$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

whISOBAX TM Inhibits Bacterial Pathogenesis and Enhances the Effect of Antibiotics 원문보기

Antibiotics, v.9 no.5, 2020년, pp.264 -   

Rasooly, Reuven (U.S. Department of Agriculture, Agricultural Research Service, Albany, CA 94710, USA) ,  Choi, Hwang-Yong (paula.do@usda.gov) ,  Do, Paula (Department of Chemistry and Food Science, Framingham State University, Framingham, MA 01701, USA) ,  Morroni, Gianluca (kelolo123123@gmail.com) ,  Brescini, Lucia (U.S. Department of Agriculture, Agricultural Research Service, Albany, CA 94710, USA) ,  Cirioni, Oscar (paula.do@usda.gov) ,  Giacometti, Andrea (Department of Biomedical Sciences and Public Health, Marche Polytechnic University, 60121 Ancona, Italy) ,  Apostolidis, Emmanouil (lucia.brescini@ospedaliriuniti.marche.it (L.B.))

Abstract AI-Helper 아이콘AI-Helper

As bacteria are becoming more resistant to commonly used antibiotics, alternative therapies are being sought. whISOBAX (WH) is a witch hazel extract that is highly stable (tested up to 2 months in 37 °C) and contains a high phenolic content, where 75% of it is hamamelitannin and traces of gallic...

주제어

참고문헌 (48)

  1. 1. Vestergaard M. Frees D. Ingmer H. Antibiotic Resistance and the MRSA Problem Microbiol. Spectr. 2019 7 10.1128/microbiolspec.GPP3-0057-2018 

  2. 2. Danna D.M. Hospital Costs Associated with Sepsis Compared with Other Medical Conditions Crit. Care Nurs. Clin. North Am. 2018 30 389 398 10.1016/j.cnc.2018.05.007 30098742 

  3. 3. DeMellow J. Kim T.Y. Technology-enabled performance monitoring in intensive care: An integrative literature review Intensive Crit. Care Nurs. 2018 48 42 51 10.1016/j.iccn.2018.07.003 30054118 

  4. 4. Kouatly I.A. Nassar N. Nizam M. Badr L.K. Evidence on Nurse Staffing Ratios and Patient Outcomes in a Low-Income Country: Implications for Future Research and Practice Worldviews Evid. Based Nurs. 2018 15 353 360 10.1111/wvn.12316 30129163 

  5. 5. Monegro A.F. Regunath H. Hospital Acquired Infections StatPearls Treasure Island, FL, USA 2019 

  6. 6. Centers for Disease Control and Prevention Nearly Half a Million Americans Suffered from Clostridium Difficile Infections in a Single Year CDC Atlanta, GA, USA 2017 

  7. 7. Lindsay D. von Holy A. Bacterial biofilms within the clinical setting: What healthcare professionals should know J. Hosp. Infect. 2006 64 313 325 10.1016/j.jhin.2006.06.028 17046102 

  8. 8. Percival S.L. Suleman L. Vuotto C. Donelli G. Healthcare-associated infections, medical devices and biofilms: Risk, tolerance and control J. Med. Microbiol. 2015 64 323 334 10.1099/jmm.0.000032 25670813 

  9. 9. Lowy F.D. Staphylococcus aureus infections N. Engl. J. Med. 1998 339 520 532 10.1056/NEJM199808203390806 9709046 

  10. 10. James G.A. Swogger E. Wolcott R. Pulcini E. Secor P. Sestrich J. Costerton J.W. Stewart P.S. Biofilms in chronic wounds Wound Repair Regen. 2008 16 37 44 10.1111/j.1524-475X.2007.00321.x 18086294 

  11. 11. Anderson G.G. Moreau-Marquis S. Stanton B.A. O’Toole G.A. In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells Infect. Immun. 2008 76 1423 1433 10.1128/IAI.01373-07 18212077 

  12. 12. Hoiby N. Ciofu O. Bjarnsholt T. Pseudomonas aeruginosa biofilms in cystic fibrosis Future Microbiol. 2010 5 1663 1674 10.2217/fmb.10.125 21133688 

  13. 13. Cowan M.M. Plant products as antimicrobial agents Clin. Microbiol. Rev. 1999 12 564 582 10.1128/CMR.12.4.564 10515903 

  14. 14. Huber B. Eberl L. Feucht W. Polster J. Influence of polyphenols on bacterial biofilm formation and quorum-sensing Z. Nat. C J. Biosci. 2003 58 879 884 10.1515/znc-2003-11-1224 14713169 

  15. 15. Kumar S. Pandey A.K. Chemistry and biological activities of flavonoids: An overview Sci. World J. 2013 2013 162750 10.1155/2013/162750 24470791 

  16. 16. Sirk T.W. Brown E.F. Friedman M. Sum A.K. Molecular binding of catechins to biomembranes: Relationship to biological activity J. Agric. Food Chem. 2009 57 6720 6728 10.1021/jf900951w 19572638 

