$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Semiconductor lasers

Quantum electronics, v.27 no.12, 1997년, pp.1035 - 1047  

Eliseev, P G (P.N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow, Russian Federation) ,  Popov, Yurii M (P.N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow, Russian Federation)

Abstract AI-Helper 아이콘AI-Helper

An account is given of the avenues of development of injection heterojunction lasers (including the use of quantum wells with different spatial dimensionalities), of mastering the short-wavelength range, and also of the use of group II — VI compounds and III nitrides. The optical strength and ...

참고문헌 (142)

  1. 1959 37 587 Zh. Eksp. Teor. Fiz. Basov N G 

  2. 1960 10 416 0038-5646 Sov. Phys. JETP Basov N G 

  3. 1961 40 1879 Zh. Eksp. Teor. Fiz. Basov N G 

  4. 1961 13 1320 0038-5646 Sov. Phys. JETP Basov N G 

  5. 1961 61 0002-3442 Vestn. Akad. Nauk SSSR Basov N G 

  6. 1962 4 1062 0367-3294 Fiz. Tverd. Tela (Leningrad) Nasledov D N 

  7. 1962 4 782 Sov. Phys. Solid State Nasledov D N 

  8. Hall, R. N., Fenner, G. E., Kingsley, J. D., Soltys, T. J., Carlson, R. O.. Coherent Light Emission From GaAs Junctions. Physical review letters, vol.9, no.9, 366-368.

  9. 1964 155 78 0002-3264 Dokl. Akad. Nauk SSSR Basov N G 

  10. 1965 1 29 0370-274X Pis'ma Zh. Eksp. Teor. Fiz. Basov N G 

  11. 1965 1 118 0021-3640 JETP Lett. Basov N G 

  12. 1968 2 1545 0015-3222 Fiz. Tekh. Poluprovodn. Alferov Zh I 

  13. 1969 2 1289 Sov. Phys. Semicond. Alferov Zh I 

  14. Hayashi, I., Panish, M., Foy, P.. A low-threshold room-temperature injection laser. IEEE journal of quantum electronics, vol.5, no.4, 211-212.

  15. Hayashi, I., Panish, M. B., Foy, P. W., Sumski, S.. JUNCTION LASERS WHICH OPERATE CONTINUOUSLY AT ROOM TEMPERATURE. Applied physics letters, vol.17, no.3, 109-111.

  16. 1970 4 1826 0015-3222 Fiz. Tekh. Poluprovodn. Alferov Zh I 

  17. 1971 4 1573 Sov. Phys. Semicond. Alferov Zh I 

  18. 1970 5 21 Kratk. Soobshch. GIREDMETa Ser. Bronshtein I K 

  19. Faist, Jerome, Capasso, Federico, Sivco, Deborah L., Sirtori, Carlo, Hutchinson, Albert L., Cho, Alfred Y.. Quantum Cascade Laser. Science, vol.264, no.5158, 553-556.

  20. Faist, J., Capasso, F., Sirtori, C., Sivco, D.L., Hutchinson, A.L., Cho, A.Y.. Room temperature mid-infrared quantum cascade lasers. Electronics letters, vol.32, no.6, 560-561.

  21. Faist, Jérôme, Capasso, Federico, Sirtori, Carlo, Sivco, Deborah L., Baillargeon, James N., Hutchinson, Albert L., Chu, Sung-Nee G., Cho, Alfred Y.. High power mid-infrared (λ∼5 μm) quantum cascade lasers operating above room temperature. Applied physics letters, vol.68, no.26, 3680-3682.

  22. Nelson, H., Kressel, H.. IMPROVED RED AND INFRARED LIGHT EMITTING AlxGa1−xAs LASER DIODES USING THE CLOSE-CONFINEMENT STRUCTURE. Applied physics letters, vol.15, no.1, 7-9.

  23. 1974 1 2294 0368-7147 Kvantovaya Elektron. (Moscow) Bogatov A P 

  24. 1975 10.1070/QE1975v004n10ABEH011746 4 1281 0049-1748 Sov. J. Quantum Electron. Bogatov A P 

  25. 1976 3 465 0368-7147 Kvantovaya Elektron. (Moscow) Dolginov L M 

  26. 1976 10.1070/QE1976v006n02ABEH010979 6 257 0049-1748 Sov. J. Quantum Electron. Dolginov L M 

  27. Manasevit, H. M., Erdmann, F. M., Simpson, W. I.. The Use of Metalorganics in the Preparation of Semiconductor Materials. Journal of the Electrochemical Society : JES, vol.118, no.11, 1864-.

