$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

청정 수소 저장을 위한 고효율, 저탄소 배출 암모니아 합성기술 동향
Advancements in High-Efficiency Ammonia Synthesis Technology: A Key Solution for Green Hydrogen Storage in the Carbon-Neutral Era

청정기술 = Clean technology, v.30 no.2, 2024년, pp.71 - 93  

정원준 (인하대학교 화학공학과) ,  김진태 (인하대학교 화학공학과) ,  조강희 (인하대학교 화학공학과)

초록
AI-Helper 아이콘AI-Helper

최근, 무탄소 에너지원(특히, 선박 및 혼소 발전), 고효율 청정 수소 저장 및 매개체로써 암모니아가 다시 각광받고 있다. 암모니아는 화학공학에서 매우 중요한 공정 중 하나인 Haber-Bosch 공정을 통해 합성할 수 있지만, 이 공정은 에너지 소비량이 높고 탄소 배출량 역시 높아, 기존 공정을 통해 암모니아를 합성할 시 탄소 저감 효과가 미미하다. 이러한 기존 공정의 치명적인 단점을 해결하기 위해 최근, 높은 에너지 효율로 탄소 배출이 적게 암모니아를 합성할 수 있는 열화학적 합성 방법이 많이 개발되고 있다. 소재측면에서는 기존 공정보다 완화된 공정 조건에서도 충분히 높은 암모니아 합성 성능을 보일 수 있는 고성능 촉매 소재를 개발하는 연구가 진행되고 있으며, 공정측면에서는 매체 순환식(chemical-looping) 합성 방법, 플라즈마 합성방법, 기계화학적 합성 방식 등 다양하게 적용되고 있다. 이번 총설에서는 최근 청정수소 저장을 효과적으로 저장하기 위해 어떤 암모니아 합성 기술들이 개발되고 있는지 자세히 소개하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Recently, the establishment of a hydrogen-based economy and the utilization of low-carbon energy sources, particularly for shipping and power generation, have been in high demand in order to achieve carbon neutrality by 2050. In particular, ammonia is gaining renewed attention because it is capable ...

주제어

표/그림 (15)

참고문헌 (123)

  1. Bouckaert, S., Pales, A., McGlade, C., Wanner, B., Varro, L., D'Ambrosio, D., and Spencer, T., "Net Zero by 2050 : A Roadmap for the Global Energy Sector," NASEM (2021). 

  2. https://www.mofa.go.kr/www/brd/m_4080/view.do?seq371966 (accessed Dec. 2021). 

  3. http://www.me.go.kr/home/web/board/read.do?boardMasterId1&boardId1533570&menuId10525 (accessed Jun. 2022). 

  4. Hydrogen Economy Activation Roadmap, Ministry of Trade, Industry and Energy Document (Released on January 17, 2019). 

  5. Promotion of Overseas Clean Hydrogen Introduction Before 2030, Ministry of Trade, Industry and Energy Press Release (Released on June 23, 2020). 

  6. Abe, J. O., Popoola, A. P. I., Ajenifuja, E., and Popoola, O. M., "Hydrogen Energy Economy and Storage: Review and Recommendation," Int. J. Hydrogen Energy, 44, 11901-11919 (2019). 

  7. Hopstad, A. L. H., Argyriadis, K., Manjock, A., Goldsmith, J., and Ronold, K. O., "DNV GL Standard for Floating Wind Turbines," J. Offshore Mech. Arct. Eng., 51975, V001T01A020 (2018). 

  8. https://www.chosun.com/economy/industrycompany/2023/10/16/CPTKPWPI7FH43IC5HULQVY6NBM/ (accessed Oct 2023). 

  9. Schuler, T., Kimura, T., Schmidt, T. J., and Buchi, F. N., "Towards a Generic Understanding of Oxygen Evolution Reaction Kinetics in Polymer Electrolyte Water Electrolysis," Energy Environ. Sci., 13, 331-344 (2020). 

  10. Wolf, P., Klingler, M., Schmidt, M., and Kurze, M., "Ammonia-Fed Fuel Cells for a Locally CO 2 -Free Energy Supply in the Telecommunications Industry-A Comparative Techno-Economic Analysis," Renew. Sustain. Energy Rev., 13, 2153-2166 (2020). 

  11. Liu, H., "Ammonia Synthesis Catalysts: Innovation and Practice," World Scientific (2013). 

  12. Choi, J. H., Lee, S. C., Lee, J., Kim, G. M., and Lim, D. H., "Optimization for Ammonia Decomposition over Ruthenium Alumina Catalyst Coated on Metallic Monolith using Response Surface Methodology," Clean Technol., 28, 218-226 (2022). 

