$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Solar cycle prediction 원문보기

Living reviews in solar physics, v.17 no.1, 2020년, pp.2 -   

Petrovay, Kristóf

Abstract AI-Helper 아이콘AI-Helper

AbstractA review of solar cycle prediction methods and their performance is given, including early forecasts for Cycle 25. The review focuses on those aspects of the solar cycle prediction problem that have a bearing on dynamo theory. The scope of the review is further restricted to the issue of pre...

참고문헌 (420)

  1. Astron Astrophys Suppl JG Ables 15 383 1974 Ables JG (1974) Maximum entropy spectral analysis. Astron Astrophys Suppl 15:383-393 

  2. G Adomian 1989 Nonlinear stochastic systems theory and applications to physics 10.1007/978-94-009-2569-4 Adomian G (1989) Nonlinear stochastic systems theory and applications to physics. Kluwer Academic, Dordrecht 

  3. Sol Phys LA Aguirre 249 103 2008 10.1007/s11207-008-9160-5 Aguirre LA, Letellier C, Maquet J (2008) Forecasting the time series of sunspot numbers. Sol Phys 249:103-120. https://doi.org/10.1007/s11207-008-9160-5 

  4. J Geophys Res HS Ahluwalia 103 12103 1998 10.1029/98JA00960 Ahluwalia HS (1998) The predicted size of cycle 23 based on the inferred three-cycle quasi-periodicity of the planetary index $$A_p$$. J Geophys Res 103:12103-12109. https://doi.org/10.1029/98JA00960 

  5. Sol Phys R Arlt 247 399 2008 10.1007/s11207-007-9113-4 Arlt R (2008) Digitization of sunspot drawings by Staudacher in 1749-1796. Sol Phys 247:399-410. https://doi.org/10.1007/s11207-007-9113-4 

  6. Sol Phys R Arlt 255 143 2009 10.1007/s11207-008-9306-5 Arlt R (2009) The butterfly diagram in the eighteenth century. Sol Phys 255:143-153. https://doi.org/10.1007/s11207-008-9306-5. arXiv:0812.2233 

  7. Mon Not R Astron Soc R Arlt 433 3165 2013 10.1093/mnras/stt961 Arlt R, Leussu R, Giese N, Mursula K, Usoskin IG (2013) Sunspot positions and sizes for 1825-1867 from the observations by Samuel Heinrich Schwabe. Mon Not R Astron Soc 433:3165-3172. https://doi.org/10.1093/mnras/stt961. arXiv:1305.7400 

  8. Astron Astrophys R Arlt 595 A104 2016 10.1051/0004-6361/201629000 Arlt R, Senthamizh Pavai V, Schmiel C, Spada F (2016) Sunspot positions, areas, and group tilt angles for 1611-1631 from observations by Christoph Scheiner. Astron Astrophys 595:A104. https://doi.org/10.1051/0004-6361/201629000. arXiv:1608.07172 

  9. Mon Not R Astron Soc E Asvestari 467 1608 2017 10.1093/mnras/stx190 Asvestari E, Usoskin IG, Kovaltsov GA, Owens MJ, Krivova NA, Rubinetti S, Taricco C (2017) Assessment of different sunspot number series using the cosmogenic isotope $$^{44}$$Ti in meteorites. Mon Not R Astron Soc 467:1608-1613. https://doi.org/10.1093/mnras/stx190 

  10. Sol Phys T Ataç 198 399 2001 10.1023/A:1005218315298 Ataç T, Özgüç A (2001) Flare index during the rising phase of solar cycle 23. Sol Phys 198:399-407. https://doi.org/10.1023/A:1005218315298 

  11. Sol Phys T Ataç 233 139 2006 10.1007/s11207-006-1112-3 Ataç T, Özgüç A (2006) Overview of the solar activity during solar cycle 23. Sol Phys 233:139-153. https://doi.org/10.1007/s11207-006-1112-3 

  12. Ap&SS AF Attia 344 5 2013 10.1007/s10509-012-1300-6 Attia AF, Ismail HA, Basurah HM (2013) A neuro-fuzzy modeling for prediction of solar cycles 24 and 25. Ap&SS 344:5-11. https://doi.org/10.1007/s10509-012-1300-6 

  13. Sol Phys OG Badalyan 199 421 2001 10.1023/A:1010343520424 Badalyan OG, Obridko VN, Sýkora J (2001) Brightness of the coronal green line and prediction for activity cycles 23 and 24. Sol Phys 199:421-435. https://doi.org/10.1023/A:1010343520424 

  14. Astrophys J T Bai 363 299 1990 10.1086/169342 Bai T, Cliver EW (1990) A 154 day periodicity in the occurrence rate of proton flares. Astrophys J 363:299-309. https://doi.org/10.1086/169342 

