$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Viburnum opulus L. Juice Phenolics Inhibit Mouse 3T3-L1 Cells Adipogenesis and Pancreatic Lipase Activity 원문보기

Nutrients, v.12 no.7, 2020년, pp.2003 -   

Zakłos-Szyda, Małgorzata ,  Pietrzyk, Nina ,  Szustak, Marcin ,  Podsędek, Anna

Abstract AI-Helper 아이콘AI-Helper

Viburnum opulus L. fruit is a rich source of phenolic compounds that may be involved in the prevention of metabolic diseases. The purpose of this study was to determine the effects of Viburnum opulus fresh juice (FJ) and juice purified by solid-phase extraction (PJ) on the adipogenesis process with ...

주제어

참고문헌 (70)

  1. 1. Cataloguing W.L. Global Report on Diabetes WHO Press Geneva, Switzerland 2016 6 86 

  2. 2. Pascual-Serrano A. Arola-Arnal A. Suarez-Garcia S. Bravo F.I. Suarez M. Arola L. Blade C. Grape seed proanthocyanidin supplementation reduces adipocyte size and increases adipocyte number in obese rats Int. J. Obes. 2017 41 1246 1255 10.1038/ijo.2017.90 28373675 

  3. 3. Ruiz-Ojeda F.J. Ruperez A.I. Gomez-Llorente C. Gil A. Aguilera C.M. Cell models and their application for studying adipogenic differentiation in relation to obesity: A review Int. J. Mol. Sci. 2016 17 1040 10.3390/ijms17071040 27376273 

  4. 4. Graham M.R. Baker J.S. Davies B. Causes and consequences of obesity: Epigenetics or hypokinesis? Diabetes Metab. Syndr. Obes. Targets Ther. 2015 8 455 460 

  5. 5. Ma X. Wang D. Zhao W. Xu L. Deciphering the roles of PPARγ in adipocytes via dynamic change of transcription complex Front. Endocrinol. 2018 9 473 10.3389/fendo.2018.00473 

  6. 6. Plutzky J. The PPAR-RXR transcriptional complex in the vasculature: Energy in the balance Circ. Res. 2011 108 1002 1016 10.1161/CIRCRESAHA.110.226860 21493923 

  7. 7. Zheng F. Zhang S. Lu W. Wu F. Yin X. Yu D. Pan Q. Li H. Regulation of insulin resistance and adiponectin signaling in adipose tissue by liver X receptor activation highlights a cross-talk with PPARγ PLoS ONE 2014 9 e101269 10.1371/journal.pone.0101269 24972069 

  8. 8. Medina-Gomez G. Gray S. Vidal-Puig A. Adipogenesis and lipotoxicity: Role of peroxisome proliferator-activated receptor γ (PPARγ) and PPARγcoactivator-1 (PGC1) Public Health Nutr. 2007 10 1132 1137 10.1017/S1368980007000614 17903321 

  9. 9. Kern L. Mittenbuhler M.J. Vesting A.J. Ostermann A.L. Wunderlich C.M. Wunderlich F.T. Obesity-induced TNFα and IL-6 signaling: The missing link between obesity and inflammation- driven liver and colorectal cancers Cancers 2019 11 24 10.3390/cancers11010024 

  10. 10. Austin D. Hamilton N. Elshimali Y. Pietras R. Wu Y. Estrogen receptor-beta is a potential target for triple negative breast cancer treatment Oncotarget 2018 9 33912 33930 10.18632/oncotarget.26089 30338035 

  11. 11. Rigano D. Sirignano C. Taglialatela-Scafati O. The potential of natural products for targeting PPARα Acta Pharm. Sin. B 2017 7 427 438 10.1016/j.apsb.2017.05.005 28752027 

  12. 12. Martens F.M.A.C. Visseren F.L.J. Lemay J. de Koning E.J.P. Rabelink T.J. Metabolic and additional vascular effects of thiazolidinediones Drugs 2002 62 1463 1480 10.2165/00003495-200262100-00004 12093315 

  13. 13. Siriwardhana N. Kalupahana N.S. Cekanova M. LeMieux M. Greer B. Moustaid-Moussa N. Modulation of adipose tissue inflammation by bioactive food compounds J. Nutr. Biochem. 2013 24 613 623 10.1016/j.jnutbio.2012.12.013 23498665 

