최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기ACS applied materials & interfaces, v.12 no.25, 2020년, pp.28768 - 28774
Kim, So-Young (Graduate School of Energy, Environment, Water, and Sustainability, School of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Korea) , Ryou, Junga , Kim, Min Jae , Kim, Kiyung , Lee, Yongsu , Kim, Seung-Mo , Hwang, Hyeon Jun , Kim, Yong-Hoon , Lee, Byoung Hun
The physical and chemical characteristics of the edge states of graphene have been studied extensively as they affect the electrical properties of graphene significantly. Likewise, the edge states of graphene in contact with semiconductors or transition-metal dichalcogenides (TMDs) are expected to h...
Yang, Heejun, Heo, Jinseong, Park, Seongjun, Song, Hyun Jae, Seo, David H., Byun, Kyung-Eun, Kim, Philip, Yoo, InKyeong, Chung, Hyun-Jong, Kim, Kinam. Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier. Science, vol.336, no.6085, 1140-1143.
2014 Silicon Nanoelectronics Workshop (SNW) Noh J. 1 2014
Kim, Wonjae, Li, Changfeng, Chaves, Ferney A., Jiménez, David, Rodriguez, Raul D., Susoma, Jannatul, Fenner, Matthias A., Lipsanen, Harri, Riikonen, Juha. Tunable Graphene–GaSe Dual Heterojunction Device. Advanced materials, vol.28, no.9, 1845-1852.
Lemaitre, Maxime G., Donoghue, Evan P., McCarthy, Mitchell A., Liu, Bo, Tongay, Sefaattin, Gila, Brent, Kumar, Purushottam, Singh, Rajiv K., Appleton, Bill R., Rinzler, Andrew G.. Improved Transfer of Graphene for Gated Schottky-Junction, Vertical, Organic, Field-Effect Transistors. ACS nano, vol.6, no.10, 9095-9102.
Hwang, Hyeon Jun, Chang, Kyoung Eun, Yoo, Won Beom, Shim, Chang Hoo, Lee, Sang Kyung, Yang, Jin Ho, Kim, So-Young, Lee, Yongsu, Cho, Chunhum, Lee, Byoung Hun. A graphene barristor using nitrogen profile controlled ZnO Schottky contacts. Nanoscale, vol.9, no.7, 2442-2448.
Chuang, Hsun-Jen, Tan, Xuebin, Ghimire, Nirmal Jeevi, Perera, Meeghage Madusanka, Chamlagain, Bhim, Cheng, Mark Ming-Cheng, Yan, Jiaqiang, Mandrus, David, Tománek, David, Zhou, Zhixian. High Mobility WSe2 p- and n-Type Field-Effect Transistors Contacted by Highly Doped Graphene for Low-Resistance Contacts. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.14, no.6, 3594-3601.
Kim, Kyounghwan, Larentis, Stefano, Fallahazad, Babak, Lee, Kayoung, Xue, Jiamin, Dillen, David C., Corbet, Chris M., Tutuc, Emanuel. Band Alignment in WSe2–Graphene Heterostructures. ACS nano, vol.9, no.4, 4527-4532.
Shim, Jaewoo, Kim, Hyo Seok, Shim, Yoon Su, Kang, Dong‐Ho, Park, Hyung‐Youl, Lee, Jaehyeong, Jeon, Jaeho, Jung, Seong Jun, Song, Young Jae, Jung, Woo‐Shik, Lee, Jaeho, Park, Seongjun, Kim, Jeehwan, Lee, Sungjoo, Kim, Yong‐Hoon, Park, Jin‐Hong. Extremely Large Gate Modulation in Vertical Graphene/WSe2 Heterojunction Barristor Based on a Novel Transport Mechanism. Advanced materials, vol.28, no.26, 5293-5299.
Yu, Lili, Lee, Yi-Hsien, Ling, Xi, Santos, Elton J. G., Shin, Yong Cheol, Lin, Yuxuan, Dubey, Madan, Kaxiras, Efthimios, Kong, Jing, Wang, Han, Palacios, Tomás. Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.14, no.6, 3055-3063.
Chaves, Ferney A., Jimenez, David. The Role of the Fermi Level Pinning in Gate Tunable Graphene-Semiconductor Junctions. IEEE transactions on electron devices, vol.63, no.11, 4521-4526.
Lin, J.H., Zeng, J.J., Lin, Y.J.. Electronic transport for graphene/n-type Si Schottky diodes with and without H2O2 treatment. Thin solid films, vol.550, 582-586.
Lee, Sang Kyung, Kim, Yun Ji, Heo, Sunwoo, Park, Woojin, Yoo, Tae Jin, Cho, Chunhum, Hwang, Hyeon Jun, Lee, Byoung Hun. Advantages of a buried-gate structure for graphene field-effect transistor. Semiconductor science and technology, vol.34, no.5, 055010-.
Cho, Chunhum, Lee, Sang Kyung, Noh, Jin Woo, Park, Woojin, Lee, Sangchul, Lee, Young Gon, Hwang, Hyeon Jun, Kang, Chang Goo, Ham, Moon-Ho, Lee, Byoung Hun. Contact resistance improvement by the modulation of peripheral length to area ratio of graphene contact pattern. Applied physics letters, vol.106, no.21, 213107-.
Khatami, Yasin, Li, Hong, Xu, Chuan, Banerjee, Kaustav. Metal-to-Multilayer-Graphene Contact—Part I: Contact Resistance Modeling. IEEE transactions on electron devices, vol.59, no.9, 2444-2452.
Cho, Kyeongjae, Gong, Cheng, Lee, Geunsik, Wang, Weichao, Shan, Bin, Vogel, Eric M., Wallace, Robert M.. First-Principles and Quantum Transport Studies of Metal-Graphene End Contacts. Materials Research Society symposia proceedings, vol.1259, 1259-S14-35-.
Matsuda, Yuki, Deng, Wei-Qiao, Goddard, William A.. Contact Resistance for “End-Contacted” Metal−Graphene and Metal−Nanotube Interfaces from Quantum Mechanics. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.114, no.41, 17845-17850.
Kim, So‐Young, Hwang, Jeongwoon, Kim, Yun Ji, Hwang, Hyeon Jun, Son, Myungwoo, Revannath, Nikam, Ham, Moon‐Ho, Cho, Kyeongjae, Lee, Byoung Hun. Threshold Voltage Modulation of a Graphene-ZnO Barristor Using a Polymer Doping Process. Advanced electronic materials, vol.5, no.7, 1800805-.
Kim, Yong-Hoon, Sung Kim, Hu. Anomalous length scaling of carbon nanotube-metal contact resistance: An ab initio study. Applied physics letters, vol.100, no.21, 213113-.
Kim, Han Seul, Kim, Hu Sung, Lee, Ga In, Kang, Jeung Ku, Kim, Yong-Hoon. Intrinsically low-resistance carbon nanotube-metal contacts mediated by topological defects. MRS Communications, vol.2, no.3, 91-96.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.