  15. Space Sci Rev A Balogh 186 1 2014 10.1007/s11214-014-0125-8 Balogh A, Hudson HS, Petrovay K, von Steiger R (2014) Introduction to the solar activity cycle: overview of causes and consequences. Space Sci Rev 186:1-15. https://doi.org/10.1007/s11214-014-0125-8 

  16. Mon Not R Astron Soc T Baranyi 447 1857 2015 10.1093/mnras/stu2572 Baranyi T (2015) Comparison of Debrecen and Mount Wilson/Kodaikanal sunspot group tilt angles and the Joy’s law. Mon Not R Astron Soc 447:1857-1865. https://doi.org/10.1093/mnras/stu2572. arXiv:1412.1355 

  17. Sol Phys T Baranyi 291 3081 2016 10.1007/s11207-016-0930-1 Baranyi T, Győri L, Ludmány A (2016) On-line tools for solar data compiled at the Debrecen observatory and their extensions with the Greenwich sunspot data. Sol Phys 291:3081-3102. https://doi.org/10.1007/s11207-016-0930-1. arXiv:1606.00669 

  18. Astrophys J S Basu 758 43 2012 10.1088/0004-637X/758/1/43 Basu S, Broomhall AM, Chaplin WJ, Elsworth Y (2012) Thinning of the Sun’s magnetic layer: the peculiar solar minimum could have been predicted. Astrophys J 758:43. https://doi.org/10.1088/0004-637X/758/1/43. arXiv:1208.5493 

  19. Astrophys J Lett JG Beck 575 L47 2002 10.1086/342636 Beck JG, Gizon L, Duvall TL Jr (2002) A new component of solar dynamics: north-south diverging flows migrating toward the equator with an 11 year period. Astrophys J Lett 575:L47-L50. https://doi.org/10.1086/342636 

  20. Space Sci Rev J Beer 125 67 2006 10.1007/s11214-006-9047-4 Beer J, Vonmoos M, Muscheler R (2006) Solar variability over the past several millennia. Space Sci Rev 125:67-79. https://doi.org/10.1007/s11214-006-9047-4 

  21. Astrophys J B Belucz 806 169 2015 10.1088/0004-637X/806/2/169 Belucz B, Dikpati M, Forgács-Dajka E (2015) A Babcock-Leighton solar dynamo model with multi-cellular meridional circulation in advection- and diffusion-dominated regimes. Astrophys J 806:169. https://doi.org/10.1088/0004-637X/806/2/169. arXiv:1504.00420 

  22. Geophys Res Lett A Berggren 36 11801 2009 10.1029/2009GL038004 Berggren A, Beer J, Possnert G, Aldahan A, Kubik P, Christl M, Johnsen SJ, Abreu J, Vinther BM (2009) A 600-year annual $$^{10}$$Be record from the NGRIP ice core, greenland. Geophys Res Lett 36:11801. https://doi.org/10.1029/2009GL038004 

  23. Sol Phys NJ Bhatt 260 225 2009 10.1007/s11207-009-9439-1 Bhatt NJ, Jain R, Aggarwal M (2009) Prediction of the maximum amplitude and timing of sunspot cycle 24. Sol Phys 260:225-232. https://doi.org/10.1007/s11207-009-9439-1 

  24. Biesecker D, Upton L (2019) Solar cycle 25-call for predictions. Solar News 2019/1:1. https://www.nso.edu/solarnews/solar-cycle-25-call-for-predictions/ 

  25. Blais A, Mertz D (2001) An introduction to neural networks. IBM Developer. http://www.ibm.com/developerworks/library/l-neural/ 

  26. Sol Phys EM Blanter 289 4309 2014 10.1007/s11207-014-0568-9 Blanter EM, Le Mouël JL, Shnirman MG, Courtillot V (2014) Kuramoto model of nonlinear coupled oscillators as a way for understanding phase synchronization: application to solar and geomagnetic indices. Sol Phys 289:4309-4333. https://doi.org/10.1007/s11207-014-0568-9 

  27. Sol Phys E Blanter 291 1003 2016 10.1007/s11207-016-0867-4 Blanter E, Le Mouël JL, Shnirman M, Courtillot V (2016) Kuramoto model with non-symmetric coupling reconstructs variations of the solar-cycle period. Sol Phys 291:1003-1023. https://doi.org/10.1007/s11207-016-0867-4 

  28. Sol Phys E Blanter 292 54 2017 10.1007/s11207-017-1078-3 Blanter E, Le Mouël JL, Shnirman M, Courtillot V (2017) Reconstruction of the north-south solar asymmetry with a Kuramoto model. Sol Phys 292:54. https://doi.org/10.1007/s11207-017-1078-3 