  13. Kitano, M., Inoue, Y., Sasase, M., Kishida, K., Kobayashi, Y., Nishiyama, K., Tada, T., Kawamura, S., Yokoyama, T., Hara, M., and Hosono, H., "Self-Organized Ruthenium-Barium Core-Shell Nanoparticles on a Mesoporous Calcium Amide Matrix for Efficient Low-Temperature Ammonia Synthesis," J. Energy Chem., 57, 2648-2652 (2018). 

  14. Sato, K., Miyahara, S.-I., Ogura, Y., Tsujimaru, K., Wada, Y., Toriyoma, T., Yamamoto, T., Matsumura, S., and Nagaoka, K., "Surface Dynamics for Creating Highly Active Ru Sites for Ammonia Synthesis: Accumulation of a Low-Crystalline Oxygen-Deficient Nanofraction," ACS Sustain. Chem. Eng., 8, 2726-2734 (2020). 

  15. Luz, I., Parvathikar, S., Capenter, M., Bellamy, T., Amato, K., Carpenter, J., and Lail, M., "MOF-Derived Nanostructured Catalysts for Low-Temperature Ammonia Synthesis," Catal. Sci. Technol., 10, 105 (2020). 

  16. Carreira, E. M., "Journal of the American Chemical Society: A Look Back at 2022 and Forward to 2023," J. Am. Chem. Soc., 145, 1364-11374 (2023). 

  17. Jacobsen, C. J., Dahl, S., Clausen, B. S., Bahn, S., Loadottir, A., and Norskov, J. K., "Catalyst Design by Interpolation in the Periodic Table: Bimetallic Ammonia Synthesis Catalysts," J. Am. Chem. Soc., 123, 8404-8405 (2001). 

  18. Hattori, M., Iijima, S., Nakao, T., Hosono, H., and Hara, M., "Solid Solution for Catalytic Ammonia Synthesis from Nitrogen and Hydrogen Gases at 50 ℃," Nat. Commun., 11, 2001 (2020). 

  19. Ye, T.-N., Park, S.-W., Lu, Y., Li, J., Sasase, M., Kitano, M., Tada, T., and Hosono, H., "Vacancy-Enabled N 2 Activation for Ammonia Synthesis on an Ni-Loaded Catalyst," Nature, 583, 391-395 (2020). 

  20. Hara, M., Kitano, M., and Hosono, H., "Ru-Loaded C12A7: e - Electride as a Catalyst for Ammonia Synthesis," ACS Catal., 7, 2313-2324 (2017). 

  21. Wang, P., Chang, F., Gao, W., Cuo, J., Wu, G., He, T., and Chen, P., "Breaking Scaling Relations to Achieve Low-Temperature Ammonia Synthesis through LiH-Mediated Nitrogen Transfer and Hydrogenation," Nat. Chem., 9, 64-70 (2017). 

  22. Humphreys, J., Lan, R., and Tao, S., "Development and Recent Progress on Ammonia Synthesis Catalysts for Haber-Bosch Process," Adv. Energy Sustainability Res., 2, 2000043 (2021). 

  23. Liu, H., Ammonia Synthesis Catalysts Innovation and Practice, 1st ed, World Scientific Publishing Co. Pte. Ltd. And Chemical Industry Press, Singapore and Beijing, 21-30 (2013). 

  24. Boudart, M. and Khammoum, S. B., "Ammonia Synthesis on Supported Iron Catalyst," Abstr. Pap. Am. Chem. Soc., 164, 15 (1972). 

  25. Anokhin, V. N., Menshov, V. N., and Zuev, A. A., "Kinetics of Ammonia-Synthesis," J. Appl. Chem., 3, 48 (1975). 

  26. Weiss, W. and Ranke, W., "Surface Chemistry and Catalysis on Well-Defined Epitaxial Iron-Oxide Layers," Prog. Surf. Sci., 1, 70 (2002). 

  27. Schwertmann, U. and Cornell, R. M., Iron Oxides in the Laboratory: Preparation and Characterization, 2nd ed, Vch Publishers, NY, USA, 136-137 (1991). 

  28. Almquist, J. A. and Crittenden, E. D., "A Study of Pure-Iron and Promoted-Iron Catalysts for Ammonia Synthesis," Ind. Eng. Chem., 18, 1307-1309 (1926). 

