$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Ishige okamurae Extract Suppresses Obesity and Hepatic Steatosis in High Fat Diet-Induced Obese Mice 원문보기

Nutrients, v.10 no.11, 2018년, pp.1802 -   

Seo, Young-Jin ,  Lee, Kippeum ,  Song, Ji-Hyeon ,  Chei, Sungwoo ,  Lee, Boo-Yong

Abstract AI-Helper 아이콘AI-Helper

Obesity is caused by the expansion of white adipose tissue (WAT), which stores excess triacylglycerol (TG), this can lead to disorders including type 2 diabetes, atherosclerosis, metabolic diseases. Ishige okamurae extract (IOE) is prepared from a brown alga and has anti-oxidative properties. We inv...

주제어

참고문헌 (54)

  1. 1. Bays H.E. González-Campoy J.M. Bray G.A. Kitabchi A.E. Bergman D.A. Schorr A.B. Rodbard H.W. Henry R.R. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity Expert Rev. Cardiovasc. Ther. 2008 6 343 368 10.1586/14779072.6.3.343 18327995 

  2. 2. Zechner R. Kienesberger P.C. Haemmerle G. Zimmermann R. Lass A. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores J. Lipid Res. 2009 50 3 21 10.1194/jlr.R800031-JLR200 18952573 

  3. 3. Hill J.O. Peters J.C. Environmental contributions to the obesity epidemic Science 1998 280 1371 1374 10.1126/science.280.5368.1371 9603719 

  4. 4. Wakil S.J. Abu-Elheiga L.A. Fatty acid metabolism: Target for metabolic syndrome J. Lipid Res. 2009 50 S138 S143 10.1194/jlr.R800079-JLR200 19047759 

  5. 5. Hotamisligil G.S. Shargill N.S. Spiegelman B.M. Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance Science 1993 259 87 91 10.1126/science.7678183 7678183 

  6. 6. Morrison R.F. Farmer S.R. Hormonal signaling and transcriptional control of adipocyte differentiation J. Nutr. 2000 130 3116S 3121S 10.1093/jn/130.12.3116S 11110883 

  7. 7. Rosen E.D. Walkey C.J. Puigserver P. Spiegelman B.M. Transcriptional regulation of adipogenesis Genes Dev. 2000 14 1293 1307 10837022 

  8. 8. Tafuri S.R. Troglitazone enhances differentiation, basal glucose uptake, and glut1 protein levels in 3T3-L1 adipocytes Endocrinology 1996 137 4706 4712 10.1210/endo.137.11.8895337 8895337 

  9. 9. Kubota N. Terauchi Y. Miki H. Tamemoto H. Yamauchi T. Komeda K. Satoh S. Nakano R. Ishii C. Sugiyama T. Ppar gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance Mol. Cell 1999 4 597 609 10.1016/S1097-2765(00)80210-5 10549291 

  10. 10. Spiegelman B.M. Flier J.S. Adipogenesis and obesity: Rounding out the big picture Cell 1996 87 377 389 10.1016/S0092-8674(00)81359-8 8898192 

  11. 11. Gaidhu M.P. Anthony N.M. Patel P. Hawke T.J. Ceddia R.B. Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: Role of ATGL, HSL, and AMPK Am. J. Physiol. Cell Physiol. 2010 298 C961 C971 10.1152/ajpcell.00547.2009 20107043 

  12. 12. Hardie D.G. Amp-activated/snf1 protein kinases: Conserved guardians of cellular energy Nat. Rev. Mol. Cell Biol. 2007 8 774 785 10.1038/nrm2249 17712357 

  13. 13. Hardie D.G. Ross F.A. Hawley S.A. Ampk: A nutrient and energy sensor that maintains energy homeostasis Nat. Rev. Mol. Cell Biol. 2012 13 251 10.1038/nrm3311 22436748 