  14. 14. Filho H.V.R. Videira N.B. Bridi A.V. Tittanegro T.H. Batista F.A.H. de Pereira J.G. de Oliveira P.S.L. Bajgelman M.C. Le Maire A. Figueira A.C.M. Screening for PPAR non-agonist ligands followed by characterization of a hit, AM-879, with additional no-adipogenic and cdk5-mediated phosphorylation inhibition properties Front. Endocrinol. 2018 9 11 10.3389/fendo.2018.00011 

  15. 15. Perova I.B. Zhogova A.A. Cherkashin A.V. Eller K.I. Ramenskaya G.V. Biologically active substances from european guelder berry fruits Pharm. Chem. J. 2014 48 332 339 10.1007/s11094-014-1105-8 

  16. 16. Zakłos-Szyda M. Pawlik N. The influence of Viburnum opulus polyphenolic compounds on metabolic activity and migration of HeLa and MCF cells Acta Innov. 2019 33 33 42 10.32933/ActaInnovations.31.4 

  17. 17. esoniene L. Daubaras R. Vencloviene J. Vi?kelis P. Biochemical and agro-biological diversity of Viburnum opulus genotypes Cent. Eur. J. Biol. 2010 5 864 871 10.2478/s11535-010-0088-z 

  18. 18. Zakłos-Szyda M. Pawlik N. Polka D. Nowak A. Koziołkiewicz M. Podsdek A. Viburnum opulus fruit phenolic compounds as cytoprotective agents able to decrease free fatty acids and glucose uptake by Caco-2 cells Antioxidants 2019 8 262 10.3390/antiox8080262 31374918 

  19. 19. Stpie A. Aebisher D. Bartusik-Aebischer D. Anticancer properties of Viburnum Eur. J. Clin. Exp. Med. 2018 1361 47 52 10.15584/ejcem.2018.1.8 

  20. 20. Zakłos-Szyda M. Majewska I. Redzynia M. Koziołkiewicz M. Antidiabetic effect of polyphenolic extracts from selected edible plants as α-amylase, α-glucosidase and PTP1B inhibitors, and β pancreatic cells cytoprotective agents―A comparative study Curr. Top. Med. Chem. 2015 15 2431 2444 10.2174/1568026615666150619143051 26088348 

  21. 21. Zakłos-Szyda M. Kowalska-Baron A. Pietrzyk N. Drzazga A. Podsdek A. Evaluation of Viburnum opulus L. fruit phenolics cytoprotective potential on insulinoma MIN6 Cells relevant for diabetes mellitus and obesity Antioxidants 2020 9 433 10.3390/antiox9050433 

  22. 22. Zebisch K. Voigt V. Wabitsch M. Brandsch M. Protocol for effective differentiation of 3T3-L1 cells to adipocytes Anal. Biochem. 2012 425 88 90 10.1016/j.ab.2012.03.005 22425542 

  23. 23. Sosnowska D. Podsdek A. Redzynia M. Kucharska A.Z. Inhibitory effect of black chokeberry fruit polyphenols on pancreatic lipase?Searching for most active inhibitors J. Funct. Foods 2018 49 196 204 10.1016/j.jff.2018.08.029 

  24. 24. Jang J.Y. Bae H. Lee Y.J. Choi Y. II Young I.L. Kim H.J. Park S.B. Suh S.W. Kim S.W. Han B.W. Structural Basis for the Enhanced Anti-Diabetic Efficacy of Lobeglitazone on PPARγ Sci. Rep. 2018 8 31 10.1038/s41598-017-18274-1 29311579 

  25. 25. Kraujalyte V. Rimantas P. Pukalskas A. Laima C. Antioxidant properties and polyphenolic compositions of fruits from different European cranberrybush ( Viburnum opulus L.) genotypes Food Chem. 2013 141 3695 3702 10.1016/j.foodchem.2013.06.054 23993538 

  26. 26. Karacelik A.A. Kucuk M. Iskafyeli Z. Aydemir S. De Smet S. Miserez B. Sandra P. Antioxidant components of Viburnum opulus L. determined by on-line HPLC?UV?ABTS radical scavenging and LC?UV?ESI-MS methods Food Chem. 2015 175 106 114 10.1016/j.foodchem.2014.11.085 25577058 

  27. 27. Velioglu Y.S. Ekici L. Poyrazoglu E.S. Phenolic composition of European cranberrybush ( Viburnum opulus L.) berries and astringency removal of its commercial juice Int. J. Food Sci. Technol. 2006 9205 1011 1015 10.1111/j.1365-2621.2006.01142.x 

  28. 28. McDougall G.J. Kulkarni N.N. Stewart D. Berry polyphenols inhibit pancreatic lipase activity in vitro Food Chem. 2009 115 193 199 10.1016/j.foodchem.2008.11.093 