  29. Spencer, N. D., Schoonmaker, R. C., and Somorjai, G. A., "Iron Single Crystals as Ammonia Synthesis Catalysts: Effect of Surface Structure on Catalyst Activity," J. Catal., 74, 129-135 (1982). 

  30. Spencer, N. D., Schoonmaker, R. C., and Somorjai, G. A., "Iron Single Crystals as Ammonia Synrhesis Catalyst: Effect of Surface Structure on Catalyst Activity," J. Catal., 74, 129-135 (1982). 

  31. Aika, K.-I. and Ozaki, A., "Kinetics and Isotope Effect of Ammonia Synthesis over a Singly-Promoted Iron Catalyst," J. Catal., 19, 350-352 (1970). 

  32. Baranski, A., Bielanski, A., and Pattek, A., "Kinetics of Reduction of Iron Catalysts for Ammonia Synthesis," J. Catal., 26, 286-294 (1972). 

  33. Honkala, K., Hellman, A., Remediakis, I. N., Logadottir, A., Carlsson, A., Dahl, S., Christensen, C. H., and Norskov, J. K., "Ammonia Synthesis from First-Principles Calculations," Science, 307, 555-558 (2005). 

  34. Saadatjou, N., Jafari, A., and Sahebdelfar, S., "Ruthenium Nanocatalysts for Ammonia Synthesis: A Review," Chem. Eng. Commun., 202, 420-448 (2015). 

  35. Wang, Z. Q., Ma, Y. C., and Lin, J. X., "Ruthenium Catalyst Supported on High-Surface-Area Basic ZrO 2 for Ammonia Synthesis," J. Mol. Catal. A: Chem., 378, 307-313 (2013). 

  36. Narasimharao, K., Seetharamulu, P., Rao, K. R., and Basahel, S. N., "Carbon Covered Mg-Al Hydrotalcite Supported Nanosized Ru Catalysts for Ammonia Synthesis," J. Mol. Catal. A: Chem., 411, 157-166 (2016). 

  37. Baik, Y., Kwen, M., Lee, K., Chi, S., Lee, S., Cho, K., Kim, H., and Choi, M., "Splitting of Hydrogen Atoms into Proton-Electron Pairs at BaO-Ru Interfaces for Promoting Ammonia Synthesis under Mild Conditions," J. Am. Chem. Soc., 145, 11364-11374 (2023). 

  38. Lin, B., Liu, Y., Heng, L., Wang, X., Ni, J., Lin, J., and Jiang, L., "Morphology Effect of Ceria on the Catalytic Performances of Ru/CeO 2 Catalysts for Ammonia Synthesis," Ind. & Eng. Chem. Res., 57, 9127-9135 (2018). 

  39. Wang, X., Peng, X., Zhang, Y., Ni, J., Au, C. T., and Jiang, L., "Efficient Ammonia Synthesis over a Core-Shell Ru/CeO 2 Catalyst with a Tunable CeO 2 Size: DFT Calculations and XAS Spectroscopy Studies," Inorg. Chem. Front., 6, 396-406 (2019). 

  40. Wang, X., Peng, X., Ran, H., Lin, B., Ni, J., Lin, J., and Jiang, L., "Influence of Ru Substitution on the Properties of LaCoO 3 Catalysts for Ammonia Synthesis: XAFS and XPS Studies," Ind. & Eng. Chem. Res., 57, 17375-17383 (2018). 

  41. Kobayashi, Y., Tang, Y., Kageyama, T., Yamashita, H., Masuda, N., Hosokawa, S., and Kageyama, H., "Titanium-Based Hydrides as Heterogeneous Catalysts for Ammonia Synthesis," J. Am. Chem. Soc., 139, 18240-18246 (2017). 

  42. Hattori, M., Mori, T., Arai, T., Inoue, Y., Sasase, M., Tada, T., Kitano, M., Yokoyama, T., Hara, M., and Hosono, H., "Enhanced Catalytic Ammonia Synthesis with Transformed BaO," ACS Catal., 8, 10977-10984 (2018). 

  43. Kitano, M., Inoue, Y., Sasase, M., Kishida, K., Kobayashi, Y., Nishiyama, K., Tada, T., Kawamura, S., Yokoyama, T., Hara, M., and Hosono, H., "Self-Organized Ruthenium-Barium Core-Shell Nanoparticles on a Mesoporous Calcium Amide Matrix for Efficient Low-Temperature Ammonia Synthesis," Angew. Chem., Int. Ed., 57, 2648-2652 (2018). 