  17. 17. Sirk T.W. Brown E.F. Sum A.K. Friedman M. Molecular dynamics study on the biophysical interactions of seven green tea catechins with lipid bilayers of cell membranes J. Agric. Food Chem. 2008 56 7750 7758 10.1021/jf8013298 18672886 

  18. 18. Brackman G. Breyne K. De Rycke R. Vermote A. Van Nieuwerburgh F. Meyer E. Van Calenbergh S. Coenye T. The Quorum Sensing Inhibitor Hamamelitannin Increases Antibiotic Susceptibility of Staphylococcus aureus Biofilms by Affecting Peptidoglycan Biosynthesis and eDNA Release Sci. Rep. 2016 6 20321 10.1038/srep20321 26828772 

  19. 19. Brackman G. Cos P. Maes L. Nelis H.J. Coenye T. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo Antimicrob. Agents Chemother. 2011 55 2655 2661 10.1128/AAC.00045-11 21422204 

  20. 20. Cobrado L. Azevedo M.M. Silva-Dias A. Ramos J.P. Pina-Vaz C. Rodrigues A.G. Cerium, chitosan and hamamelitannin as novel biofilm inhibitors? J. Antimicrob. Chemother. 2012 67 1159 1162 10.1093/jac/dks007 22316569 

  21. 21. Cobrado L. Silva-Dias A. Azevedo M.M. Pina-Vaz C. Rodrigues A.G. In vivo antibiofilm effect of cerium, chitosan and hamamelitannin against usual agents of catheter-related bloodstream infections J. Antimicrob. Chemother. 2013 68 126 130 10.1093/jac/dks376 22991425 

  22. 22. Kiran M.D. Adikesavan N.V. Cirioni O. Giacometti A. Silvestri C. Scalise G. Ghiselli R. Saba V. Orlando F. Shoham M. Discovery of a quorum-sensing inhibitor of drug-resistant staphylococcal infections by structure-based virtual screening Mol. Pharmacol. 2008 73 1578 1586 10.1124/mol.107.044164 18314496 

  23. 23. Vermote A. Brackman G. Risseeuw M.D.P. Coenye T. Van Calenbergh S. Novel hamamelitannin analogues for the treatment of biofilm related MRSA infections-A scaffold hopping approach Eur. J. Med. Chem. 2017 127 757 770 10.1016/j.ejmech.2016.10.056 27823882 

  24. 24. Wang H. Provan G.J. Helliwell K. Determination of hamamelitannin, catechins and gallic acid in witch hazel bark, twig and leaf by HPLC J. Pharm. Biomed. Anal. 2003 33 539 544 10.1016/S0731-7085(03)00303-0 14623578 

  25. 25. Pillai S.K. Moellering R.C. Eliopoulos G.M. Antimicrobial Combinations Antibiotics in Laboratory Medicine Lorian V. Lippincott Williams & Wilkins Philadelphia, PA, USA 2005 

  26. 26. Fratini F. Mancini S. Turchi B. Friscia E. Pistelli L. Giusti G. Cerri D. A novel interpretation of the Fractional Inhibitory Concentration Index: The case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst essential oils against Staphylococcus aureus strains Microbiol. Res. 2017 195 11 17 10.1016/j.micres.2016.11.005 28024521 

  27. 27. Huang R.Y. Pei L. Liu Q. Chen S. Dou H. Shu G. Yuan Z.X. Lin J. Peng G. Zhang W. Isobologram Analysis: A Comprehensive Review of Methodology and Current Research Front. Pharmacol. 2019 10 1222 10.3389/fphar.2019.01222 31736746 

  28. 28. Kuang H. Wang W. Xu L. Ma W. Liu L. Wang L. Xu C. Monoclonal antibody-based sandwich ELISA for the detection of staphylococcal enterotoxin A Int. J. Environ. Res. Public Health 2013 10 1598 1608 10.3390/ijerph10041598 23603865 

  29. 29. Rasooly R. Molnar A. Choi H.Y. Do P. Racicot K. Apostolidis E. In-Vitro Inhibition of Staphylococcal Pathogenesis by Witch-Hazel and Green Tea Extracts Antibiotics 2019 8 244 10.3390/antibiotics8040244 

  30. 30. Borges A. Ferreira C. Saavedra M.J. Simoes M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria Microb. Drug Resist. 2013 19 256 265 10.1089/mdr.2012.0244 23480526 

  31. 31. Bielaszewska M. Idelevich E.A. Zhang W. Bauwens A. Schaumburg F. Mellmann A. Peters G. Karch H. Effects of antibiotics on Shiga toxin 2 production and bacteriophage induction by epidemic Escherichia coli O104:H4 strain Antimicrob. Agents Chemother. 2012 56 3277 3282 10.1128/AAC.06315-11 22391549 