  14. 14. Ahmadian M. Abbott M.J. Tang T. Hudak C.S. Kim Y. Bruss M. Hellerstein M.K. Lee H.Y. Samuel V.T. Shulman G.I. Desnutrin/atgl is regulated by AMPK and is required for a brown adipose phenotype Cell Metab. 2011 13 739 748 10.1016/j.cmet.2011.05.002 21641555 

  15. 15. Lass A. Zimmermann R. Oberer M. Zechner R. Lipolysis—A highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores Prog. Lipid Res. 2011 50 14 27 10.1016/j.plipres.2010.10.004 21087632 

  16. 16. Ginsberg H.N. Insulin resistance and cardiovascular disease J. Clin. Investig. 2000 106 453 458 10.1172/JCI10762 10953019 

  17. 17. Sparks L.M. Xie H. Koza R.A. Mynatt R. Hulver M.W. Bray G.A. Smith S.R. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle Diabetes 2005 54 1926 1933 10.2337/diabetes.54.7.1926 15983191 

  18. 18. Bulow J. Madsen J. Influence of blood flow on fatty acid mobilization form lipolytically active adipose tissue Pflugers Arch. 1981 390 169 174 10.1007/BF00590202 7195565 

  19. 19. Villanueva C.J. Monetti M. Shih M. Zhou P. Watkins S.M. Bhanot S. Farese R.V. Specific role for acyl coa: Diacylglycerol acyltransferase 1 (Dgat1) in hepatic steatosis due to exogenous fatty acids Hepatology 2009 50 434 442 10.1002/hep.22980 19472314 

  20. 20. Lee Y.J. Ko E.H. Kim J.E. Kim E. Lee H. Choi H. Yu J.H. Kim H.J. Seong J.-K. Kim K.-S. Nuclear receptor PPARγ-regulated monoacylglycerol O -acyltransferase 1 expression is responsible for the lipid accumulation in diet-induced hepatic steatosis Proc. Natl. Acad. Sci. USA 2012 109 13656 13661 10.1073/pnas.1203218109 22869740 

  21. 21. Milić S. Lulić D. Štimac D. Non-alcoholic fatty liver disease and obesity: Biochemical, metabolic and clinical presentations World J. Gastroenterol. 2014 20 9330 25071327 

  22. 22. Henao-Mejia J. Elinav E. Jin C. Hao L. Mehal W.Z. Strowig T. Thaiss C.A. Kau A.L. Eisenbarth S.C. Jurczak M.J. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity Nature 2012 482 179 185 10.1038/nature10809 22297845 

  23. 23. Den Besten G. Bleeker A. Gerding A. van Eunen K. Havinga R. van Dijk T.H. Oosterveer M.H. Jonker J.W. Groen A.K. Reijngoud D.-J. Short-chain fatty acids protect against high-fat diet–induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation Diabetes 2015 64 2398 2408 10.2337/db14-1213 25695945 

  24. 24. Lee J. Ellis J.M. Wolfgang M.J. Adipose fatty acid oxidation is required for thermogenesis and potentiates oxidative stress-induced inflammation Cell Rep. 2015 10 266 279 10.1016/j.celrep.2014.12.023 25578732 

  25. 25. Chater P.I. Wilcox M.D. Houghton D. Pearson J.P. The role of seaweed bioactives in the control of digestion: Implications for obesity treatments Food Funct. 2015 6 3420 3427 10.1039/C5FO00293A 26416783 

  26. 26. Kim M.S. Kim J.Y. Choi W.H. Lee S.S. Effects of seaweed supplementation on blood glucose concentration, lipid profile, and antioxidant enzyme activities in patients with type 2 diabetes mellitus Nutr. Res. Pract. 2008 2 62 67 10.4162/nrp.2008.2.2.62 20126367 

  27. 27. Seo Y.-J. Kim K.-J. Choi J. Koh E.-J. Lee B.-Y.J.N. Spirulina maxima extract reduces obesity through suppression of adipogenesis and activation of browning in 3T3-L1 cells and high-fat diet-induced obese mice Nutrients 2018 10 712 10.3390/nu10060712 29865208 

