$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Protein folding from heterogeneous unfolded state revealed by time-resolved X-ray solution scattering 원문보기

Proceedings of the National Academy of Sciences of the United States of America, v.117 no.26, 2020년, pp.14996 - 15005  

Kim, Tae Wu (Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea) ,  Lee, Sang Jin ,  Jo, Junbeom (Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea) ,  Kim, Jong Goo ,  Ki, Hosung (Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea) ,  Kim, Chang Woo ,  Cho, Kwang Hyun (Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea) ,  Choi, Jungkweon ,  Lee, Jae Hyuk (Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea) ,  Wulff, Michael ,  Rhee, Young Min (Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea) ,  Ihee, Hyotcherl

Abstract AI-Helper 아이콘AI-Helper

SignificanceProtein undergoes a folding pathway to find a three-dimensional structure that expresses its biological function in a living cell. From vast theoretical studies, the funnel-like free-energy landscape has been recognized as a prominent scheme to describe protein folding, but it has been u...

Keyword

참고문헌 (68)

  1. 1 Anfinsen C. B. , Principles that govern the folding of protein chains . Science 181 , 223 ? 230 ( 1973 ). 4124164 

  2. 2 Levinthal C. , “ “How to fold graciously” ” in Mossbauer Spectroscopy in Biological Systems , Debrunner P. , Tsibris J. , Munck E. , Eds. ( University of Illinois Press , Urbana , 1969 ), Vol. 67 , pp. 22 ? 24 . 

  3. 3 Sali A. , Shakhnovich E. , Karplus M. , How does a protein fold? Nature 369 , 248 ? 251 ( 1994 ). 7710478 

  4. 4 Bryngelson J. D. , Onuchic J. N. , Socci N. D. , Wolynes P. G. , Funnels, pathways, and the energy landscape of protein folding: A synthesis . Proteins 21 , 167 ? 195 ( 1995 ). 7784423 

  5. 5 Onuchic J. N. , Wolynes P. G. , Luthey-Schulten Z. , Socci N. D. , Toward an outline of the topography of a realistic protein-folding funnel . Proc. Natl. Acad. Sci. U.S.A. 92 , 3626 ? 3630 ( 1995 ). 7724609 

  6. 6 Socci N. D. , Onuchic J. N. , Wolynes P. G. , Diffusive dynamics of the reaction coordinate for protein folding funnels . J. Chem. Phys. 104 , 5860 ? 5868 ( 1996 ). 

  7. 7 Dill K. A. , Chan H. S. , From Levinthal to pathways to funnels . Nat. Struct. Biol. 4 , 10 ? 19 ( 1997 ). 8989315 

  8. 8 Dobson C. M. , ?ali A. , Karplus M. , Protein folding: A perspective from theory and experiment . Angew. Chem. Int. Ed. Engl. 37 , 868 ? 893 ( 1998 ). 29711488 

  9. 9 Plotkin S. S. , Onuchic J. N. , Investigation of routes and funnels in protein folding by free energy functional methods . Proc. Natl. Acad. Sci. U.S.A. 97 , 6509 ? 6514 ( 2000 ). 10841554 

  10. 10 Hardin C. , Eastwood M. P. , Prentiss M. , Luthey-Schulten Z. , Wolynes P. G. , Folding funnels: The key to robust protein structure prediction . J. Comput. Chem. 23 , 138 ? 146 ( 2002 ). 11913379 

  11. 11 Leopold P. E. , Montal M. , Onuchic J. N. , Protein folding funnels: A kinetic approach to the sequence-structure relationship . Proc. Natl. Acad. Sci. U.S.A. 89 , 8721 ? 8725 ( 1992 ). 1528885 

  12. 12 Ellison P. A. , Cavagnero S. , Role of unfolded state heterogeneity and en-route ruggedness in protein folding kinetics . Protein Sci. 15 , 564 ? 582 ( 2006 ). 16501227 

  13. 13 Fedyukina D. V. , Cavagnero S. , Protein folding at the exit tunnel . Annu. Rev. Biophys. 40 , 337 ? 359 ( 2011 ). 21370971 

  14. 14 Sabelko J. , Ervin J. , Gruebele M. , Observation of strange kinetics in protein folding . Proc. Natl. Acad. Sci. U.S.A. 96 , 6031 ? 6036 ( 1999 ). 10339536 