  28. Dingle, R., Wiegmann, W., Henry, C. H.. Quantum States of Confined Carriers in Very Thin $ \mathrm{Al}_{x}\mathrm{Ga}_{1-x}\mathrm{As}$ -GaAs- $ \mathrm{Al}_{x}\mathrm{Ga}_{1-x}\mathrm{As}$ Heterostructures. Physical review letters, vol.33, no.14, 827-830.

  29. Holonyak, N., Kolbas, R., Dupuis, R., Dapkus, P.. Quantum-well heterostructure lasers. IEEE journal of quantum electronics, vol.16, no.2, 170-186.

  30. 1979 5 132 0320-0116 Pis'ma Zh. Tekh. Fiz. Dupuis R D 

  31. 1979 5 52 0360-120X Sov. Tech. Phys. Lett. Dupuis R D 

  32. 1971 120 0368-7147 Kvantovaya Elektron. (Moscow) Eliseev P G 

  33. 1971 10.1070/QE1971v001n03ABEH003110 1 304 0049-1748 Sov. J. Quantum Electron. Eliseev P G 

  34. Arakawa, Y., Sakaki, H.. Multidimensional quantum well laser and temperature dependence of its threshold current. Applied physics letters, vol.40, no.11, 939-941.

  35. 1984 11 178 0368-7147 Kvantovaya Elektron. (Moscow) Eliseev P G 

  36. 1984 10.1070/QE1984v014n01ABEH004653 14 119 0049-1748 Sov. J. Quantum Electron. Eliseev P G 

  37. Heinrichsdorff, F., Krost, A., Grundmann, M., Bimberg, D., Kosogov, A., Werner, P.. Self-organization processes of InGaAs/GaAs quantum dots grown by metalorganic chemical vapor deposition. Applied physics letters, vol.68, no.23, 3284-3286.

  38. Hall, R. N., Fenner, G. E., Kingsley, J. D., Soltys, T. J., Carlson, R. O.. Coherent Light Emission From GaAs Junctions. Physical review letters, vol.9, no.9, 366-368.

  39. Nurmikko, Arto V.. Optical physics and laser devices in II–VI quantum confined heterostructures. Physica. B, Condensed matter, vol.185, no.1, 16-26.

  40. Walker, C.T., DePuydt, J.M., Haase, M.A., Qiu, J., Cheng, H.. Blue-green II–VI laser diodes. Physica. B, Condensed matter, vol.185, no.1, 27-35.

  41. Nurnikko, A.V., Gunshor, R.L.. Blue-green emitters in wide-gap II-VI quantum-confined structures. IEEE journal of quantum electronics, vol.30, no.2, 619-630.

  42. Morko?, H., Mohammad, S. N.. High-Luminosity Blue and Blue-Green Gallium Nitride Light-Emitting Diodes. Science, vol.267, no.5194, 51-55.

  43. 1994 79 The Encyclopedia of Advanced Materials Lin M E 

  44. Strite, S., Lin, M.E., Morkoç, H.. Progress and prospects for GaN and the III–V nitride semiconductors. Thin solid films, vol.231, no.1, 197-210.

  45. Davis, R.F.. III-V nitrides for electronic and optoelectronic applications. Proceedings of the IEEE, vol.79, no.5, 702-712.

  46. Strite, S.. GaN, AlN, and InN: A review. Journal of vacuum science & technology. processing, measurement, and phenomena : an official journal of the American Vacuum Society. B, Microelectronics and nanometer structures, vol.10, no.4, 1237-.

  47. Mohammad, S.N., Salvador, A.A., Morkoc, H.. Emerging gallium nitride based devices. Proceedings of the IEEE, vol.83, no.10, 1306-1355.

  48. Becla, P.. HgMnTe light emitting diodes and laser heterostructures. Journal of vacuum science & technology. an official journal of the American Vacuum Society. A, Vacuum, surfaces, and films, vol.6, no.4, 2725-2727.

  49. Park, R. M., Troffer, M. B., Rouleau, C. M., DePuydt, J. M., Haase, M. A.. p-type ZnSe by nitrogen atom beam doping during molecular beam epitaxial growth. Applied physics letters, vol.57, no.20, 2127-2129.