  29. GEP Box 2008 Time series analysis: forecasting and control 2 10.1002/9781118619193 Box GEP, Jenkins GM (2008) Time series analysis: forecasting and control, 2nd edn. Wiley, Hoboken 

  30. Nature RN Bracewell 171 649 1953 10.1038/171649a0 Bracewell RN (1953) The sunspot number series. Nature 171:649-650. https://doi.org/10.1038/171649a0 

  31. Mon Not R Astron Soc RN Bracewell 230 535 1988 10.1093/mnras/230.4.535 Bracewell RN (1988) Three-halves law in sunspot cycle shape. Mon Not R Astron Soc 230:535-550. https://doi.org/10.1093/mnras/230.4.535 

  32. Astron Astrophys R Brajša 496 855 2009 10.1051/0004-6361:200810862 Brajša R, Wöhl H, Hanslmeier A, Verbanac G, Ruždjak D, Cliver E, Svalgaard L, Roth M (2009) On solar cycle predictions and reconstructions. Astron Astrophys 496:855-861. https://doi.org/10.1051/0004-6361:200810862 

  33. Mon Not R Astron Soc GM Brown 174 185 1976 10.1093/mnras/174.1.185 Brown GM (1976) What determines sunspot maximum. Mon Not R Astron Soc 174:185-189. https://doi.org/10.1093/mnras/174.1.185 

  34. Astrophys J Lett MK Browning 648 L157 2006 10.1086/507869 Browning MK, Miesch MS, Brun AS, Toomre J (2006) Dynamo action in the solar convection zone and tachocline: pumping and organization of toroidal fields. Astrophys J Lett 648:L157-L160. https://doi.org/10.1086/507869. arXiv:astro-ph/0609153 

  35. Astrophys J PJ Bushby 661 1289 2007 10.1086/516628 Bushby PJ, Tobias SM (2007) On predicting the solar cycle using mean-field models. Astrophys J 661:1289-1296. https://doi.org/10.1086/516628. arXiv:0704.2345 

  36. Astrophys J RA Calvo 444 916 1995 10.1086/175661 Calvo RA, Ceccato HA, Piacentini RD (1995) Neural network prediction of solar activity. Astrophys J 444:916-921. https://doi.org/10.1086/175661 

  37. Astrophys J R Cameron 659 801 2007 10.1086/512049 Cameron R, Schüssler M (2007) Solar cycle prediction using precursors and flux transport models. Astrophys J 659:801-811. https://doi.org/10.1086/512049. arXiv:astro-ph/0612693 

  38. Astrophys J R Cameron 685 1291 2008 10.1086/591079 Cameron R, Schüssler M (2008) A robust correlation between growth rate and amplitude of solar cycles: consequences for prediction methods. Astrophys J 685:1291-1296. https://doi.org/10.1086/591079 

  39. Astrophys J RH Cameron 720 1030 2010 10.1088/0004-637X/720/2/1030 Cameron RH, Schüssler M (2010) Changes of the solar meridional velocity profile during cycle 23 explained by flows toward the activity belts. Astrophys J 720:1030-1032. https://doi.org/10.1088/0004-637X/720/2/1030. arXiv:1007.2548 

  40. Astron Astrophys RH Cameron 548 A57 2012 10.1051/0004-6361/201219914 Cameron RH, Schüssler M (2012) Are the strengths of solar cycles determined by converging flows towards the activity belts? Astron Astrophys 548:A57. https://doi.org/10.1051/0004-6361/201219914. arXiv:1210.7644 

  41. Astron Astrophys RH Cameron 599 A52 2017 10.1051/0004-6361/201629746 Cameron RH, Schüssler M (2017a) An update of Leighton’s solar dynamo model. Astron Astrophys 599:A52. https://doi.org/10.1051/0004-6361/201629746. arXiv:1611.09111 

  42. Astrophys J RH Cameron 843 111 2017 10.3847/1538-4357/aa767a Cameron RH, Schüssler M (2017b) Understanding solar cycle variability. Astrophys J 843:111. https://doi.org/10.3847/1538-4357/aa767a. arXiv:1705.10746 

  43. Astrophys J RH Cameron 719 264 2010 10.1088/0004-637X/719/1/264 Cameron RH, Jiang J, Schmitt D, Schüssler M (2010) Surface flux transport modeling for solar cycles 15-21: effects of cycle-dependent tilt angles of sunspot groups. Astrophys J 719:264-270. https://doi.org/10.1088/0004-637X/719/1/264. arXiv:1006.3061 

