최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Analyses & alternatives = 분석과 대안, v.8 no.3, 2024년, pp.125 - 150
이석민 (한신대학교)
This paper explores the integration of artificial intelligence and causal inference in social science research, focusing on causal deep learning. We examine key theories including Pearl's Structural Causal Model, Rubin's Potential Outcomes Framework, and Schölkopf's Causal Representation Lear...
Ahne, A., Khetan, V., Tannier, X., Rizvi, M. I. H., Czernichow, T., Orchard,?F., ... & Fagherazzi, G. (2021). Identifying causal relations in tweets using?deep learning: Use case on diabetes-related tweets from 2017-2021. arXiv?preprint, arXiv:2111.01225.
Alfakih, A., Xia, Z., Ali, B., Mamoon, S., & Lu, J. (2023). Deep causality?variational autoencoder network for identifying the potential biomarkers of?brain disorders. IEEE Transactions on Neural Systems and Rehabilitation?Engineering. https://doi.org/10.1109/TNSRE.2023.3344995
Athey, Susan, & Imbens, Guido W. (2015). Machine learning methods for?estimating heterogeneous causal effects. arXiv preprint, arXiv:1607.06580.
Bengio, Yoshua, Deleu, Tristan, Rahaman, Nasim, Ke, Ruijiang, Lachapelle,?Samuel, Bilaniuk, Olexa, ... & Pal, Chris. (2019). A meta-transfer?objective for learning to disentangle causal mechanisms. arXiv preprint,?arXiv:1901.10912.
Bhopale, A. P., & Tiwari, A. (2024). Transformer-based contextual text?representation framework for intelligent information retrieval. Expert?Systems with Applications, 238, 121629.
Chen, Hanwen, Wu, Xia, & Taylor, Lucas. (2023). Meta-causal learning:?Transferring causal knowledge across domains. Journal of Machine?Learning Research, 24(115).
Chernozhukov, Victor, Chetverikov, Denis, Demirer, Mehdi, Duflo, Esther,?Hansen, Christian, Newey, Whitney, & Robins, Jamie. (2018).?Double/debiased machine learning for treatment and structural parameters.?The Econometrics Journal, 21(1), C1-C68.
Deaton, Angus, & Cartwright, Nancy. (2018). Understanding and?misunderstanding randomized controlled trials. Social Science & Medicine, 210.
Dwork, Cynthia. (2006). Differential privacy. In Proceedings of the 33rd?international conference on Automata, Languages and Programming.
Finn, Chelsea, Abbeel, Pieter, & Levine, Sergey. (2017). Model-agnostic?meta-learning for fast adaptation of deep networks. In International?Conference on Machine Learning. PMLR.
Ganin, Yaroslav, Ustinova, Evgeniya, Ajakan, Hana, Germain, Pascal,?Larochelle, Hugo, Laviolette, Francois, ... & Lempitsky, Victor. (2016).?Domain-adversarial training of neural networks. The Journal of Machine?Learning Research, 17(1).
Guo, Ruocheng, Cheng, Liang, Li, Jun, Hahn, Peter R., & Liu, Huan. (2020). A?survey of learning causality with data: Problems and methods. ACM?Computing Surveys, 53(4).
Heckman, James J. (2005). The scientific model of causality. Sociological?Methodology, 35(1).
Johansson, Fredrik, Shalit, Uri, & Sontag, David. (2016). Learning?representations for counterfactual inference. In International Conference on?Machine Learning. PMLR.
Knaus, Michael. (2020). Double machine learning based program evaluation?under unconfoundedness. Econometrics: Mathematical Methods &?Programming eJournal. https://doi.org/10.1093/ectj/utac015
Lundberg, Scott M., & Lee, Su-In. (2017). A unified approach to interpreting?model predictions. In Advances in Neural Information Processing Systems.
Morgan, Stephen L., & Winship, Christopher. (2015). Counterfactuals and causal?inference: Methods and principles for social research (2nd ed.).?Cambridge University Press.
Pearl, Judea. (2009). Causal inference in statistics: An overview. Statistics?Surveys, 3.
Pearl, Judea, & Mackenzie, Dana. (2018). The book of why: The new science of?cause and effect. Basic Books.
Peters, Jonas, Janzing, Dominik, & Scholkopf, Bernhard. (2017). Elements of?causal inference: Foundations and learning algorithms. MIT Press.
Ribeiro, Marco T., Singh, Sameer, & Guestrin, Carlos. (2016). "Why should I?trust you?" Explaining the predictions of any classifier. In Proceedings of?the 22nd ACM SIGKDD International Conference on Knowledge?Discovery and Data Mining.
Rojas-Carulla, Marta, Scholkopf, Bernhard, Turner, Richard, & Peters, Jonas.?(2018). Invariant models for causal transfer learning. The Journal of?Machine Learning Research, 19(1).
Rosenbaum, Paul R. (2002). Observational studies (2nd ed.). Springer.
Rubin, Donald B. (1974). Estimating causal effects of treatments in randomized?and nonrandomized studies. Journal of Educational Psychology, 66(5).
Scholkopf, Bernhard, Locatello, Francesco, Bauer, Stefan, Ke, Nan R.,?Kalchbrenner, Nal, Goyal, Anirudh, & Bengio, Yoshua. (2021). Toward?causal representation learning. Proceedings of the IEEE, 109(5).
Schuler, Andreea, Baiocchi, Michael, Tibshirani, Robert, & Shah, Niladri.?(2018). A comparison of methods for model selection when estimating?individual treatment effects. arXiv preprint, arXiv:1804.05146.
Shi, Chansoo, Blei, David, & Veitch, Victor. (2019). Adapting neural networks?for the estimation of treatment effects. In Advances in Neural Information?Processing Systems.
Spirtes, Peter, Glymour, Clark, & Scheines, Richard. (2001). Causation,?prediction, and search. MIT Press.
Spirtes, Peter, & Zhang, Kun. (2016). Causal discovery and inference: Concepts?and recent methodological advances. Applied Informatics, 3(1).
Varian, Hal R. (2016). Causal inference in economics and marketing.?Proceedings of the National Academy of Sciences, 113(27).
Wang, Cheng, Chen, Jing, Xie, Zitao, & Zou, Ji. (2024, July). Research on?education big data for student's academic performance analysis based on?machine learning. In Proceedings of the 2024 Guangdong-Hong?Kong-Macao Greater Bay Area International Conference on Education?Digitalization and Computer Science.
Wang, Liang, Adiga, Aniruddha, Chen, Jing, Sadilek, Adam, Venkatramanan,?Srinivasan, & Marathe, Madhav. (2022). CausalGNN: Causal-based graph?neural networks for spatio-temporal epidemic forecasting. AAAI,?12191-12199. https://doi.org/10.1609/aaai.v36i11.21479
Zhang, Kun, Scholkopf, Bernhard, Muandet, Krikamol, & Wang, Zhifeng.?(2013). Domain adaptation under target and conditional shift. In?International Conference on Machine Learning. PMLR.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.