  50. Haase, M. A., Qiu, J., DePuydt, J. M., Cheng, H.. Blue-green laser diodes. Applied physics letters, vol.59, no.11, 1272-1274.

  51. Jeon, H., Ding, J., Patterson, W., Nurmikko, A. V., Xie, W., Grillo, D. C., Kobayashi, M., Gunshor, R. L.. Blue-green injection laser diodes in (Zn,Cd)Se/ZnSe quantum wells. Applied physics letters, vol.59, no.27, 3619-3621.

  52. Dingle, R., Shaklee, K. L., Leheny, R. F., Zetterstrom, R. B.. Stimulated Emission and Laser Action in Gallium Nitride. Applied physics letters, vol.19, no.1, 5-7.

  53. 1971 32 283 0033-6831 RCA Rev. Pankove J I 

  54. Pankove, J. I., Berkeyheiser, J. E., Miller, E. A.. Properties of Zn-doped GaN. I. Photoluminescence. Journal of applied physics, vol.45, no.3, 1280-1286.

  55. Amano, Hiroshi, Kito, Masahiro, Hiramatsu, Kazumasa, Akasaki, Isamu. P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI). Japanese journal of applied physics. Part 2, Letters, vol.28, no.12, L2112-.

  56. Nakamura, Shuji, Iwasa, Naruhito, Masayuki Senoh, Takashi Mukai. Hole Compensation Mechanism of P-Type GaN Films. Japanese journal of applied physics. Part 1, Regular papers, short notes and review papers, vol.31, no.5, 1258-.

  57. Amano, Hiroshi, Asahi, Tsunemori, Akasaki, Isamu. Stimulated Emission Near Ultraviolet at Room Temperature from a GaN Film Grown on Sapphire by MOVPE Using an AlN Buffer Layer. Japanese journal of applied physics. Part 2, Letters, vol.29, no.2, L205-.

  58. Nakamura, Shuji. Zn-doped InGaN growth and InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Journal of crystal growth, vol.145, no.1, 911-917.

  59. Nakamura, Shuji, Senoh, Masayuki, Iwasa, Naruhito, Nagahama, Shin–ichi, Yamada, Takao, Mukai, Takashi. Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes. Japanese journal of applied physics. Part 1, Regular papers, short notes and review papers, vol.34, no.b10, L1332-L1335.

  60. 1996 1 11 Nakamura S 

  61. 10.1143/JJAP.34.L1517 

  62. Nakamura, Shuji, Senoh, Masayuki, Nagahama, Shin-ichi, Iwasa, Naruhito, Yamada, Takao, Matsushita, Toshio, Hiroyuki Kiyoku, Yasunobu Sugimoto. InGaN-Based Multi-Quantum-Well-Structure Laser Diodes. Japanese journal of applied physics. Part 2, Letters, vol.35, no.1, L74-.

  63. Nakamura, Shuji, Senoh, Masayuki, Nagahama, Shin-ichi, Iwasa, Naruhito, Yamada, Takao, Matsushita, Toshio, Sugimoto, Yasunobu, Kiyoku, Hiroyuki. Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes. Applied physics letters, vol.69, no.26, 4056-4058.

  64. 1997 Nakamura S 

  65. Nakamura, Shuji, Senoh, Masayuki, Nagahama, Shin-ichi, Iwasa, Naruhito, Yamada, Takao, Matsushita, Toshio, Sugimoto, Yasunobu, Kiyoku, Hiroyuki. Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime. Applied physics letters, vol.70, no.7, 868-870.

  66. Itaya, Kazuhiko, Onomura, Masaaki, Nishio, Johji, Sugiura, Lisa, Saito, Shinji, Suzuki, Mariko, Rennie, John, Nunoue, Shin-ya, Yamamoto, Masahiro, Fujimoto, Hidetoshi, Kokubun, Yoshihiro, Ohba, Yasuo, Gen-ichi Hatakoshi, Masayuki Ishikawa. Room Temperature Pulsed Operation of Nitride Based Multi-Quantum-Well Laser Diodes with Cleaved Facets on Conventional C-Face Sapphire Substrates. Japanese journal of applied physics. Part 2, Letters, vol.35, no.10, L1315-.

