$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Chemical looping gasification of cotton stalk with bimetallic Cu/Ni/olivine as oxygen carrier 원문보기

International journal of energy research, v.44 no.9, 2020년, pp.7268 - 7282  

Pan, Yue (Key Laboratory of Coal Clean Conversion & Chemical Engineering Process (Xinjiang Uyghur Autonomous Region), College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, China) ,  Tursun, Yalkunjan (Key Laboratory of Coal Clean Conversion & Chemical Engineering Process (Xinjiang Uyghur Autonomous Region), College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, China) ,  Abduhani, Hairat (Key Laboratory of Coal Clean Conversion & Chemical Engineering Process (Xinjiang Uyghur Autonomous Region), College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, China) ,  Turap, Yusan (School of Environment, Tsinghua University, Beijing, China) ,  Abulizi, Abulikemu (Key Laboratory of Coal Clean Conversion & Chemical Engineering Process (Xinjiang Uyghur Autonomous Region), College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, China

Abstract AI-Helper 아이콘AI-Helper

SummaryBimetallic Cu/Ni/olivine oxygen carriers (OCs) were prepared using olivine as support material for chemical looping gasification (CLG). The cyclic redox behaviors and oxygen carrying capacity (Ro) of OCs were evaluated by thermo‐gravimetric analysis. The effect of Cu/Ni ratio, gasificat...

Keyword

참고문헌 (58)

  1. Bizon N , Thounthong P . Fuel economy using the global optimization of the fuel cell hybrid power systems . Energ Conver Manage . 2018 ; 173 : 665 ‐ 678 . 

  2. Li D , Tamura M , Nakagawa Y , Tomishige K . Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass . Bioresour Technol . 2015 ; 178 : 53 ‐ 64 . 

  3. Tursun Y , Xu S , Abulikemu A , Dilinuer T . Biomass gasification for hydrogen rich gas in a decoupled triple bed gasifier with olivine and NiO/olivine . Bioresour Technol . 2019 ; 272 : 241 ‐ 248 . 

  4. Zeng J , Xiao R , Zeng D , Zhao Y , Zhang H , Shen D . High H2/CO ratio syngas production from chemical looping gasification of sawdust in a dual fluidized bed gasifier . Energy Fuel . 2016 ; 30 ( 3 ): 1764 ‐ 1770 . 

  5. Wu H‐C , Ku Y . Chemical looping gasification of charcoal with iron‐based oxygen carriers in an annular dual‐tube moving bed reactor . Aerosol Air Qual Res . 2016 ; 16 ( 4 ): 1093 ‐ 1103 . 

  6. Qin W , Chen S , Ma B , et al. Methanol solution promoting cotton fiber chemical looping gasification for high H2/CO ratio syngas . Int J Hydrogen Energy . 2019 ; 44 ( 14 ): 7149 ‐ 7157 . 

  7. Wang Y , Niu P , Zhao H . Chemical looping gasification of coal using calcium ferrites as oxygen carrier . Fuel Process Technol . 2019 ; 192 : 75 ‐ 86 . 

  8. Huang Z , Deng Z , He F , et al. Reactivity investigation on chemical looping gasification of biomass char using nickel ferrite oxygen carrier . Int J Hydrogen Energy . 2017 ; 42 ( 21 ): 14458 ‐ 14470 . 

  9. Shen T , Ge H , Shen L . Characterization of combined Fe‐cu oxides as oxygen carrier in chemical looping gasification of biomass . Int J Greenhouse Gas Control . 2018 ; 75 : 63 ‐ 73 . 

  10. Song YB , Shao‐Ping XU , Ling‐Li LI , Xiao YH . Chemical looping gasification of coal char with Cu‐olivine oxygen carriers . J Fuel Chem Technol . 2017 ; 45 (8):916‐923. 

  11. Hu J , Li C , Lee D‐J , et al. Syngas production from biomass using Fe‐based oxygen carrier: optimization . Bioresour Technol . 2019 ; 280 : 183 ‐ 187 . 