  44. Lin, B., Guo, Y., Cao, C., Ni, J., Lin, J., and Jiang, L., "Carbon Support Surface Effects in the Catalytic Performance of Ba-Promoted Ru Catalyst for Ammonia Synthesis," Catal. Today, 316, 230-236 (2018). 

  45. Inoue, Y., Kitano, M., Kim, S. W., Yokoyama, T., Hara, M., and Hosono, H., "Highly Dispersed Ru on Electride [Ca 24 Al 28 O 64 ] 4+ (e - ) 4 as a Catalyst for Ammonia Synthesis," ACS Catal., 4, 674-680 (2014). 

  46. Kitano, M., Kanbara, S., Inoue, Y., Kuganathan, N., Sushko, P. V., Yokoyama, T., Hara, M., and Hosono, H., "Electride Support Boosts Nitrogen Dissociation over Ruthenium Catalyst and Shifts the Bottleneck in Ammonia Synthesis," Nat. Commun., 6, 6731 (2015). 

  47. Kitano, M., Inoue, Y., Ishikawa, H., Yamagata, K., Nakao, T., Tada, T., Matsuishi, S., Yokoyama, T., Hara, M., and Hosono, H., "Essential Role of Hydride Ion in Ruthenium-Based Ammonia Synthesis Catalysts," Chem. Sci., 7, 4036-4043 (2016). 

  48. Inoue, Y., Kitano, M., Kishida, K., Abe, H., Niwa, Y., Sasase, M., Fujita, Y., Ishikawa, H., Yokoyama, T., Hara, M., and Hosono, H., "Efficient and Stable Ammonia Synthesis by Self-Organized Flat Ru Nanoparticles on Calcium Amide," ACS Catal., 6, 7577-7584 (2016). 

  49. Lu, Y., Li, J., Tada, T., Toda, Y., Ueda, S., Yokoyama, T., Kitano, M., and Hosono, H., "Water Durable Electride Y5Si3: Electronic Structure and Catalytic Activity for Ammonia Synthesis," J. Am. Chem. Soc., 138, 3970-3973 (2016). 

  50. Wu, J., Gong, Y., Inoshita, T., Fredrickson, D. C., Wang, J., Lu, Y., Kitano, M., and Hosono, H., "Tiered Electron Anions in Multiple Voids of LaScSi and their Applications to Ammonia Synthesis," Adv. Mater., 29, 1700924 (2017). 

  51. Li, J., Wu, J., Wang, H., Lu, Y., Ye, T., Sasase, M., Wu, X., Kitano, M., Inoshita, T., and Hosono, H., "Acid-Durable Electride with Layered Ruthenium for Ammonia Synthesis: Boosting the Activity via Selective Etching," Chem. Sci., 10, 5712-5718 (2019). 

  52. Wu, J., Li, J., Gong, Y., Kitano, M., Inoshita, T., and Hosono, H., "Intermetallic Electride Catalyst as a Platform for Ammonia Synthesis," Angew. Chem., Int. Ed., 58, 825-829 (2019). 

  53. Hagen, S., Barfod, R., Fehrmann, R., Jacobsen, C. J., Teunissen, H. T., Stahl, K., and Chorkendorff, I., "New Efficient Catalyst for Ammonia Synthesis: Barium-Promoted Cobalt on Carbon," Chem. Commun., 11, 1206-1207 (2002). 

  54. Rarog-Pilecka, W., Miskiewicz, E., Matyszek, M., Kaszkur, Z., Kepinski, L., and Kowalczyk, Z., "Carbon-Supported Cobalt Catalyst for Ammonia Synthesis: Effect of Preparation Procedure," J. Catal., 237, 207-210 (2006). 

  55. Rarog-Pilecka, W., Miskiewicz, E., Kepinski, L., Kaszkur, Z., Kielar, K., and Kowalczyk, Z., "Ammonia Synthesis over Barium-Promoted Cobalt Catalysts Supported on Graphitised Carbon," J. Catal., 249, 24-33 (2007). 

  56. Rarog-Pilecka, W., Miskiewicz, E., and Kowalczyk, Z., "Activated Carbon as a Template for Creating Catalyst Precursors. Unsupported Cobalt Catalyst for Ammonia Synthesis," Catal. Commun., 9, 870-873 (2008). 

  57. Rarog-Pilecka, W., Karolewska, M., Truszkiewicz, E., Iwanek, E., and Mierzwa, B., "Cobalt Catalyst Doped with Cerium and Barium Obtained by Co-Precipitation Method for Ammonia Synthesis Process," Catal. Lett., 141, 678-684 (2011). 