  28. 28. Kim M.M. Rajapakse N. Kim S.K. Anti-inflammatory effect of Ishige okamurae ethanolic extract via inhibition of NF-κB transcription factor in RAW 264.7 cells Phytother. Res. 2009 23 628 634 10.1002/ptr.2674 19117331 

  29. 29. Lee S.-H. Choi J.-I. Heo S.-J. Park M.-H. Park P.-J. Jeon B.-T. Kim S.-K. Han J.-S. Jeon Y.-J. Diphlorethohydroxycarmalol isolated from pae ( Ishige okamurae ) protects high glucose-induced damage in RINM5F pancreatic β cells via its antioxidant effects Food Sci. Biotechnol. 2012 21 239 246 10.1007/s10068-012-0031-3 

  30. 30. Ahn M. Moon C. Yang W. Ko E.J. Hyun J.W. Joo H.G. Jee Y. Lee N.H. Park J.W. Ko R.K. Diphlorethohydroxycarmalol, isolated from the brown algae Ishige okamurae , protects against radiation-induced cell damage in mice Food Chem. Toxicol. 2011 49 864 870 10.1016/j.fct.2010.12.008 21163321 

  31. 31. Zou Y. Qian Z.-J. Li Y. Kim M.-M. Lee S.-H. Kim S.-K. Antioxidant effects of phlorotannins isolated from Ishige okamurae in free radical mediated oxidative systems J. Agric. Food Chem. 2008 56 7001 7009 10.1021/jf801133h 18616277 

  32. 32. Heo S.-J. Cha S.-H. Kim K.-N. Lee S.-H. Ahn G. Kang D.-H. Oh C. Choi Y.-U. Affan A. Kim D. Neuroprotective effect of phlorotannin isolated from Ishige okamurae against H 2 O 2 -induced oxidative stress in murine hippocampal neuronal cells, HT22 Appl. Biochem. Biotechnol. 2012 166 1520 1532 10.1007/s12010-012-9545-7 22281782 

  33. 33. Kim M.J. Jeon J. Lee J.S. Fucoidan prevents high-fat diet-induced obesity in animals by suppression of fat accumulation Phytother. Res. 2014 28 137 143 10.1002/ptr.4965 23580241 

  34. 34. Ryu B. Jiang Y. Kim H.S. Hyun J.M. Lim S.B. Li Y. Jeon Y.J. Ishophloroglucin A, a novel phlorotannin for standardizing the Anti-alpha-Glucosidase activity of Ishige okamurae Mar. Drugs 2018 16 436 10.3390/md16110436 30413003 

  35. 35. Miettinen T.A. Cholesterol production in obesity Circulation 1971 44 842 850 10.1161/01.CIR.44.5.842 5115077 

  36. 36. Okazaki M. Usui S. Ishigami M. Sakai N. Nakamura T. Matsuzawa Y. Yamashita S. Identification of unique lipoprotein subclasses for visceral obesity by component analysis of cholesterol profile in high-performance liquid chromatography Arterioscler. Thromb. Vasc. Biol. 2005 25 578 584 10.1161/01.ATV.0000155017.60171.88 15637308 

  37. 37. Hong S.J. Lee J.H. Kim E.J. Yang H.J. Park J.S. Hong S.K. Anti-obesity and anti-diabetic effect of neoagarooligosaccharides on high-fat diet-induced obesity in mice Mar. Drugs 2017 15 10.3390/md15040090 28333098 

  38. 38. Giri S. Rattan R. Haq E. Khan M. Yasmin R. Won J.S. Key L. Singh A.K. Singh I. Aicar inhibits adipocyte differentiation in 3T3L1 and restores metabolic alterations in diet-induced obesity mice model Nutr. Metab. 2006 3 31 10.1186/1743-7075-3-31 16901342 

  39. 39. Ebbert J.O. Jensen M.D. Fat depots, free fatty acids, and dyslipidemia Nutrients 2013 5 498 508 10.3390/nu5020498 23434905 