  29. 29. Girones-Vilaplana A. Villano D. Moreno D.A. Garcia-Viguera C. New isotonic drinks with antioxidant and biological capacities from berries (maqui, acai and blackthorn) and lemon juice Int. J. Food Sci. Nutr. 2013 64 897 906 10.3109/09637486.2013.809406 23815554 

  30. 30. Fabroni S. Ballistreri G. Amenta M. Romeo F.V. Rapisarda P. Screening of the anthocyanin profile and in vitro pancreatic lipase inhibition by anthocyanin-containing extracts of fruits, vegetables, legumes and cereals J. Sci. Food Agric. 2016 96 4713 4723 10.1002/jsfa.7708 26970531 

  31. 31. Zheng G. Qiu Y. Zhang Q.F. Li D. Chlorogenic acid and caffeine in combination inhibit fat accumulation by regulating hepatic lipid metabolism-related enzymes in mice Br. J. Nutr. 2014 112 1034 1040 10.1017/S0007114514001652 25201308 

  32. 32. Worsztynowicz P. Napierała M. Białas W. Grajek W. Olkowicz M. Pancreatic α-amylase and lipase inhibitory activity of polyphenolic compounds present in the extract of black chokeberry ( Aronia melanocarpa L.) Process Biochem. 2014 49 1457 1463 10.1016/j.procbio.2014.06.002 

  33. 33. Sugiyama H. Akazome Y. Shoji T. Yamaguchi A. Yasue M. Kanda T. Ohtake Y. Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption J. Agric. Food Chem. 2007 55 4604 4609 10.1021/jf070569k 17458979 

  34. 34. Kowalska K. Olejnik A. Rychlik J. Grajek W. Cranberries ( Oxycoccus quadripetalus ) inhibit adipogenesis and lipogenesis in 3T3-L1 cells Food Chem. 2014 148 246 252 10.1016/j.foodchem.2013.10.032 24262553 

  35. 35. Lefterova M.I. Haakonsson A.K. Lazar M.A. Mandrup S. PPARγ and the global map of adipogenesis and beyond Trends Endocrinol. Metab. 2014 25 293 302 10.1016/j.tem.2014.04.001 24793638 

  36. 36. esonien L. Daubaras R. Vi?kelis P. Evaluation of productivity and biochemical components in fruit of different Viburnum accessions Biologija 2008 54 93 96 10.2478/v10054-008-0018-4 

  37. 37. Hiebl V. Ladurner A. Latkolik S. Dirsch V.M. Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR Biotechnol. Adv. 2018 36 1657 1698 10.1016/j.biotechadv.2018.03.003 29548878 

  38. 38. Maire A. Teyssier C. Balaguer P. Bourguet W. Germain P. RAR-Specific Ligands and Their Combinations Cells 2019 8 1392 10.3390/cells8111392 

  39. 39. Zhang J. Tang H. Deng R. Wang N. Zhang Y. Wang Y. Liu Y. Li F. Wang X. Zhou L. Berberine suppresses adipocyte differentiation via decreasing CREB transcriptional activity PLoS ONE 2015 10 e0125667 10.1371/journal.pone.0125667 25928058 

  40. 40. Hallenborg P. Petersen R.K. Kouskoumvekaki I. Newman J.W. Madsen L. Kristiansen K. The elusive endogenous adipogenic PPARγ agonists: Lining up the suspects Prog. Lipid Res. 2016 61 149 162 10.1016/j.plipres.2015.11.002 26703188 

  41. 41. Schneider H. Staudacher S. Poppelreuther M. Stremmel W. Ehehalt R. Fullekrug J. Protein mediated fatty acid uptake: Synergy between CD36 / FAT-facilitated transport and acyl-CoA synthetase-driven metabolism Arch. Biochem. Biophys. 2014 546 8 18 10.1016/j.abb.2014.01.025 24503477 

  42. 42. Crewe C. Zhu Y. Paschoal V.A. Joffin N. Ghaben A.L. Gordillo R. Oh D.Y. Liang G. Horton J.D. Scherer P.E. SREBP-regulated adipocyte lipogenesis is dependent on substrate availability and redox modulation of mTORC1 JCI Insight 2019 4 10.1172/jci.insight.129397 31310592 

  43. 43. Gao Y. Zhou Y. Xu A. Wu D. Effects of an AMP-activated protein kinase inhibitor, compound C, on adipogenic differentiation of 3T3-L1 cells Biol. Pharm. Bull. 2008 31 1716 1722 10.1248/bpb.31.1716 18758065 