  15. 15 Gillespie B. , Plaxco K. W. , Nonglassy kinetics in the folding of a simple single-domain protein . Proc. Natl. Acad. Sci. U.S.A. 97 , 12014 ? 12019 ( 2000 ). 11050233 

  16. 16 Garcia-Mira M. M. , Sadqi M. , Fischer N. , Sanchez-Ruiz J. M. , Munoz V. , Experimental identification of downhill protein folding . Science 298 , 2191 ? 2195 ( 2002 ). 12481137 

  17. 17 Krantz B. A. , Mayne L. , Rumbley J. , Englander S. W. , Sosnick T. R. , Fast and slow intermediate accumulation and the initial barrier mechanism in protein folding . J. Mol. Biol. 324 , 359 ? 371 ( 2002 ). 12441113 

  18. 18 Saigo S. , Shibayama N. , Highly nonexponential kinetics in the early-phase refolding of proteins at low temperatures . Biochemistry 42 , 9669 ? 9676 ( 2003 ). 12911308 

  19. 19 Yang W. Y. , Pitera J. W. , Swope W. C. , Gruebele M. , Heterogeneous folding of the trpzip hairpin: Full atom simulation and experiment . J. Mol. Biol. 336 , 241 ? 251 ( 2004 ). 14741219 

  20. 20 Ma H. , Gruebele M. , Kinetics are probe-dependent during downhill folding of an engineered lambda6-85 protein . Proc. Natl. Acad. Sci. U.S.A. 102 , 2283 ? 2287 ( 2005 ). 15699334 

  21. 21 Li P. , Oliva F. Y. , Naganathan A. N. , Munoz V. , Dynamics of one-state downhill protein folding . Proc. Natl. Acad. Sci. U.S.A. 106 , 103 ? 108 ( 2009 ). 19118204 

  22. 22 Stigler J. , Ziegler F. , Gieseke A. , Gebhardt J. C. M. , Rief M. , The complex folding network of single calmodulin molecules . Science 334 , 512 ? 516 ( 2011 ). 22034433 

  23. 23 Lee A. J. , Asher W. B. , Stern H. A. , Bren K. L. , Krauss T. D. , Single-molecule analysis of cytochrome c folding by monitoring the lifetime of an attached fluorescent probe . J. Phys. Chem. Lett. 4 , 2727 ? 2733 ( 2013 ). 24116268 

  24. 24 Abaskharon R. M. , Culik R. M. , Woolley G. A. , Gai F. , Tuning the attempt frequency of protein folding dynamics via transition-state rigidification: Application to Trp-cage . J. Phys. Chem. Lett. 6 , 521 ? 526 ( 2015 ). 26120378 

  25. 25 Jones C. M. . , Fast events in protein folding initiated by nanosecond laser photolysis . Proc. Natl. Acad. Sci. U.S.A. 90 , 11860 ? 11864 ( 1993 ). 8265638 

  26. 26 Chen E. , Abel C. J. , Goldbeck R. A. , Kliger D. S. , Non-native heme-histidine ligation promotes microsecond time scale secondary structure formation in reduced horse heart cytochrome c . Biochemistry 46 , 12463 ? 12472 ( 2007 ). 17914866 

  27. 27 Nishida S. , Nada T. , Terazima M. , Kinetics of intermolecular interaction during protein folding of reduced cytochrome c . Biophys. J. 87 , 2663 ? 2675 ( 2004 ). 15454461 

  28. 28 Chen E. , Goldbeck R. A. , Kliger D. S. , The earliest events in protein folding: A structural requirement for ultrafast folding in cytochrome C . J. Am. Chem. Soc. 126 , 11175 ? 11181 ( 2004 ). 15355098 

  29. 29 Chen E. F. , Goldbeck R. A. , Kliger D. S. , Earliest events in protein folding: Submicrosecond secondary structure formation in reduced cytochrome c . J. Phys. Chem. A 107 , 8149 ? 8155 ( 2003 ). 