  44. Astron Astrophys RH Cameron 557 A141 2013 10.1051/0004-6361/201321981 Cameron RH, Dasi-Espuig M, Jiang J, Işık E, Schmitt D, Schüssler M (2013) Limits to solar cycle predictability: cross-equatorial flux plumes. Astron Astrophys 557:A141. https://doi.org/10.1051/0004-6361/201321981. arXiv:1308.2827 

  45. J Geophys Res RH Cameron 119 680 2014 10.1002/2013JA019498 Cameron RH, Jiang J, Schüssler M, Gizon L (2014) Physical causes of solar cycle amplitude variability. J Geophys Res 119:680-688. https://doi.org/10.1002/2013JA019498 

  46. Astrophys J Lett RH Cameron 823 L22 2016 10.3847/2041-8205/823/2/L22 Cameron RH, Jiang J, Schüssler M (2016) Solar cycle 25: Another moderate cycle? Astrophys J Lett 823:L22. https://doi.org/10.3847/2041-8205/823/2/L22. arXiv:1604.05405 

  47. Space Sci Rev RH Cameron 210 367 2017 10.1007/s11214-015-0230-3 Cameron RH, Dikpati M, Brandenburg A (2017) The global solar dynamo. Space Sci Rev 210:367-395. https://doi.org/10.1007/s11214-015-0230-3. arXiv:1602.01754 

  48. Astron Astrophys M Carbonell 290 983 1994 Carbonell M, Oliver R, Ballester JL (1994) A search for chaotic behaviour in solar activity. Astron Astrophys 290:983-994 

  49. Sol Phys VMS Carrasco 291 2931 2016 10.1007/s11207-016-0943-9 Carrasco VMS, Vaquero JM, Gallego MC, Sánchez-Bajo F (2016) A normalized sunspot-area series starting in 1832: an update. Sol Phys 291:2931-2940. https://doi.org/10.1007/s11207-016-0943-9. arXiv:1606.04280 

  50. Sol Phys P Charbonneau 199 385 2001 10.1023/A:1010387509792 Charbonneau P (2001) Multiperiodicity, chaos, and intermittency in a reduced model of the solar cycle. Sol Phys 199:385-404 

  51. 10.4249/scholarpedia.3440 Charbonneau P (2007) Flux transport dynamos. Scholarpedia 2(9):3440. https://doi.org/10.4249/scholarpedia.3440. http://www.scholarpedia.org/article/Flux_transport_dynamos 

  52. Living Rev Sol Phys P Charbonneau 7 3 2010 10.12942/lrsp-2010-3 Charbonneau P (2010) Dynamo models of the solar cycle. Living Rev Sol Phys 7:3. https://doi.org/10.12942/lrsp-2010-3 

  53. J Atmos Sol-Terr Phys P Charbonneau 73 198 2011 10.1016/j.jastp.2009.12.020 Charbonneau P, Barlet G (2011) The dynamo basis of solar cycle precursor schemes. J Atmos Sol-Terr Phys 73:198-206. https://doi.org/10.1016/j.jastp.2009.12.020 

  54. Astrophys J P Charbonneau 543 1027 2000 10.1086/317142 Charbonneau P, Dikpati M (2000) Stochastic fluctuations in a Babcock-Leighton model of the solar cycle. Astrophys J 543:1027-1043. https://doi.org/10.1086/317142 

  55. Astrophys J P Charbonneau 658 657 2007 10.1086/511177 Charbonneau P, Beaubien G, St-Jean C (2007) Fluctuations in Babcock-Leighton dynamos. II. Revisiting the Gnevyshev-Ohl rule. Astrophys J 658:657-662. https://doi.org/10.1086/511177 

  56. Astron Astrophys P Chatterjee 427 1019 2004 10.1051/0004-6361:20041199 Chatterjee P, Nandy D, Choudhuri AR (2004) Full-sphere simulations of a circulation-dominated solar dynamo: exploring the parity issue. Astron Astrophys 427:1019-1030. https://doi.org/10.1051/0004-6361:20041199 

  57. Astron Astrophys T Chatzistergos 602 A69 2017 10.1051/0004-6361/201630045 Chatzistergos T, Usoskin IG, Kovaltsov GA, Krivova NA, Solanki SK (2017) New reconstruction of the sunspot group numbers since 1739 using direct calibration and “backbone” methods. Astron Astrophys 602:A69. https://doi.org/10.1051/0004-6361/201630045. arXiv:1702.06183 

  58. Astrophys J Lett DY Chou 559 L175 2001 10.1086/323724 Chou DY, Dai DC (2001) Solar cycle variations of subsurface meridional flows in the sun. Astrophys J Lett 559:L175-L178. https://doi.org/10.1086/323724 