  44. 44. Zakłos-Szyda M. Pawlik N. Japanese quince ( Chaenomeles japonica L.) fruit polyphenolic extract modulates carbohydrate metabolism in HepG2 cells via AMP-activated protein kinase Acta Biochim. Pol. 2018 65 67 78 10.18388/abp.2017_1604 29494709 

  45. 45. Li Y. Xu S. Mihaylova M. Zheng B. Hou X. Jiang B. Luo Z. Lefai E. Shyy J.Y. Gao B. AMPK Phosphorylates and Inhibits SREBP Activity to Attenuate Hepatic Steatosis and Atherosclerosis in Diet-induced Insulin Resistant Mice Cell Metab. 2011 13 376 388 10.1016/j.cmet.2011.03.009 21459323 

  46. 46. Zhang Y. Dallner O.S. Nakadai T. Fayzikhodjaeva G. Lu Y.H. Lazar M.A. Roeder R.G. Friedman J.M. A noncanonical PPARγ/RXRα-binding sequence regulates leptin expression in response to changes in adipose tissue mass Proc. Natl. Acad. Sci. USA 2018 115 E6039 E6047 10.1073/pnas.1806366115 29891714 

  47. 47. Meng S. Cao J. Feng Q. Peng J. Hu Y. Roles of chlorogenic Acid on regulating glucose and lipids metabolism: A review Evid. Based Complementary Altern. Med. 2013 2013 10.1155/2013/801457 

  48. 48. Gao R. Yang H. Jing S. Liu B. Wei M. He P. Zhang N. Protective effect of chlorogenic acid on lipopolysaccharide-induced inflammatory response in dairy mammary epithelial cells Microb. Pathog. 2018 124 178 182 10.1016/j.micpath.2018.07.030 30053604 

  49. 49. Ma Y. Gao M. Liu D. Chlorogenic acid improves high fat diet-induced hepatic steatosis and insulin resistance in mice Pharm. Res. 2015 32 1200 1209 10.1007/s11095-014-1526-9 25248334 

  50. 50. Liang N. Kitts D.D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions Nutrients 2015 8 16 10.3390/nu8010016 

  51. 51. Naveed M. Hejazi V. Abbas M. Kamboh A.A. Khan G.J. Shumzaid M. Ahmad F. Babazadeh D. FangFang X. Modarresi-Ghazani F. Chlorogenic acid (CGA): A pharmacological review and call for further research Biomed. Pharmacother. 2018 97 67 74 10.1016/j.biopha.2017.10.064 29080460 

  52. 52. Villalpando-Arteaga E.V. Mendieta-Condado E. Esquivel-Solis H. Canales-Aguirre A.A. Galvez-Gastelum F.J. Mateos-Diaz J.C. Rodriguez-Gonzalez J.A. Marquez-Aguirre A.L. Hibiscus sabdariffa L. aqueous extract attenuates hepatic steatosis through down-regulation of PPAR-γ and SREBP-1c in diet-induced obese mice Food Funct. 2013 4 618 626 10.1039/c3fo30270a 23389749 

  53. 53. Hsu C.L. Yen G.C. Effects of flavonoids and phenolic acids on the inhibition of adipogenesis in 3T3-L1 adipocytes J. Agric. Food Chem. 2007 55 8404 8410 10.1021/jf071695r 17880164 

  54. 54. Peng S.G. Pang Y.L. Zhu Q. Kang J.H. Liu M.X. Wang Z. Huang Y. Chlorogenic Acid Functions as a Novel Agonist of PPAR γ 2 during the Differentiation of Mouse 3T3-L1 Preadipocytes BioMed Res. Int. 2018 2018 10.1155/2018/8594767 30627576 

  55. 55. Tsuda T. Horio F. Uchida K. Aoki H. Osawa T. Dietary Cyanidin 3-O-β-D-Glucoside-Rich Purple Corn Color Prevents Obesity and Ameliorates Hyperglycemia in Mice J. Nutr. 2003 133 2125 2130 10.1093/jn/133.7.2125 12840166 

  56. 56. Chem F. Regulation of Adipocyte Function by Anthocyanins J. Agric. Food Chem. 2008 56 642 646 18211021 

  57. 57. Guo H. Xia M. Zou T. Ling W. Zhong R. Zhang W. Cyanidin 3-glucoside attenuates obesity-associated insulin resistance and hepatic steatosis in high-fat diet-fed and db/db mice via the transcription factor FoxO1 J. Nutr. Biochem. 2012 23 349 360 10.1016/j.jnutbio.2010.12.013 21543211 