  30. 30 Akiyama S. . , Conformational landscape of cytochrome c folding studied by microsecond-resolved small-angle x-ray scattering . Proc. Natl. Acad. Sci. U.S.A. 99 , 1329 ? 1334 ( 2002 ). 11773620 

  31. 31 Pascher T. , Temperature and driving force dependence of the folding rate of reduced horse heart cytochrome c . Biochemistry 40 , 5812 ? 5820 ( 2001 ). 11341847 

  32. 32 Telford J. R. , Tezcan F. A. , Gray H. B. , Winkler J. R. , Role of ligand substitution in ferrocytochrome c folding . Biochemistry 38 , 1944 ? 1949 ( 1999 ). 10026276 

  33. 33 Chen E. F. , Wittung-Stafshede P. , Kliger D. S. , Far-UV time-resolved circular dichroism detection of electron-transfer-triggered cytochrome c folding . J. Am. Chem. Soc. 121 , 3811 ? 3817 ( 1999 ). 

  34. 34 Telford J. R. , Wittung-Stafshede P. , Gray H. B. , Winkler J. R. , Protein folding triggered by electron transfer . Acc. Chem. Res. 31 , 755 ? 763 ( 1998 ). 

  35. 35 Pascher T. , Chesick J. P. , Winkler J. R. , Gray H. B. , Protein folding triggered by electron transfer . Science 271 , 1558 ? 1560 ( 1996 ). 8599112 

  36. 36 Rimmerman D. . , Probing cytochrome c folding transitions upon phototriggered environmental perturbations using time-resolved X-ray scattering . J. Phys. Chem. B 122 , 5218 ? 5224 ( 2018 ). 29709179 

  37. 37 Hagen S. J. , Hofrichter J. , Szabo A. , Eaton W. A. , Diffusion-limited contact formation in unfolded cytochrome c: Estimating the maximum rate of protein folding . Proc. Natl. Acad. Sci. U.S.A. 93 , 11615 ? 11617 ( 1996 ). 8876184 

  38. 38 Thirumalai D. , Klimov D. K. , Woodson S. A. , Kinetic partitioning mechanism as a unifying theme in the folding of biomolecules . Theor. Chem. Acc. 96 , 14 ? 22 ( 1997 ). 

  39. 39 Chan C. K. . , Submillisecond protein folding kinetics studied by ultrarapid mixing . Proc. Natl. Acad. Sci. U.S.A. 94 , 1779 ? 1784 ( 1997 ). 9050855 

  40. 40 Sosnick T. R. , Mayne L. , Hiller R. , Englander S. W. , The barriers in protein folding . Nat. Struct. Biol. 1 , 149 ? 156 ( 1994 ). 7656032 

  41. 41 Shastry M. C. , Roder H. , Evidence for barrier-limited protein folding kinetics on the microsecond time scale . Nat. Struct. Biol. 5 , 385 ? 392 ( 1998 ). 9587001 

  42. 42 Bhuyan A. K. , Udgaonkar J. B. , Folding of horse cytochrome c in the reduced state . J. Mol. Biol. 312 , 1135 ? 1160 ( 2001 ). 11580255 

  43. 43 Ki H. , Oang K. Y. , Kim J. , Ihee H. , Ultrafast X-ray crystallography and liquidography . Annu. Rev. Phys. Chem. 68 , 473 ? 497 ( 2017 ). 28375690 

  44. 44 Chen Y. . , Asymmetric unwrapping of nucleosomal DNA propagates asymmetric opening and dissociation of the histone core . Proc. Natl. Acad. Sci. U.S.A. 114 , 334 ? 339 ( 2017 ). 28028239 

  45. 45 Kim T. W. . , Combined probes of X-ray scattering and optical spectroscopy reveal how global conformational change is temporally and spatially linked to local structural perturbation in photoactive yellow protein . Phys. Chem. Chem. Phys. 18 , 8911 ? 8919 ( 2016 ). 26960811 

  46. 46 Kim J. G. , Kim T. W. , Kim J. , Ihee H. , Protein structural dynamics revealed by time-resolved X-ray solution scattering . Acc. Chem. Res. 48 , 2200 ? 2208 ( 2015 ). 26134248 

  47. 47 Kim T. W. . , Protein structural dynamics of photoactive yellow protein in solution revealed by pump-probe X-ray solution scattering . J. Am. Chem. Soc. 134 , 3145 ? 3153 ( 2012 ). 22304441 

  48. 48 Westenhoff S. . , Time-resolved structural studies of protein reaction dynamics: A smorgasbord of X-ray approaches . Acta Crystallogr. A 66 , 207 ? 219 ( 2010 ). 20164644 

  49. 49 Cho H. S. . , Protein structural dynamics in solution unveiled via 100-ps time-resolved x-ray scattering . Proc. Natl. Acad. Sci. U.S.A. 107 , 7281 ? 7286 ( 2010 ). 20406909 

