최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Vibration, v.1 no.1, 2018년, pp.81 - 92
Hu, Hua-Liang (Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan) , Peng, Ji-Wei (Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan) , Lee, Chun-Ying (Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan)
Metamaterials are materials with an artificially tailored internal structure and unusual physical and mechanical properties such as a negative refraction coefficient, negative mass inertia, and negative modulus of elasticity, etc. Due to their unique characteristics, metamaterials possess great pote...
Pendry Negative refraction makes a perfect lens Phys. Rev. Lett. 2000 10.1103/PhysRevLett.85.3966 85 3966
Findeisen Characteristics of mechanical metamaterials based on buckling elements J. Mech. Phys. Solids 2017 10.1016/j.jmps.2017.02.011 102 151
Zheludev From metamaterials to metadevices Nat. Mater. 2012 10.1038/nmat3431 11 917
Liu Locally resonant sonic materials Science 2000 10.1126/science.289.5485.1734 289 1734
Srivastava Elastic metamaterials and dynamic homogenization: A review Int. J. Smart Nano Mater. 2015 10.1080/19475411.2015.1017779 6 41
Yu Flexural vibration band gaps in Timoshenko beams with locally resonant structures J. Appl. Phys. 2006 10.1063/1.2400803 100 124901
Pai Metamaterial-based broadband elastic wave absorber J. Intell. Mater. Syst. Struct. 2010 10.1177/1045389X09359436 21 517
Pai Acoustic metamaterial beams based on multi-frequency vibration absorbers Int. J. Mech. Sci. 2014 10.1016/j.ijmecsci.2013.12.013 79 195
Peng Acoustic metamaterial plates for elastic wave absorption and structural vibration suppression Int. J. Mech. Sci. 2014 10.1016/j.ijmecsci.2014.09.018 89 350
Peng Acoustic multi-stop band metamaterial plates design for broadband elastic wave absorption and vibration suppression Int. J. Mech. Sci. 2015 10.1016/j.ijmecsci.2015.08.024 103 104
Li Tuning of acoustic bandgaps in phononic crystals with Helmholtz resonators J. Vib. Acoust. 2013 10.1115/1.4023812 135 031015
Liu Tuning of bandgap structures in three-dimensional kagome-sphere lattice J. Vib. Acoust. 2014 10.1115/1.4026211 136 021016
Zhu A chiral elastic metamaterial beam for broadband vibration suppression J. Sound Vib. 2014 10.1016/j.jsv.2014.01.009 333 2759
Chen Broadband and multiband vibration mitigation in lattice metamaterials with sinusoidally-shaped ligaments Extreme Mech. Lett. 2017 10.1016/j.eml.2017.09.012 17 24
He Design for structural vibration suppression in laminate acoustic metamaterials Compos. Part B 2017 10.1016/j.compositesb.2017.07.076 131 237
Chronopoulos Enhancement of wave damping within metamaterials having embedded negative stiffness inclusions Wave Motion 2015 10.1016/j.wavemoti.2015.05.005 58 165
Chronopoulos Enhanced acoustic insulation properties of composite metamaterials having embedded negative stiffness inclusions Extreme Mech. Lett. 2017 10.1016/j.eml.2016.10.012 12 48
Wang Harnessing buckling to design tunable locally resonant acoustic metamaterials Phys. Rev. Lett. 2014 10.1103/PhysRevLett.113.014301 113 014301
Airoldi Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos New J. Phys. 2011 10.1088/1367-2630/13/11/113010 13 113010
Casadei Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials J. Appl. Phys. 2012 10.1063/1.4752468 112 064902
Zhu Experimental study of an adaptive elastic metamaterial controlled by electric circuits Appl. Phys. Lett. 2016 10.1063/1.4939546 108 011905
Casadei Harnessing fluid-structure interactions to design self-regulating acoustic metamaterials J. Appl. Phys. 2014 10.1063/1.4862643 115 034907
Xu Magnetorheological elastomer vibration isolation of tunable three-dimensional locally resonant acoustic metamaterial Solid State Commun. 2018 10.1016/j.ssc.2017.12.024 271 51
Yeh Control analysis of the tunable phononic crystal with electrorheological material Physical B 2007 10.1016/j.physb.2007.06.030 400 137
Rossiter Shape memory polymer hexachiral auxetic structures with tunable stiffness Smart Mater. Struct. 2014 10.1088/0964-1726/23/4/045007 23 045007
Churchill Tips and tricks for characterizing shape memory alloy wire: Part 2-fundamental isothermal responses Exp. Tech. 2009 10.1111/j.1747-1567.2008.00460.x 33 51
Strachan Shape memory metamaterials with tunable thermo-mechanical response via hetero-epitaxial integration: A molecular dynamics study J. Appl. Phys. 2013 10.1063/1.4794819 113 103503
Williams Adaptive-passive absorbers using shape-memory alloys J. Sound Vib. 2002 10.1006/jsvi.2000.3496 249 835
Lee Structural vibration control using a tunable hybrid shape memory material vibration absorber J. Intell. Mater. Syst. Struct. 2012 10.1177/1045389X12451190 23 1725
Bathe, K.-J. (1982). Finite Element Procedures in Engineering Analysis, Prentice-Hall.
Thomson, W.T. (1981). Theory of Vibration with Applications, George Allen and Unwin. [2nd ed.].
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.