  59. Phys Rev Lett AR Choudhuri 98 13 131103 2007 10.1103/PhysRevLett.98.131103 Choudhuri AR, Chatterjee P, Jiang J (2007) Predicting solar cycle 24 with a solar dynamo model. Phys Rev Lett 98(13):131103. https://doi.org/10.1103/PhysRevLett.98.131103. arXiv:astro-ph/0701527 

  60. Geophys Res Lett P Chylek 41 1689 2014 10.1002/2014GL059274 Chylek P, Klett JD, Lesins G, Dubey MK, Hengartner N (2014) The Atlantic Multidecadal Oscillation as a dominant factor of oceanic influence on climate. Geophys Res Lett 41:1689-1697. https://doi.org/10.1002/2014GL059274 

  61. Sol Phys F Clette 291 2629 2016 10.1007/s11207-016-1014-y Clette F, Lefèvre L (2016) The new sunspot number: assembling all corrections. Sol Phys 291:2629-2651. https://doi.org/10.1007/s11207-016-1014-y 

  62. Space Sci Rev F Clette 186 35 2014 10.1007/s11214-014-0074-2 Clette F, Svalgaard L, Vaquero JM, Cliver EW (2014) Revisiting the sunspot number. A 400-year perspective on the solar cycle. Space Sci Rev 186:35-103. https://doi.org/10.1007/s11214-014-0074-2. arXiv:1407.3231 

  63. Sol Phys F Clette 291 2479 2016 10.1007/s11207-016-1017-8 Clette F, Cliver EW, Lefèvre L, Svalgaard L, Vaquero JM, Leibacher JW (2016a) Preface to topical issue: recalibration of the sunspot number. Sol Phys 291:2479-2486. https://doi.org/10.1007/s11207-016-1017-8 

  64. Sol Phys F Clette 291 2733 2016 10.1007/s11207-016-0875-4 Clette F, Lefèvre L, Cagnotti M, Cortesi S, Bulling A (2016b) The revised Brussels-Locarno sunspot number (1981-2015). Sol Phys 291:2733-2761. https://doi.org/10.1007/s11207-016-0875-4. arXiv:1507.07803 

  65. Space Sci Rev EW Cliver 186 169 2014 10.1007/s11214-014-0093-z Cliver EW (2014) The extended cycle of solar activity and the Sun’s 22-year magnetic cycle. Space Sci Rev 186:169-189. https://doi.org/10.1007/s11214-014-0093-z 

  66. Sol Phys EW Cliver 291 2891 2016 10.1007/s11207-016-0929-7 Cliver EW (2016) Comparison of new and old sunspot number time series. Sol Phys 291:2891-2916. https://doi.org/10.1007/s11207-016-0929-7 

  67. Sol Phys TW Cole 30 103 1973 10.1007/BF00156178 Cole TW (1973) Periodicities in solar activity. Sol Phys 30:103-110. https://doi.org/10.1007/BF00156178 

  68. New Astron Rev AJ Conway 42 343 1998 10.1016/S1387-6473(98)00041-4 Conway AJ (1998) Time series, neural networks and the future of the Sun. New Astron Rev 42:343-394. https://doi.org/10.1016/S1387-6473(98)00041-4 

  69. Astron Astrophys E Covas 605 A44 2017 10.1051/0004-6361/201629130 Covas E (2017) Spatial-temporal forecasting the sunspot diagram. Astron Astrophys 605:A44. https://doi.org/10.1051/0004-6361/201629130. arXiv:1709.02796 

  70. Sol Phys E Covas 294 3 24 2019 10.1007/s11207-019-1412-z Covas E, Peixinho N, Fernandes J (2019) Neural network forecast of the sunspot butterfly diagram. Sol Phys 294(3):24. https://doi.org/10.1007/s11207-019-1412-z. arXiv:1801.04435 

  71. Astrophys Space Sci RG Currie 20 509 1973 10.1007/BF00642220 Currie RG (1973) Fine structure in the sunspot spectrum-2 to 70 years. Astrophys Space Sci 20:509-518. https://doi.org/10.1007/BF00642220 

  72. Sol Phys RS Dabas 250 171 2008 10.1007/s11207-008-9200-1 Dabas RS, Sharma K, Das RM, Pillai KGM, Chopra P, Sethi NK (2008) A prediction of solar cycle 24 using a modified precursor method. Sol Phys 250:171-181. https://doi.org/10.1007/s11207-008-9200-1 

  73. Astron Astrophys M Dasi-Espuig 518 A7 2010 10.1051/0004-6361/201014301 Dasi-Espuig M, Solanki SK, Krivova NA, Cameron R, Peñuela T (2010) Sunspot group tilt angles and the strength of the solar cycle. Astron Astrophys 518:A7. https://doi.org/10.1051/0004-6361/201014301. arXiv:1005.1774 