  12. Diego LFD , García‐Labiano F , Adánez J , et al. Development of cu‐based oxygen carriers for chemical‐looping combustion . Fuel . 2004 ; 83 ( 13 ): 1749 ‐ 1757 . 

  13. Wang X , Xu T , Jin X , et al. CuO supported on olivine as an oxygen carrier in chemical looping processes with pine sawdust used as fuel . Chem Eng J . 2017 ; 330 : 480 ‐ 490 . 

  14. Ran JY , Fu FX , Qin CL , et al. Evaluation of CuO/MgAl2O4 in biomass chemical looping gasification with oxygen uncoupling . Bioresources . 2016 ; 11 ( 1 ):2109‐2123. 

  15. Zhao H , Guo L , Zou X . Chemical‐looping auto‐thermal reforming of biomass using Cu‐based oxygen carrier . Appl Energy . 2015 ; 157 : 408 ‐ 415 . 

  16. Guo L , Zhao H , Zheng C . Synthesis gas generation by chemical‐looping reforming of biomass with natural copper ore as oxygen carrier . Waste Biomass Valor . 2015 ; 6 ( 1 ): 81 ‐ 89 . 

  17. Wang X , Xu T , Liu S , Xiao B , Hu Z , Chen Z . CuO supported on manganese ore as an oxygen carrier for chemical looping with oxygen uncoupling (CLOU) . Chem Eng J . 2018 ; 343 : 340 ‐ 350 . 

  18. Zhang Y , Zhao H , Guo L , Zheng C . Decomposition mechanisms of Cu‐based oxygen carriers for chemical looping with oxygen uncoupling based on density functional theory calculations . Combust Flame . 2014 ; 162 ( 4 ): 1265 ‐ 1274 . 

  19. Gayán P , Adánezrubio I , Abad A , Diego LFD , Garcíalabiano F , Adánez J . Development of cu‐based oxygen carriers for chemical‐looping with oxygen uncoupling (clou) process . Fuel . 2011 ; 90 ( 7 ): 226 ‐ 238 . 

  20. Keller M , Leion H , Mattisson T . Use of CuO/MgAl2O4 and La0.8Sr0.2FeO3/γ‐Al2O3 in chemical looping reforming system for tar removal from gasification gas . Aiche J . 2016 ; 62 ( 1 ): 38 ‐ 45 . 

  21. Inoue N , Tada T , Kawamoto K . Gas reforming and tar decomposition performance of nickel oxide (NiO)/SBA‐15 catalyst in gasification of woody biomass . J Air Waste Manage Assoc . 2019 ;69(4);502‐512. 

  22. Abedi A , Dalai AK . Steam gasification of oat hull pellets over Ni‐based catalysts: syngas yield and tar reduction . Fuel . 2019 ; 254 : 115585 . 

  23. Hu J , Li D , Lee D‐J , et al. Integrated gasification and catalytic reforming syngas production from corn straw with mitigated greenhouse gas emission potential . Bioresour Technol . 2019 ; 280 : 371 ‐ 377 . 

  24. Xu D , Xiong Y , Zhang S , Su Y . The influence of preparation method of char supported metallic Ni catalysts on the catalytic performance for reforming of biomass tar . International Journal of Energy Research . 2019 ;43(13):6922‐6933. 

  25. Yu H , Ma T , Shen Y , Chen D . Experimental study on catalytic effect of biomass pyrolysis volatile over nickel catalyst supported by waste iron slag . Int J Energy Res . 2017 ; 41 ( 14 ): 2063 ‐ 2073 . 

  26. Demsash HD , Mohan R . Steam reforming of glycerol to hydrogen over ceria promoted nickel–alumina catalysts . Int J Hydrogen Energy . 2016 ; 41 ( 48 ): 22732 ‐ 22742 . 

  27. Meng J , Zhao Z , Wang X , et al. Comparative study on phenol and naphthalene steam reforming over Ni‐Fe alloy catalysts supported on olivine synthesized by different methods . Energ Convers Manage . 2018 ; 168 : 60 ‐ 73 . 