  67. Akasaki, I., Sota, S., Sakai, H., Tanaka, T., Koike, M., Amano, H.. Shortest wavelength semiconductor laser diode. Electronics letters, vol.32, no.12, 1105-1106.

  68. Nakamura, Shuji, Senoh, Masayuki, Nagahama, Shin-ichi, Iwasa, Naruhito, Yamada, Takao, Matsushita, Toshio, Kiyoku, Hiroyuki, Sugimoto, Yasunobu. InGaN multi-quantum-well structure laser diodes grown on MgAl2O4 substrates. Applied physics letters, vol.68, no.15, 2105-2107.

  69. Sun, C. J., Yang, J. W., Chen, Q., Asif Khan, M., George, T., Chang-Chien, P., Mahajan, S.. Deposition of high quality wurtzite GaN films over cubic (111) MgAl2O4 substrates using low pressure metalorganic chemical vapor deposition. Applied physics letters, vol.68, no.8, 1129-1131.

  70. 1995 237 Zubrilov A S 

  71. Nakamura, Shuji, Senoh, Masayuki, Nagahama, Shin-ichi, Iwasa, Naruhito, Yamada, Takao, Matsushita, Toshio, Sugimoto, Yasunobu, Kiyoku, Hiroyuki. Optical gain and carrier lifetime of InGaN multi-quantum well structure laser diodes. Applied physics letters, vol.69, no.11, 1568-1570.

  72. Eliseev, P.G.. Optical strength of semiconductor laser materials. Progress in quantum electronics, vol.20, no.1, 1-82.

  73. 1991 Reliability Problems of Semiconductor Lasers Eliseev P G 

  74. 1991 Reliability and Degradation of Semiconductor Lasers and LEDs Fukuda M 

  75. Eliseev, P.G.. Degradation of injection lasers. Journal of luminescence, vol.7, 338-356.

  76. Henry, C. H., Petroff, P. M., Logan, R. A., Merritt, F. R.. Catastrophic damage of AlxGa1−xAs double-heterostructure laser material. Journal of applied physics, vol.50, no.5, 3721-3732.

  77. Nakwaski, Wlodzimierz. Thermal analysis of the catastrophic mirror damage in laser diodes. Journal of applied physics, vol.57, no.7, 2424-2430.

  78. 1972 3/9 294 0368-7147 Kvantovaya Elektron. (Moscow) Borodulin V I 

  79. 1972 10.1070/QE1972v002n03ABEH004448 2 294 0049-1748 Sov. J. Quantum Electron. Borodulin V I 

  80. Hakki, B. W., Nash, F. R.. Catastrophic failure in GaAs double-heterostructure injection lasers. Journal of applied physics, vol.45, no.9, 3907-3912.

  81. Moser, A., Latta, E.-E., Webb, D. J.. Thermodynamics approach to catastrophic optical mirror damage of AlGaAs single quantum well lasers. Applied physics letters, vol.55, no.12, 1152-1154.

  82. Moser, A.. Thermodynamics of facet damage in cleaved AlGaAs lasers. Applied physics letters, vol.59, no.5, 522-524.

  83. Moser, A., Latta, E. E.. Arrhenius parameters for the rate process leading to catastrophic damage of AlGaAs-GaAs laser facets. Journal of applied physics, vol.71, no.10, 4848-4853.

  84. Nido, M., Endo, K., Ishikawa, S., Uchida, M., Komazaki, I., Hara, K., Yuasa, T.. High power and low optical feedback noise AlGaAs single quantum well lasers. Electronics letters, vol.25, no.4, 277-278.

  85. Jaeckel, H., Bona, G.-L., Buchmann, P., Meier, H.P., Vettiger, P., Kozlovsky, W.J., Lenth, W.. Very high-power (425 mW) AlGaAs SQW-GRINSCH ridge laser with frequency-doubled output (41 mW at 428 nm). IEEE journal of quantum electronics, vol.27, no.6, 1560-1567.

  86. Hayakawa, T., Matsumoto, K., Morishima, M., Nagai, M., Horie, H., Ishigame, Y., Isoyama, A., Niwata, Y.. High power AlGaAs quantum well laser diodes prepared by molecular beam epitaxy. Applied physics letters, vol.63, no.13, 1718-1720.