  74. Sol Phys F de Meyer 70 259 1981 10.1007/BF00151333 de Meyer F (1981) Mathematical modelling of the sunspot cycle. Sol Phys 70:259-272. https://doi.org/10.1007/BF00151333 

  75. Astrophys J Lett G de Toma 771 L22 2013 10.1088/2041-8205/771/2/L22 de Toma G, Chapman GA, Cookson AM, Preminger D (2013a) Temporal stability of sunspot umbral intensities: 1986-2012. Astrophys J Lett 771:L22. https://doi.org/10.1088/2041-8205/771/2/L22 

  76. Astrophys J G de Toma 770 89 2013 10.1088/0004-637X/770/2/89 de Toma G, Chapman GA, Preminger DG, Cookson AM (2013b) Analysis of sunspot area over two solar cycles. Astrophys J 770:89. https://doi.org/10.1088/0004-637X/770/2/89 

  77. Astrophys J ML DeRosa 757 96 2012 10.1088/0004-637X/757/1/96 DeRosa ML, Brun AS, Hoeksema JT (2012) Solar magnetic field reversals and the role of dynamo families. Astrophys J 757:96. https://doi.org/10.1088/0004-637X/757/1/96. arXiv:1208.1768 

  78. Astron Nachr A Diercke 336 53 2015 10.1002/asna.201412138 Diercke A, Arlt R, Denker C (2015) Digitization of sunspot drawings by Spörer made in 1861-1894. Astron Nachr 336:53. https://doi.org/10.1002/asna.201412138. arXiv:1411.7790 

  79. Astrophys J M Dikpati 649 498 2006 10.1086/506314 Dikpati M, Gilman PA (2006) Simulating and predicting solar cycles using a flux-transport dynamo. Astrophys J 649:498-514. https://doi.org/10.1086/506314 

  80. Geophys Res Lett M Dikpati 33 5102 2006 10.1029/2005GL025221 Dikpati M, de Toma G, Gilman PA (2006) Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophys Res Lett 33:5102. https://doi.org/10.1029/2005GL025221 

  81. Sol Phys M Dikpati 245 1 2007 10.1007/s11207-007-9016-4 Dikpati M, Gilman PA, de Toma G, Ghosh SS (2007) Simulating solar cycles in northern and southern hemispheres by assimilating magnetic data into a calibrated flux-transport dynamo. Sol Phys 245:1-17. https://doi.org/10.1007/s11207-007-9016-4 

  82. Astrophys J Lett M Dikpati 673 L99 2008 10.1086/527360 Dikpati M, Gilman PA, de Toma G (2008) The Waldmeier effect: An artifact of the definition of Wolf sunspot number? Astrophys J Lett 673:L99-L101. https://doi.org/10.1086/527360 

  83. Sol Phys IV Dmitrieva 195 209 2000 10.1023/A:1005207828577 Dmitrieva IV, Kuzanyan KM, Obridko VN (2000) Amplitude and period of the dynamo wave and prediction of the solar cycle. Sol Phys 195:209-218. https://doi.org/10.1023/A:1005207828577 

  84. Astron Astrophys S D’Silva 272 621 1993 D’Silva S, Choudhuri AR (1993) A theoretical model for tilts of bipolar magnetic regions. Astron Astrophys 272:621 

  85. Astrophys Space Sci ZL Du 338 9 2012 10.1007/s10509-011-0906-4 Du ZL (2012) The solar cycle: a new prediction technique based on logarithmic values. Astrophys Space Sci 338:9-13. https://doi.org/10.1007/s10509-011-0906-4. arXiv:1110.5973 

  86. Astron J ZL Du 138 1998 2009 10.1088/0004-6256/138/6/1998 Du ZL, Li R, Wang HN (2009) The predictive power of Ohl’s precursor method. Astron J 138:1998-2001. https://doi.org/10.1088/0004-6256/138/6/1998 

  87. Sol Phys BR Durney 196 421 2000 10.1023/A:1005285315323 Durney BR (2000) On the differences between odd and even solar cycles. Sol Phys 196:421-426. https://doi.org/10.1023/A:1005285315323 

  88. Science JA Eddy 192 4245 1189 1976 10.1126/science.192.4245.1189 Eddy JA (1976) The Maunder minimum. Science 192(4245):1189-1202. https://doi.org/10.1126/science.192.4245.1189 

  89. Space Sci Rev I Ermolli 186 105 2014 10.1007/s11214-014-0089-8 Ermolli I, Shibasaki K, Tlatov A, van Driel-Gesztelyi L (2014) Solar cycle indices from the photosphere to the corona: measurements and underlying physics. Space Sci Rev 186:105-135. https://doi.org/10.1007/s11214-014-0089-8. arXiv:1705.07054 