  28. Zou X , Chen T , Zhang P , et al. High catalytic performance of Fe‐Ni/Palygorskite in the steam reforming of toluene for hydrogen production . Appl Energy . 2018 ; 226 : 827 ‐ 837 . 

  29. Li D , Lu M , Aragaki K , Koike M , Nakagawa Y , Tomishige K . Characterization and catalytic performance of hydrotalcite‐derived Ni‐Cu alloy nanoparticles catalysts for steam reforming of 1‐methylnaphthalene . Appl Catal Environ . 2016 ; 192 : 171 ‐ 181 . 

  30. Li F , Luo S , Sun Z , Bao X , Fan LS . Role of metal oxide support in redox reactions of iron oxide for chemical looping applications: experiments and density functional theory calculations . Energ Environ Sci . 2011 ; 4 ( 9 ): 3661 ‐ 3667 . 

  31. Knutsson P , Maric J , Knutsson J , Larsson A , Breitholtz C , Seemann M . Potassium speciation and distribution for the K2CO3 additive‐induced activation/deactivation of olivine during gasification of woody biomass . Appl Energy . 2019 ; 248 : 538 ‐ 544 . 

  32. Pecate S , Kessas SA , Morin M , Hemati M . Beech wood gasification in a dense and fast internally circulating fluidized bed . Fuel . 2019 ; 236 : 554 ‐ 573 . 

  33. Ma X , Zhao X , Gu J , Shi J . Co‐gasification of coal and biomass blends using dolomite and olivine as catalysts . Renew Energy . 2019 ; 132 : 509 ‐ 514 . 

  34. Hervy M , Olcese R , Bettahar MM , et al. Evolution of dolomite composition and reactivity during biomass gasification . Appl Catal Gen . 2019 ; 572 : 97 ‐ 106 . 

  35. Schmid M , Beirow M , Schweitzer D , Waizmann G , Spörl R , Scheffknecht G . Product gas composition for steam‐oxygen fluidized bed gasification of dried sewage sludge, straw pellets and wood pellets and the influence of limestone as bed material . Biomass Bioenergy . 2018 ; 117 : 71 ‐ 77 . 

  36. Tursun Y , Xu S , Wang C , Xiao Y , Wang G . Steam co‐gasification of biomass and coal in decoupled reactors . Fuel Process Technol . 2016 ; 141 : 61 ‐ 67 . 

  37. Marinkovic J , Thunman H , Knutsson P , Seemann M . Characteristics of olivine as a bed material in an indirect biomass gasifier . Chem Eng J . 2015 ; 279 : 555 ‐ 566 . 

  38. Liao Y , Deng F , Xiao B . Hydrogen‐rich gas production from catalytic gasification of pine sawdust over Fe‐Ce/olivine catalyst . Int J Energy Res . 2019 ;43(13):7486‐7495. 

  39. Rapagnà S , Virginie M , Gallucci K , et al. Fe/olivine catalyst for biomass steam gasification: preparation, characterization and testing at real process conditions . Catal Today . 2011 ; 176 ( 1 ): 163 ‐ 168 . 

  40. Devi L , Ptasinski KJ , Janssen FJJG . Decomposition of naphthalene as a biomass tar over pretreated olivine: effect of gas composition, kinetic approach, and reaction scheme . Ind Eng Chem Res . 2005 ; 44 ( 24 ): 9096 ‐ 9104 . 

  41. Swierczynski D , Courson C , Bedel L , Kiennemann A , Vilminot S . Oxidation reduction behavior of iron bearing olivines (FexMg1‐x)2SiO4 used as catalysts for biomass gasification . Cheminform . 2006 ;18(4):897‐905. 

  42. Lancee R , Dugulan A , Thüne P , Veringa H , Niemantsverdriet J , Fredriksson H . Chemical looping capabilities of olivine, used as a catalyst in indirect biomass gasification . Appl Catal Environ . 2014 ; 145 : 216 ‐ 222 . 

  43. Jayalakshmi S , Vasantha VS , Fleury E , Gupta M . Characteristics of Ni–Nb‐based metallic amorphous alloys for hydrogen‐related energy applications . Appl Energy . 2012 ; 90 ( 1 ): 94 ‐ 99 . 

