$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Smart Metamaterial Based on the Simplex Tensegrity Pattern 원문보기

Materials, v.11 no.5, 2018년, pp.673 -   

Al Sabouni-Zawadzka, Anna ,  Gilewski, Wojciech

Abstract AI-Helper 아이콘AI-Helper

In the present paper, a novel cellular metamaterial that was based on a tensegrity pattern is presented. The material is constructed from supercells, each of which consists of eight 4-strut simplex modules. The proposed metamaterial exhibits some unusual properties, which are typical for smart struc...

Keyword

참고문헌 (46)

  1. 1. Cui T.J. Smith D.R. Liu R. Metamaterials. Theory, Design and Applications Springer New York, NY, USA Dordrecht, The Netherlands Heidelberg, Germany London, UK 2010 

  2. 2. Engheta N. Ziolkowski R.W. Metamaterials. Physics and Engineering Explorations Wiley-Interscience New York, NY, USA 2006 

  3. 3. Singh G. Ni R. Marwaha A. A review of metamaterials and its applications Int. J. Eng. Trends Technol. 2015 19 305 310 10.14445/22315381/IJETT-V19P254 

  4. 4. Schurig D. Mock J.J. Justice B.J. Cummer S.A. Pendry J.B. Starr A.F. Smith D.R. Metamaterial electromagnetic cloak at microwave frequencies Science 2006 314 977 980 10.1126/science.1133628 17053110 

  5. 5. Soukoulis C.M. Linden S. Wegener M. Negative refractive index at optical wavelengths Science 2007 315 47 49 10.1126/science.1136481 17204630 

  6. 6. Soukoulis C.M. Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials Natl. Photonics 2011 5 523 530 10.1038/nphoton.2011.154 

  7. 7. Vora A. Gwamuri J. Pala N. Kulkarni A. Pearce J.M. Guney D.O. Exchenging ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics Sci. Rep. 2014 4901 10.1038/srep04901 24811322 

  8. 8. Wu C. Neuner B. III John J. Milder A. Zollars B. Savoy S. Shvets G. Metamaterial-based integrated plasmonic absorber/emitter for solar thermos-photovoltaic systems J. Opt. 2012 14 024005 10.1088/2040-8978/14/2/024005 

  9. 9. Brule S. Javelaud E.H. Enoch S. Guenneau S. Experiments on seismic metamaterials: Molding surface waves Phys. Rev. Lett. 2014 112 10.1103/PhysRevLett.112.133901 24745420 

  10. 10. Chen H. Chan C.T. Acoustic cloaking in three dimensions using acoustic metamaterials Appl. Phys. Lett. 2007 91 10.1063/1.2803315 

  11. 11. Mei J. Ma G. Yang M. Yang Z. Wen W. Sheng P. Dark acoustic metamaterials as super absorbers for low-frequency sound Nat. Commun. 2012 3 756 10.1038/ncomms1758 22453829 

  12. 12. Lee J.B. Peng S. Yang D. Roh Y.H. Funabashi H. Park N. Rice E.J. Chen L. Long R. Wu M. A mechanical metamaterial made from a DNA hydrogel Nat. Nanotechnol. 2012 7 816 820 10.1038/nnano.2012.211 23202472 

  13. 13. Bertoldi K. Reis P.M. Willshaw S. Mullin T. Negative poisson’s ratio behavior by an elastic instability Adv. Mater. 2010 22 361 366 10.1002/adma.200901956 20217719 

  14. 14. Kadic M. Buckmann T. Stenger N. Thiel M. On the practicability of pentamode mechanical metamaterials Appl. Phys. Lett. 2012 100 191901 10.1063/1.4709436 

  15. 15. Lee J.H. Singer J.P. Thomas E.L. Micro-/Nanostructured mechanical metamaterials Adv. Mater. 2012 24 4782 4810 10.1002/adma.201201644 22899377 

  16. 16. Zheng X. Lee H. Weisgraber T.H. Shusteff M. Deotte J. Duoss E.B. Kuntz J.D. Biener M.M. Ge Q. Jackson J.A. Ultra-light, ultra-stiff mechanical metamaterials Science 2014 344 1373 1377 10.1126/science.1252291 24948733 

  17. 17. Farshad M. Intelligent materials and structures Sci. Iran. 1995 2 65 87 

  18. 18. Lopes Junior V. Steffen V. Jr. Savi M.A. Dynamics of Smart Systems and Structures Springer New York, NY, USA Dordrecht, The Netherlands Heidelberg, Germany London, UK 2016 

  19. 19. Schwartz M. Smart Materials Taylor and Francis Abingdon, OX, USA 2009 

  20. 20. Gilewski W. Al Sabouni-Zawadzka A. On possible applications of smart structures controlled by self-stress Arch. Civ. Mech. Eng. 2015 15 469 478 10.1016/j.acme.2014.08.006 

  21. 21. Schenk M. Guest S.D. Geometry of Miura-folded metamaterials Proc. Natl. Acad. Sci. USA 2013 110 3276 3281 10.1073/pnas.1217998110 23401549 

  22. 22. Lv C. Krishnaraju D. Konjevod G. Yu H. Jiand H. Origami based mechanical metamaterials Sci. Rep. 2014 4 5979 10.1038/srep05979 25099402 