  90. Astrophys J Y Fan 789 35 2014 10.1088/0004-637X/789/1/35 Fan Y, Fang F (2014) A simulation of convective dynamo in the solar convective envelope: maintenance of the solar-like differential rotation and emerging flux. Astrophys J 789:35. https://doi.org/10.1088/0004-637X/789/1/35. arXiv:1405.3926 

  91. Phys Rev Lett JD Farmer 59 845 1987 10.1103/PhysRevLett.59.845 Farmer JD, Sidorowich JJ (1987) Predicting chaotic time series. Phys Rev Lett 59:845-848. https://doi.org/10.1103/PhysRevLett.59.845 

  92. J Geophys Res J Feynman 87 6153 1982 10.1029/JA087iA08p06153 Feynman J (1982) Geomagnetic and solar wind cycles, 1900-1975. J Geophys Res 87:6153-6162. https://doi.org/10.1029/JA087iA08p06153 

  93. Astrophys J GH Fisher 438 463 1995 10.1086/175090 Fisher GH, Fan Y, Howard RF (1995) Comparisons between theory and observation of active region tilts. Astrophys J 438:463. https://doi.org/10.1086/175090 

  94. Astron Astrophys M Fligge 346 313 1999 Fligge M, Solanki SK, Beer J (1999) Determination of solar cycle length variations using the continuous wavelet transform. Astron Astrophys 346:313-321 

  95. Mon Not R Astron Soc E Forgács-Dajka 374 282 2007 10.1111/j.1365-2966.2006.11167.x Forgács-Dajka E, Borkovits T (2007) Searching for mid-term variations in different aspects of solar activity-looking for probable common origins and studying temporal variations of magnetic polarities. Mon Not R Astron Soc 374:282-291. https://doi.org/10.1111/j.1365-2966.2006.11167.x 

  96. Phys Rev E US Freitas 79 3 035201 2009 10.1103/PhysRevE.79.035201 Freitas US, Letellier C, Aguirre LA (2009) Failure in distinguishing colored noise from chaos using the “noise titration” technique. Phys Rev E 79(3):035201. https://doi.org/10.1103/PhysRevE.79.035201 

  97. Astron Astrophys P Frick 328 670 1997 Frick P, Galyagin D, Hoyt DV, Nesme-Ribes E, Schatten KH, Sokoloff D, Zakharov V (1997) Wavelet analysis of solar activity recorded by sunspot groups. Astron Astrophys 328:670-681 

  98. Sol Phys TK Friedli 291 2505 2016 10.1007/s11207-016-0907-0 Friedli TK (2016) Sunspot observations of Rudolf Wolf from 1849-1893. Sol Phys 291:2505-2517. https://doi.org/10.1007/s11207-016-0907-0 

  99. New Astron PX Gao 43 91 2016 10.1016/j.newast.2015.08.004 Gao PX, Zhong J (2016) The curious temporal behavior of the frequency of different class flares. New Astron 43:91-94. https://doi.org/10.1016/j.newast.2015.08.004 

  100. Geomagn Aeron K Georgieva 57 776 2017 10.1134/S001679321707009X Georgieva K, Kilçik A, Nagovitsyn Y, Kirov B (2017) The ratio between the number of sunspot and the number of sunspot groups. Geomagn Aeron 57:776-782. https://doi.org/10.1134/S001679321707009X. arXiv:1710.01775 

  101. Sol Phys SM Gizzatullina 127 281 1990 10.1007/BF00152167 Gizzatullina SM, Rukavishnikov VD, Ruzmaikin AA, Tavastsherna KS (1990) Radiocarbon evidence of the global stochasticity of solar activity. Sol Phys 127:281-288. https://doi.org/10.1007/BF00152167 

  102. Observatory W Gleissberg 62 158 1939 Gleissberg W (1939) A long-periodic fluctuation of the sun-spot numbers. Observatory 62:158-159 

  103. W Gleissberg 1952 Die Häufigkeit der Sonnenflecken Gleissberg W (1952) Die Häufigkeit der Sonnenflecken. Akademie-Verlag, Berlin 

  104. Sol Phys W Gleissberg 2 231 1967 10.1007/BF00155925 Gleissberg W (1967) Secularly smoothed data on the minima and maxima of sunspot frequency. Sol Phys 2:231-233. https://doi.org/10.1007/BF00155925 

  105. Astron Zh MN Gnevyshev 25 18 1948 Gnevyshev MN, Ohl AI (1948) On the 22-year cycle of solar activity. Astron Zh 25:18-20 

  106. Res Astron Astrophys A Goel 9 115 2009 10.1088/1674-4527/9/1/010 Goel A, Choudhuri AR (2009) The hemispheric asymmetry of solar activity during the last century and the solar dynamo. Res Astron Astrophys 9:115-126. https://doi.org/10.1088/1674-4527/9/1/010. arXiv:0712.3988 