  32. 32. Kimmitt P.T. Harwood C.R. Barer M.R. Toxin gene expression by shiga toxin-producing Escherichia coli: The role of antibiotics and the bacterial SOS response Emerg. Infect. Dis. 2000 6 458 465 10.3201/eid0605.000503 10998375 

  33. 33. Zhang X. McDaniel A.D. Wolf L.E. Keusch G.T. Waldor M.K. Acheson D.W. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice J. Infect. Dis. 2000 181 664 670 10.1086/315239 10669353 

  34. 34. Balaban N. Rasooly A. Staphylococcal enterotoxins Int. J. Food Microbiol. 2000 61 1 10 10.1016/S0168-1605(00)00377-9 11028954 

  35. 35. Friedman M. Rasooly R. Review of the inhibition of biological activities of food-related selected toxins by natural compounds Toxins 2013 5 743 775 10.3390/toxins5040743 23612750 

  36. 36. Rasooly R. Molnar A. Do P. Morroni G. Brescini L. Cirioni O. Giacometti A. Apostolidis E. Witch Hazel Significantly Improves the Efficacy of Commercially Available Teat Dips Pathogens 2020 9 92 10.3390/pathogens9020092 32024049 

  37. 37. Balaban N. Goldkorn T. Gov Y. Hirshberg M. Koyfman N. Matthews H.R. Nhan R.T. Singh B. Uziel O. Regulation of Staphylococcus aureus pathogenesis via target of RNAIII-activating Protein (TRAP) J. Biol. Chem. 2001 276 2658 2667 10.1074/jbc.M005446200 11160124 

  38. 38. Balaban N. Goldkorn T. Nhan R.T. Dang L.B. Scott S. Ridgley R.M. Rasooly A. Wright S.C. Larrick J.W. Rasooly R. Autoinducer of virulence as a target for vaccine and therapy against Staphylococcus aureus Science 1998 280 438 440 10.1126/science.280.5362.438 9545222 

  39. 39. Kiran M.D. Bala S. Hirshberg M. Balaban N. YhgC protects Bacillus anthracis from oxidative stress Int. J. Artif. Organs 2010 33 590 607 10.1177/039139881003300905 20963726 

  40. 40. Kiran M.D. Balaban N. TRAP plays a role in stress response in Staphylococcus aureus Int. J. Artif. Organs 2009 32 592 599 10.1177/039139880903200908 19856271 

  41. 41. Kiran M.D. Giacometti A. Cirioni O. Balaban N. Suppression of biofilm related, device-associated infections by staphylococcal quorum sensing inhibitors Int. J. Artif. Organs 2008 31 761 770 10.1177/039139880803100903 18924087 

  42. 42. Lopez-Leban F. Kiran M.D. Wolcott R. Balaban N. Molecular mechanisms of RIP, an effective inhibitor of chronic infections Int. J. Artif. Organs 2010 33 582 589 10.1177/039139881003300904 20963725 

  43. 43. Wolcott R. Lopez-Leban F. Kiran M. Balaban N. Wound Healing by an Anti-Staphylococcal Biofilm Approach Biofilm Highlights Hans-Curt F. Wingender J. Szewzyk U. Springer Berlin/Heidelberg, Germany 2011 141 161 10.1007/978-3-642-19940-0_7 

  44. 44. Cirioni O. Simonetti O. Morroni G. Brescini L. Kamysz W. Kamysz E. Orlando F. Pierpaoli E. Caffarini M. Orciani M. Efficacy of Pexiganan Combination with Tigecycline in a Mouse Model of Pseudomonas aeruginosa Sepsis Curr. Top. Med. Chem. 2018 18 2127 2132 10.2174/1568026619666181219123431 30569865 

  45. 45. Gyawali R. Ibrahim S.A. Natural products as antimicrobial agents Food Control 2014 46 412 429 10.1016/j.foodcont.2014.05.047 

  46. 46. Morroni G. Simonetti O. Brenciani A. Brescini L. Kamysz W. Kamysz E. Neubauer D. Caffarini M. Orciani M. Giovanetti E. In vitro activity of Protegrin-1, alone and in combination with clinically useful antibiotics, against Acinetobacter baumannii strains isolated from surgical wounds Med. Microbiol. Immunol. 2019 208 877 883 10.1007/s00430-019-00624-7 31214759 

  47. 47. Henrick K. Hirshberg M. Structure of the signal transduction protein TRAP (target of RNAIII-activating protein) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2012 68 744 750 10.1107/S1744309112020167 22750855 

  48. 48. Singh V.K. Jayaswal R.K. Wilkinson B.J. Cell wall-active antibiotic induced proteins of Staphylococcus aureus identified using a proteomic approach FEMS Microbiol. Lett. 2001 199 79 84 10.1016/S0378-1097(01)00163-X 11356571 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로