  58. Woo, R., Lee, K., Ahn, B.-S., Kim, S. H., Ju, H., Kim, J. H., Shim, J., Beum, H.-T., Cho, K., Bae, Y.-S., and Yoon, H. C., "BaCeO 3 Perovskite-Incorporated Co Catalyst for Efficient NH 3 Synthesis under Mild Conditions," Chem. Eng. J., 475, 146354 (2023). 

  59. Karolewska, M., Truszkiewicz, E., Wsciset, M., Mierzwa, B., Kepinski, L., and Rarog-Pilecka, W., "Ammonia Synthesis over a Ba and Ce-Promoted Carbon-Supported Cobalt Catalyst. Effect of the Cerium Addition and Preparation Procedure," J. Catal., 303, 130-134 (2013). 

  60. Lin, B., Qi, Y., Wei, K., and Lin, J., "Effect of Pretreatment on Ceria-Supported Cobalt Catalyst for Ammonia Synthesis," RSC Adv., 4, 38093-38102 (2014). 

  61. Gao, W., Guo, J., Wang, P., Wang, Q., Chang, F., Pei, Q., Zhang, W., Liu, L., and Chen, P., "Production of Ammonia via a Chemical Looping Process Based on Metal Imides as Nitrogen Carriers," Nat. Energy, 3, 1067-1075 (2018). 

  62. Humphreys, J., Lan, R., Du, D., Xu, W., and Tao, S., "Promotion Effect of Proton-Conducting Oxide BaZr 0.1 Ce 0.7 Y 0.2 O 3-d on the Catalytic Activity of Ni Towards Ammonia Synthesis from Hydrogen and Nitrogen," Int. J. Hydrogen Energy, 43, 17726-17736 (2018). 

  63. Kojima, R. and Aika, K.-I., "Cobalt Molybdenum Bimetallic Nitride Catalysts for Ammonia Synthesis: Part 2. Kinetic Study," Appl. Catal. A, 218, 121-128 (2001). 

  64. Bion, N., Can, F., Cook, J., Hargreaves, J. S. J., Hector, A. L., Levason, W., McFarlane, A. R., Richard, M., and Sardar, K., "The Role of Preparation Route upon the Ambient Pressure Ammonia Synthesis Activity of Ni2Mo3N," Appl. Catal. A, 504, 44-50 (2015). 

  65. Liu, H., Ammonia Synthesis Catalysts Innovation and Practice, 1st ed, World scientific publishing co. and Chemical industry press, Singapore and Beijing, 871 (2013). 

  66. Liu, H., "Ammonia Synthesis Catalyst 100 Years: Practice, Enlightenment and Challenge," Chin. J. Catal., 35, 1619-1640 (2014). 

  67. Jennings, J. R., Catalytic Ammonia Synthesis: Fundamentals and Practice, 1st ed, Plenum Press, NY, USA (1991). 

  68. Gao, W., Guo, J., Wang, P., Wang, Q., Chang, F., Pei, Q., Zhang, W., Liu, L., and Chen, P., "Production of Ammonia via a Chemical Looping Process Based on Metal Imides as Nitrogen Carriers," Nat. Energy, 3, 1067-1075 (2018). 

  69. Zhou, L., Li, X., Li, Q., Kalu, A., Liu, C., Liu, X., and Li, W., "Advances in Nitrogen Carriers for Chemical Lopping Processes for Sustainable and Carbon-Free Ammonia Synthesis," ACS Catal., 13, 15087-15106 (2023). 

  70. Brown, S. and Hu, J., "Review of Chemical Looping Ammonia Synthesis Materials," Chem. Eng. J., 280, 119063 (2023). 

  71. Abanades, S., Rebiere, B., Drobek, M., and Julbe, A., "Experimental Screening of Metal Nitrides Hydrolysis for Green Ammonia Synthesis via Solar Thermochemical Looping," Chem. Eng. J., 283, 119406 (2024) 

  72. Daisley, A. and Hargreaves, J. S. J., "Metal Nitrides, the Marsvan Krevelen Mechanism and Heterogeneously Catalysed Ammonia Synthesis," Catal. Today, 423, 113874 (2023). 

  73. Wang, R., Gao, W., Feng, S., Guan, Y., Wang, Q., Guo, J., and Chen, P., "Zn Promotes Chemical Looping Ammonia Synthesis Mediated by LiH-Li 2 NH Couple," ChemSusChem, 16, e202300813 (2023). 

  74. Fu, E., Gong, F., Wang, S., and Xiao, R., "Chemical Looping Technology in Mild-Condition Ammonia Production: A Comprehensive Review and Analysis," Small, 20, 2305095 (2024). 