  87. 1992 19 1024 0368-7147 Kvantovaya Elektron. (Moscow) Davydova E I 

  88. 1992 10.1070/QE1992v022n10ABEH003640 22 954 0049-1748 Sov. J. Quantum Electron. Davydova E I 

  89. Yoo, Jae S., Lee, Sang H., Park, Gueorgui T., Ko, Yong T., Kim, Taeil. Peculiarities of catastrophic optical damage in single quantum well InGaAsP/InGaP buried-heterostructure lasers. Journal of applied physics, vol.75, no.3, 1840-1842.

  90. Takeshita, Tatsuya, Masanobu Okayasu, Shingo Uehara. High-Output Power and Fundamental Transverse Mode InGaAs/GaAs Strained-Layer Laser with Ridge Waveguide Structure. Japanese journal of applied physics. Part 1, Regular papers & short notes, vol.30, no.6, 1220-.

  91. 1995 22 895 0368-7147 Kvantovaya Elektron. (Moscow) Eliseev P G 

  92. 1995 10.1070/QE1995v025n09ABEH000488 25 863 1063-7818 Quantum Electron. Eliseev P G 

  93. 10.1117/12.146900 

  94. Fujii, Hiroaki, Ueno, Yoshiyasu, Endo, Kenji. Effect of thermal resistivity on the catastrophic optical damage power density of AlGaInP laser diodes. Applied physics letters, vol.62, no.17, 2114-2115.

  95. Nitta, K., Okajima, M., Nishikawa, Y., Itaya, K., Hatakoshi, G.. Reliable high-power (40 mW) operation of transverse-mode stabilised InGaAlP laser diodes with strained active layer. Electronics letters, vol.28, no.11, 1069-1070.

  96. 1985 12 465 0368-7147 Kvantovaya Elektron. (Moscow) Bogatov A P 

  97. 1985 10.1070/QE1985v015n03ABEH006286 15 308 0049-1748 Sov. J. Quantum Electron. Bogatov A P 

  98. 1986 35 157 Itogi Nauki Tekh. Ser. Radiotekh. Eliseev P G 

  99. 1972 10.1007/BF02334396 4 257 0030-4077 Optoelectronics Thompson G H B 

  100. 1978 5 603 0368-7147 Kvantovaya Elektron. (Moscow) Bachert H-J 

  101. 1978 10.1070/QE1978v008n03ABEH010017 8 346 0049-1748 Sov. J. Quantum Electron. Bachert H-J 

  102. Abbas, G.L., Yang, S., Chan, V.W.S., Fujimoto, J.G.. Injection behavior and modeling of 100 mW broad area diode lasers. IEEE journal of quantum electronics, vol.24, no.4, 609-617.

  103. Lang, R.J., Mehuys, D., Welch, D.F., Goldberg, L.. Spontaneous filamentation in broad-area diode laser amplifiers. IEEE journal of quantum electronics, vol.30, no.3, 685-694.

  104. Paxton, Alan H., Dente, Gregory C.. Filament formation in semiconductor laser gain regions. Journal of applied physics, vol.70, no.6, 2921-2925.

  105. Tamburrini, M., Goldberg, L., Mehuys, D.. Periodic filaments in reflective broad area semiconductor optical amplifiers. Applied physics letters, vol.60, no.11, 1292-1294.

  106. Bogatov, A. P.. Lateral field instability and six-wave mixing in a diode laser with broad active area. Journal of Russian laser research, vol.15, no.5, 417-453.

  107. Miller, D. A. B., Chemla, D. S., Eilenberger, D. J., Smith, P. W., Gossard, A. C., Tsang, W. T.. Large room-temperature optical nonlinearity in GaAs/Ga1−x AlxAs multiple quantum well structures. Applied physics letters, vol.41, no.8, 679-681.

  108. 1980 7 1089 0368-7147 Kvantovaya Elektron. (Moscow) Bogatov A P 

  109. 1980 10.1070/QE1980v010n05ABEH010170 10 620 0049-1748 Sov. J. Quantum Electron. Bogatov A P 

  110. 1995 1 173 Eliseev P G 

  111. 1996 23 307 0368-7147 Kvantovaya Elektron. (Moscow) Eliseev P G 

  112. 1996 10.1070/QE1996v026n04ABEH000654 26 299 1063-7818 Quantum Electron. Eliseev P G 

  113. 1982 9 1851 0368-7147 Kvantovaya Elektron. (Moscow) Vu Van Luc 

  114. 1982 10.1070/QE1982v012n09ABEH005990 12 1194 0049-1748 Sov. J. Quantum Electron. Vu Van Luc 

  115. 1983 QE-19 1080 0018-9197 IEEE J. Quantum Electron. Vu Van Luc 

  116. 1995 10.1088/0963-9659/4/4/004 4 295 0963-9659 Pure Appl. Opt. Eliseev P G 

  117. Joyce, W.. Role of the conductivity of the confining layers in DH-laser spatial hole burning effects. IEEE journal of quantum electronics, vol.18, no.12, 2005-2009.

