contaminated Sediment Management Strategy. 

  8. EPA (U.S. Environmental Protection Agency), 2004, Chapter?Seven of the SW-846 Compendium: Introductory and Regulatory Definitions Pertaining to Hazardous Waste Characteristics. 

  9. Fei, Q., Hongbing, J., Qian, L., Xinyue, G., Lei, T., and Jinguo,?F., 2014, Evaluation of trace elements and identification of pollution sources in particle size fractions of soil from iron ore?areas along the Chao River, J. Geochem. Explor., 138, 33-49. 

  10. Funke, A. and Ziegler, F., 2010, Hydrothermal carbonization of?biomass: a summary and discussion of chemical mechanisms for?process engineering, Biofuel Bioprod Biorefin, 4(2), 160-177. 

  11. Han, H.J., Ko, M.S., Ko, J., and Lee, J.U., 2020, Study on soil?extraction methods for contamination assessment of heavy metals in soil, J. Korean Soc. Miner. Energy Resour., 57(5), 471-482. 

  12. Han, Y., Park, S., and Lee, M., 2014, Phytoextraction using citric acid for enhanced removal of uranium from soil, J. Geo. Soc.?Korea., 50(4), 501-515. 

  13. He, C., Giannis, A., and Wang, J.Y., 2013, Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization :?hydrochar fuel characteristics and combustion behavior, Appl?Energy., 111, 257-266. 

  14. He, J., Shi, X.K., Li, Z.X., Zhang, L., Feng, X.Y., and Zhou,?L.R., 2020, Strength properties of dredged soil at high water?content treated with soda residue, carbide slag, and ground granulated blast furnace slag, Constr. Build. Mater., 242, 118126. 

  15. Huang, H.J. and Yuan, X.Z., 2016, The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge, Bioresour Technol., 200, 991-998. 

  16. Jakubus, M. and Czekala, J., 2001, Heavy metal speciation in?sewage sludge, Pol J Environ Stud., 10(4), 245-250. 

  17. Jung, M.C., 1994, Sequential extraction of heavy metals in soils?and a case study, Econ. Environ. Geol., 27(5), 469-477. 

  18. Kim, E. and Baek, K., 2014, Effect of metal speciations on?heavy metal removal from contaminated soils, J. Korean Soc.?Environ. Anal., 17(2), 88-94. 

  19. Kim, K., Fujie, K., and Fujisawa, T., 2008, Feasibility of recycling residual solid from hydrothermal treatment of excess?sludge, Environ. Eng. Res., 13(3), 112-118. 

  20. Kumpiene, J., Lagerkvist. A., and Maurice, C., 2008, Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments - A?review, Waste. Manage., 28(1), 215-225. 

  21. Lee, B.K., Koh, I.H., and Kim, H., 2005, The partitioning characteristics of heavy metals in soils of ulsan by sequential?extraction procedures, J. Korean. Soc. Environ. Eng., 27(1), 25-35. 

  22. Lee, M.J., 2014, A Study on Germination According to?Mechanical Characteristic of Stabilized Dredged Soil to Recycle Dredged Soil, M.S. Dissertation, Pukyong National University Korea. 

  23. Lee, S.J., 2019, A Study on Hydrochar Reforming by Recirculation of Bio-liquid through Hydrothermal Carbonization of?Wood Waste, M.S. Dissertation, University of Seoul Graduate?School, Korea. 

  24. Lee, S.J., Oh, M.A., Oh, S.J., Cho, N.H., Kang, Y.Y., and Lee,?J.Y., 2022, Effects of bioliquid recirculation on hydrothermal?carbonization of lignocellulosic biomass, Energies, 15(13), 4903. 

  25. Lim, J., 2015, Stabilization of Metals in Soil Treated with Lime-based Waste Materials and Poultry Manure Biochar, Ph.D. Dissertation, Kangwon National University Graduate School,?Korea. 

  26. Lin, S., Hsieh, I.J., Huang, K.M., and Wang, C.H., 2002, Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea?continental shelf sediments, Chem. Geol., 182(2-4), 377-394. 

  27. Liu, T., Liu, Z., Zheng, Q., Lang, Q., Xia, Y., Peng, N., and Gai,?C., 2018, Effect of hydrothermal carbonization on migration and?environmental risk of heavy metals in sewage sludge during?pyrolysis, Bioresour Technol., 247, 282-290. 

  28. Liu, W.J., Jiang, H., and Yu, H.Q., 2015, Development of Biochar-Based Functional Materials: Toward aSustainable Platform?Carbon Material, Chem. Rev., 115(22), 2251-2285. 

  29. Lu, C.C., Hsu, M., and Lin, Y.P., 2019, Evaluation of heavy?metal leachability of incinerating recycled aggregate and solidification/stabilization products for construction reuse using?TCLP, multi-final pH and EDTA-mediated TCLP leaching tests,?J Hazard Mater., 368, 336-344. 

  30. MR (MarketResearch), 2023, Dredging Market By Dredging?Method (Mechanical Dredging, Hydraulic Dredging, Other), By?Application (Trade Maintenance, Coastal Protection, Other), By?End-User (Government, Oil And Gas Industry, Other), By?Region And Companies - Industry Segment Outlook, Market?Assessment, Competition Scenario, Trends, And Forecast 2023-2032. 