  75. Segal, N. and Sebba, F., "Ammonia Synthesis Catalyzed by Uranium Nitride: The Reaction Mechanism," J. Catal., 8, 105-112 (1967). 

  76. Jacobsen, C. J. H., Dahl, S., Clausen, B. S., Bahn, S., Logadottir, A., and Norskov, J. K., "Catalyst Design by Interpolation in the Periodic Table: Bimetallic Ammonia Synthesis Catalysts," J. Am. Chem. Soc., 123, 8404-8405 (2001). 

  77. Jacobsen, C. J. H., "Novel Class of Ammonia Synthesis Catalysts," Chem. Commun., 12, 1057-1058 (2000). 

  78. Kojima, R. and Aika, K.-I., "Cobalt Molybdenum Bimetallic Nitride Catalysts for Ammonia Synthesis: Part 1. Preparation and Characterization," Appl. Catal. A, 215, 149-160 (2001). 

  79. Kojima, R. and Aika, K.-I., "Cobalt Molybdenum Bimetallic Nitride Catalysts for Ammonia Synthesis: Part 3. Reactant Gas Treatment," Appl. Catal. A, 219, 157-170 (2001). 

  80. Mckay, D., Hargreaves, J. S. J., Rico, J. L., Rivera, J. L., and Sun, X. L., "The Influence of Phase and Morphology of Molybdenum Nitrides on Ammonia Synthesis Activity and Reduction Characteristics," J. Solid State Chem., 181, 325-333 (2008). 

  81. Cao, H., Guo, J., Chang, F., Pistidda, C., Zhou, W., Zhang, X., Santoru, A., Wu, H., Schell, N., Niewa, R., and Chen, P., "Transition and Alkali Metal Complex Ternary Amides for Ammonia Synthesis and Decomposition," Chem. Eur. J., 23, 9766-9771 (2017). 

  82. Ye, T. N., Park, S. W., Lu, Y., Li, J., Sasase, M., Kitano, M., and Hosono, H., "Contribution of Nitrogen Vacancies to Ammonia Synthesis over Metal Nitride Catalysts," J. Am. Chem. Soc., 142, 14374-14383 (2020). 

  83. Smith, P. J., Taylor, D. W., Dowden, D. A., Kemball, C., and Taylor, D., "Ammonia Synthesis and Related Reactions over Iron-Cobalt and Iron-Nickel Alloy Catalysts: Part II. Catalysts Reduced above 853 K," Appl. Catal., 3, 303-314 (1982). 

  84. Al Sobhi, S., Bion, N., Hargreaves, J. S., Hector, A. L., Laassiri, S., Levason, W., Lodge, A. W., McFarlane, A. R., and Ritter, C., "The Reactivity of Lattice Nitrogen within the Ni 2 Mo 3 N and NiCoMo 3 N Phases," Mater. Res. Bull., 118, 110519 (2019). 

  85. Al Sobhi, S., Hargreaves, J. S., Hector, A. L., and Laassiri, S., "Citrate-Gel Preparation and Ammonia Synthesis Activity of Compounds in the Quaternary (Ni,M) 2 Mo 3 N (M Cu or Fe) Systems," Dalton Trans., 48, 16786-16792 (2019). 

  86. Hong, J., Prawer, S., and Murphy, A. B., "Plasma Catalysis as an Alternative Route for Ammonia Production: Status, Mechanisms, and Prospects for Progress," ACS Sustainable Chem. Eng., 6, 15-31 (2018). 

  87. Kogelschatz, U., Eliasson, B., and Egli, W., "Dielectric-Barrier Discharges. Principle and Applications," J. Phys. IV France, 7(C4), 47-66 (1997). 

  88. Eliasson, B. and Kogelschatz, U., "Modeling and Applications of Silent Discharge Plasmas," IEEE Trans. Plasma Sci., 19, 309-323 (1991). 

  89. Gordiets, B., Ferreira, C. M., Pinheiro, M. J., and Ricard, A., "Self-Consistent Kinetic Model of Low-Pressure-Flowing Discharges: II. Surface Processes and Densities of N, H, NH 3 Species," Plasma Sources Sci. Technol., 7, 363-378 (1998). 

  90. Hong, J., Pancheshnyi, S., Tam, E., Lowke, J., Prawer, S., and Murphy, A. B., "Kinetic Modelling of NH 3 Production in N 2 -H 2 Non-Equilibrium Atmospheric-Pressure Plasma Catalysis," J. Phys. D: Appl. Phys., 50, 154005 (2017). 