  118. 1961 506 Basov N G 

  119. 1986 10.3367/UFNr.0148.198601c.0035 148 35 0042-1294 Usp. Fiz. Nauk Basov N G 

  120. 1986 10.1070/PU1986v029n01ABEH003078 29 20 0038-5670 Sov. Phys. Usp. Basov N G 

  121. 1994 21 1113 0368-7147 Kvantovaya Elektron. (Moscow) Bogdankevich O V Bogdankevich O V 

  122. 1994 10.1070/QE1994v024n12ABEH000257 24 1031 1063-7818 Quantum Electron. Bogdankevich O V 

  123. Soda, Haruhisa, Iga, Ken-ichi, Kitahara, Chiyuki, Suematsu, Yasuharu. GaInAsP/InP Surface Emitting Injection Lasers. Japanese journal of applied physics, vol.18, no.12, 2329-2330.

  124. Ishibashi, Akira, Mori, Yoshifumi. Advances in blue laser diodes. Journal of crystal growth, vol.138, no.1, 677-685.

  125. 1974 1 2521 0368-7147 Kvantovaya Elektron. (Moscow) Basov N G 

  126. 1975 10.1070/QE1975v004n11ABEH011989 4 1408 0049-1748 Sov. J. Quantum Electron. Basov N G 

  127. 1965 31 3 Tr. Inst. Fiz. Akad. Nauk SSSR Popov Yu M 

  128. 1978 Kozlovskii V I 

  129. 1979 Kozlovskii V I 

  130. 1995 22 756 0368-7147 Kvantovaya Elektron. (Moscow) Basov N G 

  131. 1995 10.1070/QE1995v025n08ABEH000454 25 726 1063-7818 Quantum Electron. Basov N G 

  132. 1991 202 128 Tr. Inst. Fiz. Akad. Nauk SSSR Akhekyan A M 

  133. 1996 6 608 1054-660X Laser Phys. Basov N G 

  134. Okuyama, Hiroyuki, Nakano, Kazushi, Takao Miyajima, Katsuhiro Akimoto. Epitaxial Growth of ZnMgSSe on GaAs Substrate by Molecular Beam Epitaxy. Japanese journal of applied physics. Part 2, Letters, vol.30, no.9, L1620-.

  135. Kozlovskii V I 

  136. 1986 10.1109/JLT.1986.1074751 LT-4 504 0733-8724 J. Lightwave Technol. Yablonovitch E 

  137. DePuydt, J.M., Haase, M.A., Guha, S., Qiu, J., Cheng, H., Wu, B.J., Höfler, G.E., Meis-Haugen, G., Hagedorn, M.S., Baude, P.F.. Room temperature II–VI lasers with 2.5 mA threshold. Journal of crystal growth, vol.138, no.1, 667-676.

  138. Eason, D. B.. High-brightness light-emitting diodes grown by molecular beam epitaxy on ZnSe substrates. Journal of vacuum science & technology. processing, measurement, and phenomena : an official journal of the American Vacuum Society. B, Microelectronics and nanometer structures, vol.13, no.4, 1566-.

  139. Kozlovsky, V.I., Shcherbakov, E.A., Dianov, E.M., Krysa, A.B., Nasibov, A.S., Trubenko, P.A.. Electron-beam pumped laser structures based on MBE grown ZnCdSe ZnSe superlattices. Journal of crystal growth, vol.159, no.1, 609-612.

  140. 1996 3-4 15 0455-0595 Kratk. Soobshch. Fiz. Kozlovskii V I 

  141. Korostelin, Yu.V., Kozlovsky, V.I., Nasibov, A.S., Shapkin, P.V.. Vapour growth and characterization of bulk ZnSe single crystals. Journal of crystal growth, vol.161, no.1, 51-59.

  142. 1996 2 7 Compound Semicond. Nakamura S 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로