  31. MOE (Ministry of Environment), 2023, Minister of Environment : "Thorough reinforcement of embankments including riverbed construction to prevent flood damage next year.", https://www.me.go.kr/home/web/board/read.do?menuId10525&boardMasterId1&boardCategoryId39&boardId1633720 [24.01.15] 

  32. MOF (Ministry of Oceans and Fisheries), 2022, Statistical Yearbook of Oceans and Fisheries. 

  33. NIER (National Institute of Environmental Research), 2013,?Development of Procedures and Framework to support the?Assessment of Contaminated Sediments in Freshwater Environment(III):- II. Evaluation of sediment effect on the overlying?water quality -. 

  34. NIER (National Institute of Environmental Research), 2012,?Applicability evaluation of test methods for the new waste regulation standards. 

  35. Oh, M., Cho, W., Chung, W.D., Park, S.K., and Lee, J.Y., 2016,?The optimal condition of hydrochar for Bio-SRF (Solid Refused?Fuel) using food waste via hydrothermal carbonization, Journal?of KSWM, 33(2), 119-128. 

  36. Oing, K., Grongroft, A., and Eschenbach, A., 2018, Enhanced?dewatering optimizes compactibility of processed dredged material, J. Soils. Sediments., 18, 3020-3030. 

  37. Omidiji, B.V., Ogundipe, O.B., and Owolabi, H.A., Characterization of Ijero-Ekiti Quartz as Refractory Raw Material for?Industrial Furnace, Arch. Foundry Eng., 23(4), 14-21. 

  38. Park, J., Park, J., Kwon, O., and Yang, S., 2018, Analysis of?mineralogical toxicity of soils contaminated with arsenic and?lead, J. Agric. Life Sci., 52(1), 103-110. 

  39. Park, J., Son, Y., Noh, S., and Bong, T., 2016, The suitability?evaluation of dredged soil from reservoirs as embankment material, J. Environ. Manage., 183(3), 443-452. 

  40. Shen, X., Zeng, J., Zhan, D., Wang, F., Li, Y., and Yi, W., 2020,?Effect of pyrolysis temperature on characteristics, chemical speciation and environmental risk of Cr, Mn, Cu, and Zn in biochars derived from pig manure, Sci. Total Environ., 704, 135283. 

  41. Shi, W., Liu, C., Ding, D., Lei, Z., Yang, Y., Feng, C., and?Zhang, Z., 2013, Immobilization of heavy metals in sewage?sludge by using subcritical water technology, Bioresour Technol., 137, 18-24. 

  42. Shin, W.S., Na, K.R., and Kim, Y.K., 2014, Stabilization of?heavy metals in contaminated marine sediment using bentonite,?J. Navig. Port Res., 38(6), 655-661. 

  43. Stefanelli, E., Vitolo, S., Fidio, N.D., and Puccini, M., 2023, Tailoring the porosity of chemically activated carbons derived from?the HTC treatment of sewage sludge for the removal of pollutants from gaseous and aqueous phases, J. Environ. Manage.,?345, 118887. 

  44. Teng, Y., Chen, K., Jiang, H., Hu, Y., Seyler, B.C., Appiah, A.,?and Peng, S., 2024, Utilization of phosphoric acid-modified biochar to reduce vanadium leaching potential and bioavailability?in soil, Environ. Pollu., 344, 123360. 

  45. Tessier, A., Campbell, P.G.C., and Bisson, M., 1979, Sequential?extraction procedure for the speciation of particulate trace metals, Anal. Chem., 51(7), 844-851. 

  46. Yao, Q., Wang, X., Jian, H., Chen, H., and Yu, Z., 2015, Characterization of the particle size fraction associated with heavy?metals in suspended sediments of the yellow river, Int. J. Environ. Res. Public Health, 12(6), 6725-6744. 

  47. Yeo, I.H. and Chang, Y.Y., 2021, Assessment of soil stabilization for the reduction of environmental risk of lead-contaminated soil near a smelter site, J EIA., 30(4), 215-224. 

  48. Yi, YI., Oh, H.T., Lee, D.I., Kim, G.Y., Jeon, K.A., and Kim,?H.J., 2015, A research on diagnosis of institutional problem and?improvement plan for management in coastal dredged sediment?- case study of Masan bay -, J EIA, 24(5), 444-455. 

  49. USDA (United States Department of Agriculture), 2017, Soil?Survey Manual. 

  50. Wang, L., Li, A., and Chang, Y., 2016, Hydrothermal treatment?coupled with mechanical expression at increased temperature?for excess sludge dewatering : Heavy metals, volatile organic?compounds and combustion characteristics of hydrochar, Chem.?Eng. J., 297, 1-10. 

  51. Wang, Y., Wang, G., Wan, Y., Yu, X., Zhao, J., and Shao, J.,?2022, Recycling of dredged river silt reinforced by an eco-friendly technology as microbial induced calcium carbonate precipitation (MICP), Soils Found., 62(6), 101216. 

  52. Xu, J., Liu, C., Hsu, P.C., Zhao, J., Wu, T., Tang, J., Liu, K., and?Cui, Y., 2019, Remediation of heavy metal contaminated soil by?asymmetrical alternating current electrochemistry, Nat. Commun., 10(2440). 

저자의 다른 논문 :

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로