  91. Kitano, M., Inoue, Y., Yamazaki, Y., Hayashi, F., Kanbara, S., Matsuishi, S., Yokoyama, T., Kim, S. W., Hara, M., and Hosono, H., "Ammonia Synthesis using a Stable Electride as an Electron Donor and Reversible Hydrogen Store," Nat. Chem., 4, 934-940 (2012). 

  92. Rao, C. N. R. and Rao, G. R., "Nature of Nitrogen Adsorbed on Transition-Metal Surfaces as Revealed by Electron-Spectroscopy and Cognate Techniques," Surf. Sci. Rep., 13, 223-263 (1991). 

  93. Wang, L., Zhao, Y., Liu, C., Gong, W., and Guo, H., "Plasma Driven Ammonia Decomposition on a Fe-catalyst: Eliminating Surface Nitrogen Poisoning," Chem. Commun., 49, 3787-3789 (2013). 

  94. Neyts, E. C., Ostrikov, K., Sunkara, M. K., and Bogaerts, A., "Plasma Catalysis: Synergistic Effects at the Nanoscale," Chem. Rev., 115, 13408-13446 (2015). 

  95. Ertl, G., "Reactions at Surfaces: From Atoms to Complexity (Nobel Lecture)," Angew. Chem., Int. Ed., 47, 3524-3535 (2008). 

  96. Carrasco, E., Jimenez-Redondo, M., Tanarro, I., and Herrero, V. J., "Neutral and Ion Chemistry in Low Pressure dc Plasmas of H 2 /N 2 Mixtures: Routes for the Efficient Production of NH 3 and NH 4 + ," Phys. Chem. Chem. Phys., 13, 19561-19572 (2011). 

  97. Nakajima, J. and Sekiguchi, H., "Synthesis of Ammonia using Microwave Discharge at Atmospheric Pressure," Thin Solid Films, 516, 4446-4451 (2008). 

  98. Peerenboom, K. S. C., van Dijk, J., Goedheer, W. J., and Kroesen, G. M. W., "Effects of Magnetization on an Expanding High-Enthalpy Plasma Jet in Argon," Plasma Sources Sci. Technol., 22, 025010 (2013). 

  99. van Helden, J. H., Zijlmans, R., Engeln, R., and Schram, D. C., "Molecule Formation in N and O Containing Plasmas," IEEE Trans. Plasma Sci., 33, 390-391 (2005). 

  100. van Helden, J. H., Wagemans, W., Yagci, G., Zijlmans, R. A. B., Schram, D. C., Engeln, R., Lombardi, G., Stancu, G. D., and Ropcke, J., "Detailed Study of the Plasma-Activated Catalytic Generation of Ammonia in N 2 -H 2 Plasmas," J. Appl. Phys., 101, 043305 (2007). 

  101. Uyama, H. and Matsumoto, O., "Synthesis of Ammonia in High-Frequency Discharges," Plasma Chem. Plasma Process., 9, 13-24 (1989). 

  102. Uyama, H. and Matsumoto, O., "Synthesis of Ammonia in High-Frequency Discharges. II. Synthesis of Ammonia in a Microwave Discharge under Various Conditions," Plasma Chem. Plasma Process., 9, 421-432 (1989). 

  103. Whitehead, J. C., "Plasma-Catalysis: The Known Knowns, the Known Unknowns and the Unknown Unknowns," J. Phys. D: Appl. Phys., 49, 243001 (2016). 

  104. Harling, A. M., Demidyuk, V., Fischer, S. J., and Whitehead, J. C., "Plasma-Catalysis Destruction of Aromatics for Environmental Clean-Up: Effect of Temperature and Configuration," Appl. Catal. B, 82, 180-189 (2008). 

  105. Bai, M. D., Bai, X. Y., Zhang, Z. T., and Bai, M. D., "Synthesis of Ammonia in a Strong Electric Field Discharge at Ambient Pressure," Plasma Chem. Plasma Process., 20, 511-520 (2000). 

  106. Bai, M. D., Zhang, Z. T., Bai, X. Y., Bai, M. D., and Ning, W., "Plasma Synthesis of Ammonia with a Microgap Dielectric Barrier Discharge at Ambient Pressure," IEEE Trans. Plasma Sci., 31, 1285-1291 (2003). 

  107. https://nh3fuelassociation.org/wp-content/uploads/2012/05/huberty_2008.pdf (accessed November 2017). 