  50. 50 Cammarata M. . , Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering . Nat. Methods 5 , 881 ? 886 ( 2008 ). 18806790 

  51. 51 Cammarata M. . , Impulsive solvent heating probed by picosecond x-ray diffraction . J. Chem. Phys. 124 , 124504 ( 2006 ). 16599694 

  52. 52 Mertens H. D. T. , Svergun D. I. , Structural characterization of proteins and complexes using small-angle X-ray solution scattering . J. Struct. Biol. 172 , 128 ? 141 ( 2010 ). 20558299 

  53. 53 Nasedkin A. . , Deconvoluting protein (un)folding structural ensembles using X-ray scattering, nuclear magnetic resonance spectroscopy and molecular dynamics simulation . PLoS One 10 , e0125662 ( 2015 ). 25946337 

  54. 54 Bernado P. , Svergun D. I. , Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering . Mol. Biosyst. 8 , 151 ? 167 ( 2012 ). 21947276 

  55. 55 Bernado P. , Mylonas E. , Petoukhov M. V. , Blackledge M. , Svergun D. I. , Structural characterization of flexible proteins using small-angle X-ray scattering . J. Am. Chem. Soc. 129 , 5656 ? 5664 ( 2007 ). 17411046 

  56. 56 Jones G. , Genetic and Evolutionary Algorithms , ( Wiley , Chichester, United Kingdom , 1998 ). 

  57. 57 Segel D. J. , Fink A. L. , Hodgson K. O. , Doniach S. , Protein denaturation: A small-angle X-ray scattering study of the ensemble of unfolded states of cytochrome c . Biochemistry 37 , 12443 ? 12451 ( 1998 ). 9730816 

  58. 58 Orii Y. , Immediate reduction of cytochrome c by photoexcited NADH: Reaction mechanism as revealed by flow-flash and rapid-scan studies . Biochemistry 32 , 11910 ? 11914 ( 1993 ). 8218263 

  59. 59 Oang K. Y. , Yang C. , Muniyappan S. , Kim J. , Ihee H. , SVD-aided pseudo principal-component analysis: A new method to speed up and improve determination of the optimum kinetic model from time-resolved data . Struct. Dyn. 4 , 44013 ( 2017 ). 

  60. 60 Kohlrausch R. , Theorie des elektrischen Ruckstandes in der Leidener Flasche . Ann. Phys. 72 , 393 ? 398 ( 1854 ). 

  61. 61 Kumar A. T. N. , Zhu L. , Christian J. F. , Demidov A. A. , Champion P. M. , On the rate distribution analysis of kinetic data using the maximum entropy method: Applications to myoglobin relaxation on the nanosecond and femtosecond timescales . J. Phys. Chem. B 105 , 7847 ? 7856 ( 2001 ). 

  62. 62 Kataoka M. , Hagihara Y. , Mihara K. , Goto Y. , Molten globule of cytochrome c studied by small angle X-ray scattering . J. Mol. Biol. 229 , 591 ? 596 ( 1993 ). 8381874 

  63. 63 Churg A. K. , Warshel A. , Control of the redox potential of cytochrome c and microscopic dielectric effects in proteins . Biochemistry 25 , 1675 ? 1681 ( 1986 ). 3011070 

  64. 64 Guo Z. , Thirumalai D. , Kinetics of protein folding: Nucleation mechanism, time scales, and pathways . Biopolymers 36 , 83 ? 102 ( 1996 ). 

  65. 65 Hagen S. J. , Hofrichter J. , Eaton W. A. , Rate of intrachain diffusion of unfolded cytochrome c . J. Phys. Chem. B 101 , 2352 ? 2365 ( 1997 ). 

  66. 66 Ridge J. A. , Baldwin R. L. , Labhardt A. M. , Nature of the fast and slow refolding reactions of iron(III) cytochrome c . Biochemistry 20 , 1622 ? 1630 ( 1981 ). 6261802 

  67. 67 Piana S. , Donchev A. G. , Robustelli P. , Shaw D. E. , Water dispersion interactions strongly influence simulated structural properties of disordered protein states . J. Phys. Chem. B 119 , 5113 ? 5123 ( 2015 ). 25764013 

  68. 68 Riback J. A. . , Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water . Science 358 , 238 ? 241 ( 2017 ). 29026044 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로