  44. Benito M , Ortiz I , Rodríguez L , Muñoz G . Ni–Co bimetallic catalyst for hydrogen production in sewage treatment plants: biogas reforming and tars removal . Int J Hydrogen Energy . 2015 ; 40 ( 42 ): 14456 ‐ 14468 . 

  45. Gayán P , Adánez‐Rubio I , Abad A , Luis F , García‐Labiano F , Adánez J . Development of Cu‐based oxygen carriers for chemical‐looping with oxygen uncoupling (CLOU) process . Fuel . 2012 ; 96 : 226 ‐ 238 . 

  46. Pan Y , Abulizi A , Talifu D , Tursun Y , Xu S . Catalytic gasification of biomass and coal blend with Fe2O3/olivine in a decoupled triple bed . Fuel Process Technol . 2019 ; 194 : 106121 . 

  47. Świerczyński D , Courson C , Bedel L , Kiennemann A , Vilminot S . Oxidation reduction behavior of iron‐bearing olivines (Fe x Mg1‐x) 2SiO4 used as catalysts for biomass gasification . Chem Mater . 2006 ; 18 ( 4 ): 897 ‐ 905 . 

  48. Zamboni I , Courson C , Niznansky D , Kiennemann A . Simultaneous catalytic H2 production and CO2 capture in steam reforming of toluene as tar model compound from biomass gasification . Appl Catal Environ . 2014 ; 145 : 63 ‐ 72 . 

  49. Hu Q , Mao Q , Ren X , Yang H , Chen H . Inert chemical looping conversion of biochar with iron ore as oxygen carrier: products conversion kinetics and structural evolution . Bioresour Technol . 2019 ; 275 : 53 ‐ 60 . 

  50. Hachimi A , Vilcocq L , Courson C , Kiennemann A . Study of olivine supported copper sorbents performances in the desulfurization process in link with biomass gasification . Fuel Process Technol . 2014 ; 118 ( 118 ): 254 ‐ 263 . 

  51. Wang K , Tian X , Zhao H . Sulfur behavior in chemical‐looping combustion using a copper ore oxygen carrier . Appl Energy . 2016 ; 166 : 84 ‐ 95 . 

  52. Basu P . Biomass Gasification and Pyrolysis: Practical Design and Theory . Burlington: Academic Press ; 2010 . 

  53. Niu P , Ma Y , Tian X , Ma J , Zhao H . Chemical looping gasification of biomass: part I. screening Cu‐Fe metal oxides as oxygen carrier and optimizing experimental conditions . Biomass Bioenergy . 2018 ; 108 : 146 ‐ 156 . 

  54. Chen J , Zhao K , Zhao Z , et al. Reaction schemes of barium ferrite in biomass chemical looping gasification for hydrogen‐enriched syngas generation via an outer‐inner looping redox reaction mechanism . Energ Convers Manage . 2019 ; 189 : 81 ‐ 90 . 

  55. Gao N , Li A , Quan C , Gao F . Hydrogen‐rich gas production from biomass steam gasification in an updraft fixed‐bed gasifier combined with a porous ceramic reformer . Int J Hydrogen Energy . 2008 ; 33 ( 20 ): 5430 ‐ 5438 . 

  56. Huang Z , He F , Zheng A , et al. Synthesis gas production from biomass gasification using steam coupling with natural hematite as oxygen carrier . Energy . 2013 ; 53 : 244 ‐ 251 . 

  57. Lv P , Chang J , Xiong Z , et al. Biomass air−steam gasification in a fluidized bed to produce hydrogen‐rich gas . Energy Fuel . 2003 ; 17 ( 3 ): 677 ‐ 682 . 

  58. Lv P , Xiong Z , Chang J , Wu C , Chen Y , Zhu J . An experimental study on biomass air–steam gasification in a fluidized bed . Bioresour Technol . 2004 ; 95 ( 1 ): 95 ‐ 101 . 

문의처: helpdesk@kisti.re.kr전화: 080-969-4114

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로