  58. 58. Chyau C.C. Chu C.C. Chen S.Y. Duh P. The inhibitory effects of Djulis ( Chenopodium formosanum ) and its bioactive compounds on adipogenesis in 3T3-L1 adipocytes Molecules 2018 23 1780 10.3390/molecules23071780 

  59. 59. Choi I. Park Y. Choi H. Lee E.H. Anti-adipogenic activity of rutin in 3T3-L1 cells and mice fed with high-fat diet BioFactors 2006 26 273 281 10.1002/biof.5520260405 17119273 

  60. 60. Nones K. Dommels Y.E.M. Martell S. Butts C. McNabb W.C. Park Z.A. Zhu S. Hedderley D. Barnett M.P.G. Roy N.C. The effects of dietary curcumin and rutin on colonic inflammation and gene expression in multidrug resistance gene-deficient (mdr1a-/-) mice, a model of inflammatory bowel diseases Br. J. Nutr. 2009 101 169 181 10.1017/S0007114508009847 18761777 

  61. 61. Cai Y. Fan C. Yan J. Tian N. Ma X. Effects of rutin on the expression of PPARγ in skeletal muscles of db/db mice Planta Med. 2012 78 861 865 10.1055/s-0031-1298548 22588834 

  62. 62. Zhu X. Yang L. Xu F. Lin L. Zheng G. Combination therapy with catechins and caffeine inhibits fat accumulation in 3T3-L1 cells Exp. Ther. Med. 2017 13 688 694 10.3892/etm.2016.3975 28352352 

  63. 63. Pinent M. Blade M.C. Salvado M.J. Arola L. Hackl H. Quackenbush J. Trajanoski Z. Ardevol A. Grape-seed derived procyanidins interfere with adipogenesis of 3T3-L1 cells at the onset of differentiation Int. J. Obes. 2005 29 934 941 10.1038/sj.ijo.0802988 15917849 

  64. 64. Zhang J. Huang Y. Shao H. Bi Q. Chen J. Ye Z. Grape seed procyanidin B2 inhibits adipogenesis of 3T3-L1 cells by targeting peroxisome proliferator-activated receptor γ with miR-483-5p involved mechanism Biomed. Pharmacother. 2017 86 292 296 10.1016/j.biopha.2016.12.019 28011376 

  65. 65. Fujisawa K. Nishikawa T. Kukidome D. Imoto K. Yamashiro T. Motoshima H. Matsumura T. Araki E. TZDs reduce mitochondrial ROS production and enhance mitochondrial biogenesis Biochem. Biophys. Res. Commun. 2009 379 43 48 10.1016/j.bbrc.2008.11.141 19084501 

  66. 66. Venkataraman B. Ojha S. Belur P.D. Bhongade B. Raj V. Collin P.D. Adrian T.E. Subramanya S.B. Phytochemical drug candidates for the modulation of peroxisome proliferator-activated receptor γ in inflammatory bowel diseases Phyther. Res. 2020 34 10.1002/ptr.6625 

  67. 67. Mahindroo N. Wang C.C. Liao C.C. Huang C.F. Lu I.L. Lien T.W. Peng Y.H. Huang W.J. Lin Y.T. Hsu M.C. Indol-1-yl acetic acids as peroxisome proliferator-activated receptor agonists: Design, synthesis, structural biology, and molecular docking studies J. Med. Chem. 2006 49 1212 1216 10.1021/jm0510373 16451087 

  68. 68. Liberato M.V. Nascimento A.S. Ayers S.D. Lin J.Z. Cvoro A. Silveira R.L. Martinez L. Souza P.C.T. Saidemberg D. Deng T. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and Pan-PPAR partial agonists PLoS ONE 2012 7 e36297 10.1371/journal.pone.0036297 22649490 

  69. 69. Weidner C. De Groot J.C. Prasad A. Freiwald A. Quedenau C. Kliem M. Witzke A. Kodelja V. Han C.T. Giegold S. Amorfrutins are potent antidiabetic dietary natural products Proc. Natl. Acad. Sci. USA 2012 109 7257 7262 10.1073/pnas.1116971109 22509006 

  70. 70. Aranaz P. Navarro-herrera D. Migu I. Romo-hualde A. Miguel L. Mart J.A. Vizmanos L. Milagro I. Javier C. Phenolic Compounds Inhibit 3T3-L1 Adipogenesis Depending on the Stage of Differentiation and Their Binding Affinity to PPAR γ Molecules 2019 24 1045 10.3390/molecules24061045 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로