  40. 40. Gao X. Li K. Hui X. Kong X. Sweeney G. Wang Y. Xu A. Teng M. Liu P. Wu D. Carnitine palmitoyltransferase 1A prevents fatty acid-induced adipocyte dysfunction through suppression of c-jun N-terminal kinase Biochem. J. 2011 435 723 732 10.1042/BJ20101680 21348853 

  41. 41. Jung U.J. Choi M.S. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease Int. J. Mol. Sci. 2014 15 6184 6223 10.3390/ijms15046184 24733068 

  42. 42. Zang M. The molecular basis of hepatic de novo lipogenesis in insulin resistance Hepatic de novo Lipogenesis and Regulation of Metabolism Springer Cham, Switzerland 2016 33 58 

  43. 43. Muoio D.M. Seefeld K. Witters L.A. Coleman R.A. Amp-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: Evidence that SN-glycerol-3-phosphate acyltransferase is a novel target Biochem. J. 1999 338 783 791 10.1042/bj3380783 10051453 

  44. 44. Younossi Z.M. Koenig A.B. Abdelatif D. Fazel Y. Henry L. Wymer M. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes Hepatology 2016 64 73 84 10.1002/hep.28431 26707365 

  45. 45. Meydani M. Hasan S.T. Dietary polyphenols and obesity Nutrients 2010 2 737 751 10.3390/nu2070737 22254051 

  46. 46. Klaus S. Pültz S. Thöne-Reineke C. Wolfram S. Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation Int. J. Obes. 2005 29 615 10.1038/sj.ijo.0802926 15738931 

  47. 47. Min K.H. Kim H.J. Jeon Y.J. Han J.S. Ishige okamurae ameliorates hyperglycemia and insulin resistance in C57BL/KsJ-db/db mice Diabetes Res. Clin. Pract. 2011 93 70 76 10.1016/j.diabres.2011.03.018 21481483 

  48. 48. Duncan R.E. Ahmadian M. Jaworski K. Sarkadi-Nagy E. Sul H.S. Regulation of lipolysis in adipocytes Annu. Rev. Nutr. 2007 27 79 101 10.1146/annurev.nutr.27.061406.093734 17313320 

  49. 49. Srivastava R.A. Pinkosky S.L. Filippov S. Hanselman J.C. Cramer C.T. Newton R.S. Amp-activated protein kinase: An emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases J. Lipid Res. 2012 53 2490 2514 10.1194/jlr.R025882 22798688 

  50. 50. Schreurs M. Kuipers F. Van Der Leij F. Regulatory enzymes of mitochondrial β-oxidation as targets for treatment of the metabolic syndrome Obes. Rev. 2010 11 380 388 10.1111/j.1467-789X.2009.00642.x 19694967 

  51. 51. Eaton S. Control of mitochondrial β-oxidation flux Prog. Lipid Res. 2002 41 197 239 10.1016/S0163-7827(01)00024-8 11814524 

  52. 52. Hwang Y.P. Choi J.H. Han E.H. Kim H.G. Wee J.H. Jung K.O. Jung K.H. Kwon K.I. Jeong T.C. Chung Y.C. Purple sweet potato anthocyanins attenuate hepatic lipid accumulation through activating adenosine monophosphate-activated protein kinase in human HEPG2 cells and obese mice Nutr. Res. 2011 31 896 906 10.1016/j.nutres.2011.09.026 22153515 

  53. 53. Ipsen D.H. Lykkesfeldt J. Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease Cell Mol. Life Sci. 2018 1 15 10.1007/s00018-018-2860-6 29080091 

  54. 54. Sekiya M. Yahagi N. Matsuzaka T. Takeuchi Y. Nakagawa Y. Takahashi H. Okazaki H. Iizuka Y. Ohashi K. Gotoda T. Srebp-1-independent regulation of lipogenic gene expression in adipocytes J. Lipid Res. 2007 48 1581 1591 10.1194/jlr.M700033-JLR200 17456898 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로