  23. 23. Silverberg J.L. Evans A.A. McLeod L. Hayward R.C. Hull T. Santangelo C.D. Cohen I. Using origami design principles to fold reprogrammable mechanical metamaterials Science 2014 345 647 650 10.1126/science.1252876 25104381 

  24. 24. Eidini M. Paulino G.H. Unraveling metamaterial properties in zigzag-base folded sheets Sci. Adv. 2015 1 e1500224 10.1126/sciadv.1500224 26601253 

  25. 25. Filipov E.T. Tachi T. Paulino G.H. Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials Proc. Natl. Acad. Sci. USA 2015 112 12321 12326 10.1073/pnas.1509465112 26351693 

  26. 26. Waitukaitis S. Menaut R. Chen B.G.G. van Hecke M. Origami multistability: from single vertices to metasheets Phys. Rev. Lett. 2015 114 055503 10.1103/PhysRevLett.114.055503 25699454 

  27. 27. Skelton R.E. de Oliveira M.C. Tensegrity Systems Springer New York, NY, USA Dordrecht, The Netherlands Heidelberg, Germany London, UK 2009 

  28. 28. Motro R. Tensegrity: Structural Systems for the Future Kogan Page Science London, UK 2003 

  29. 29. Wroldsen A.S. Modelling and Control of Tensegrity Structures Ph.D. Thesis Department of Marine Technology, Norwegian University of Science and Technology Norwegian, Norway 2007 

  30. 30. Calladine C.R. Pellegrino S. First-order infinitesimal mechanisms Int. J. Solids Struct. 1991 27 505 515 10.1016/0020-7683(91)90137-5 

  31. 31. Adam B. Smith I.F.C. Learning, self-diagnosis and multi-objective control of an active tensegrity structure Adv. Eng. Struct. Mech. Constr. 2006 439 448 10.1007/1-4020-4891-2_36 

  32. 32. Liu K. Wu J. Paulino G.H. Qi H.J. Programable deployment of tensegrity structures by stimulus-responsive polymers Sci. Rep. 2017 7 3511 10.1038/s41598-017-03412-6 28615709 

  33. 33. Adam B. Smith I.F.C. Self-diagnosis and self-repair of an active tensegrity structure J. Struct. Eng. 2007 133 1752 1761 10.1061/(ASCE)0733-9445(2007)133:12(1752) 

  34. 34. Bel Hadj Ali N. Smith I.F.C. Dynamic behavior and vibration control of a tensegrity structure Int. J. Solids Struct. 2010 47 1285 1296 10.1016/j.ijsolstr.2010.01.012 

  35. 35. Fest E. Shea K. Smith I.F.C. Active tensegrity structure J. Struct. Eng. 2004 130 1454 1465 10.1061/(ASCE)0733-9445(2004)130:10(1454) 

  36. 36. Moored K.W. Kemp T.H. Houle N.E. Bart-Smith H. Analytical predictions, optimization, and design of a tensegrity-based artificial pectorial fin Int. J. Space Struct. 2011 48 3142 3159 10.1016/j.ijsolstr.2011.07.008 

  37. 37. Al Sabouni-Zawadzka A. Gilewski W. Inherent smartness of tensegrity structures—Structural elements applications Proceedings of the International Association for Shell and Spatial Structures (IASS) Amsterdam, The Netherlands 17–20 August 2015 

  38. 38. Koohestani K. Guest S.D. A new approach to the analytical and numerical form-finding of tensegrity structures Int. J. Solids Struct. 2013 50 2995 3007 10.1016/j.ijsolstr.2013.05.014 

  39. 39. Gilewski W. Al Sabouni-Zawadzka A. Continuum model of cable-strut structures with self-stress included Int. J. Space Struct. 2018 in preparation 

  40. 40. Gilewski W. Kasprzak A. Description of the influence of self-stress on the properties of tensegrity modules using a continuum approach Theroretical Foundations of Civil Engineering, Vol. IV. Technical Mechanics Szcześniak W. Ataman M. Warsaw University of Technology Publishing House Warsaw, Poland 2013 117 126 (In Polish) 

  41. 41. Rimoli J.J. Pal R.K. Mechanical response of 3-dimensional tensegrity lattices Compos. Part B 2017 115 30 42 10.1016/j.compositesb.2016.10.046 

  42. 42. Green A.E. Zerna W. Theoretical Elasticity Oxford University Press Oxford, UK 1968 

  43. 43. Chadwick P. Vianello M. Cowin S. A new proof that the number of linear elastic symmetries is eight J. Mech. Phys. Solids 2001 49 2471 2492 10.1016/S0022-5096(01)00064-3 

  44. 44. Ting T.C.T. Positive definiteness of anisotropic elastic constants Math. Mech. Sloids 1996 1 301 314 10.1177/108128659600100302 

  45. 45. Zheng Q.S. Chen T. New perspective on Poisson’s ratio of elastic solids Acta Mech. 2001 150 191 195 10.1007/BF01181811 

  46. 46. Al Sabouni-Zawadzka A. On Possible Applications of Smart Structures in Bridge Engineering Ph.D. Thesis Warsaw University of Technology Warsaw, Poland 2016 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로