  108. Horvath, G., Mason, N. J., Polachova, L., Zahoran, M., Moravsky, L., and Matejcik, S., "Packed Bed DBD Discharge Experiments in Admixtures of N 2 and CH 4 ," Plasma Chem. Plasma Process., 30, 565-577 (2010). 

  109. Bai, M. D., Zhang, Z. T., Bai, M. D., Bai, X. Y., and Gao, H. H., "Synthesis of Ammonia using CH 4 /N 2 Plasmas Based on Micro-Gap Discharge under Environmentally Friendly Condition," Plasma Chem. Plasma Process., 28, 405-414 (2008). 

  110. Akay, G. and Zhang, K., "Process Intensification in Ammonia Synthesis using Novel Coassembled Supported Microporous Catalysts Promoted by Nonthermal Plasma," Ind. Eng. Chem. Res., 56, 457-468 (2017). 

  111. Kim, H. H., Teramoto, Y., Ogata, A., Takagi, H., and Nanba, T., "Plasma Catalysis for Environmental Treatment and Energy Applications," Plasma Chem. Plasma Process., 36, 45-72 (2016). 

  112. https://www.zdplaskin.laplace.univtlse.fr/ (accessed November 2017). 

  113. Kogelschatz, U., "Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications," Plasma Chem. Plasma Process., 23, 1-46 (2003). 

  114. Yamabe, C., Ihara, S., and Ishimine, M., "Fundamental-Studies of Ozone Generation and its Characteristics using New-Type of Ozonizer," Jpn. J. Appl. Phys., 33, 4361-4364 (1994). 

  115. Zhang, J. A., Su, D. S., Blume, R., Schlogl, R., Wang, R., Yang, X. G., and Gajovic, A., "Surface Chemistry and Catalytic Reactivity of a Nanodiamond in the Steam-Free Dehydrogenation of Ethylbenzene," Angew. Chem., Int. Ed., 49, 8640-8644 (2010). 

  116. Hong, J. M., Aramesh, M., Shimoni, O., Seo, D. H., Yick, S., Greig, A., Charles, C., Prawer, S., and Murphy, A. B., "Plasma Catalytic Synthesis of Ammonia using Functionalized-Carbon Coatings in an Atmospheric-Pressure Non-Equilibrium Discharge," Plasma Chem. Plasma Process., 36, 917-940 (2016). 

  117. Rodriguez, M. M., Bill, E., Brennessel, W., and Holland, P., "N 2 Reduction and Hydrogenation to Ammonia by a Molecular Iron-Potassium Complex," Science, 334(6057), 780-783 (2011). 

  118. Gong, Y., Wu, J., Kinato, M., Wang, J., Ye, T.-N., Li, J., Kobayashi, Y., Kishida, K., Abe, H., Niwa, Y., Yang, H., Tada, T., and Hosono, H., "Ternary Intermetallic LaCoSi as a Catalyst for N 2 Activation," Nat. Catal., 1, 178-185 (2018). 

  119. Foster, S. L., Bakovic, S. P., Duda, R., Maheshwari, S., Milton, R., Minteer, S., Janik, M., Renner, J., and Greenlee, L., "Catalysts for Nitrogen Reduction to Ammonia," Nat. Catal., 1, 490-500 (2018). 

  120. Han, G.-F., Li, F., Chen, Z.-W., Coppex, C., Kim, S.-J., Noh, H.-J., Fu, Z., Lu, Y., Singh, C. V., Siahrostami, S., Jiamg, Q., and Baek, J.-B., "Mechanochemistry for Ammonia Synthesis under Mild Condition," Nat. Nanotechnol., 16, 325-330 (2021). 

  121. Ye, T.-N., Park, S.-W., Lu, Y., Sasase, M., Kinato, M., Tada, T., and Hosono, H., "Vacancy-Enabled N 2 Activation for Ammonia Synthesis on an Ni-Loaded Catalyst," Nature, 583, 391-395 (2020). 

  122. Li, J., Xiong, Q., Mu, X., and Li, L., "Recent Advances in Ammonia Synthesis: From Haber-Bosch Process to External Field Driven Strategies," ChemSusChem., e202301775 (2024). 

  123. Wang, M., Khan, M. A., Mohsin, I., Wicks, J., Ip, A. H., Sumon, K. Z., Dinh, C.-T., Sargent, E. H., Gates, I. D., and Kibria, M. G., "Can Sustainable Ammonia Synthesis Pathways Compete with Fossil-Fuel Based Haber-Bosch Processes?," Energy Environ. Sci., 14, 2535-2548 (2021). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로