  107. Serbian Astron J ÜD Göker 195 59 2017 10.2298/SAJ1795059G Göker ÜD, Singh J, Nutku F, Priyal M (2017) Temporal variations of different solar activity indices through the solar cycles 21-23. Serbian Astron J 195:59-70. https://doi.org/10.2298/SAJ1795059G 

  108. J Atmos Sol-Terr Phys N Gopalswamy 176 26 2018 10.1016/j.jastp.2018.04.005 Gopalswamy N, Mäkelä P, Yashiro S, Akiyama S (2018) Long-term solar activity studies using microwave imaging observations and prediction for cycle 25. J Atmos Sol-Terr Phys 176:26-33. https://doi.org/10.1016/j.jastp.2018.04.005. arXiv:1804.02544 

  109. Phys Rev Lett P Grassberger 50 346 1983 10.1103/PhysRevLett.50.346 Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50:346-349. https://doi.org/10.1103/PhysRevLett.50.346 

  110. Mon Not R Astron Soc L Győri 465 1259 2017 10.1093/mnras/stw2667 Győri L, Ludmány A, Baranyi T (2017) Comparative analysis of Debrecen sunspot catalogues. Mon Not R Astron Soc 465:1259-1273. https://doi.org/10.1093/mnras/stw2667. arXiv:1612.03274 

  111. Sol Phys DA Haber 220 371 2004 10.1023/B:SOLA.0000031405.52911.08 Haber DA, Hindman BW, Toomre J, Thompson MJ (2004) Organized subsurface flows near active regions. Sol Phys 220:371-380. https://doi.org/10.1023/B:SOLA.0000031405.52911.08 

  112. Astron Nachr J Halm 156 33 1901 10.1002/asna.19011560302 Halm J (1901) Über eine neue theorie zur erklärung der periodicität der solaren erscheinungen. Astron Nachr 156:33-50. https://doi.org/10.1002/asna.19011560302 

  113. Astron Astrophys A Hanslmeier 509 A5 2010 10.1051/0004-6361/200913095 Hanslmeier A, Brajša R (2010) The chaotic solar cycle. I. Analysis of cosmogenic $$^{14}$$C-data. Astron Astrophys 509:A5. https://doi.org/10.1051/0004-6361/200913095 

  114. Space Sci Rev DH Hathaway 144 401 2009 10.1007/s11214-008-9430-4 Hathaway DH (2009) Solar cycle forecasting. Space Sci Rev 144:401-412. https://doi.org/10.1007/s11214-008-9430-4 

  115. Hathaway DH (2010) Does the current minimum validate (or invalidate) cycle prediction methods? In: Cranmer SR, Hoeksema JT, Kohl JL (eds) SOHO-23: understanding a peculiar solar minimum, ASP conference series, vol 428. Astronomical Society of the Pacific, San Francisco, p 307. arXiv:1003.4208 

  116. Living Rev Sol Phys DH Hathaway 12 4 2015 10.1007/lrsp-2015-4 Hathaway DH (2015) The solar cycle. Living Rev Sol Phys 12:4. https://doi.org/10.1007/lrsp-2015-4. arXiv:1502.07020 

  117. Science DH Hathaway 327 1350 2010 10.1126/science.1181990 Hathaway DH, Rightmire L (2010) Variations in the Sun’s meridional flow over a solar cycle. Science 327:1350. https://doi.org/10.1126/science.1181990 

  118. J Geophys Res DH Hathaway 121 A10 10 2016 10.1002/2016JA023190 Hathaway DH, Upton LA (2016) Predicting the amplitude and hemispheric asymmetry of solar cycle 25 with surface flux transport. J Geophys Res 121(A10):10. https://doi.org/10.1002/2016JA023190. arXiv:1611.05106 

  119. Sol Phys DH Hathaway 151 177 1994 10.1007/BF00654090 Hathaway DH, Wilson RM, Reichmann EJ (1994) The shape of the sunspot cycle. Sol Phys 151:177-190. https://doi.org/10.1007/BF00654090 

  120. Sol Phys G Hawkes 293 109 2018 10.1007/s11207-018-1332-3 Hawkes G, Berger MA (2018) Magnetic helicity as a predictor of the solar cycle. Sol Phys 293:109. https://doi.org/10.1007/s11207-018-1332-3 

  121. Mon Not R Astron Soc G Hazra 472 2728 2017 10.1093/mnras/stx2152 Hazra G, Choudhuri AR (2017) A theoretical model of the variation of the meridional circulation with the solar cycle. Mon Not R Astron Soc 472:2728-2741. https://doi.org/10.1093/mnras/stx2152. arXiv:1708.05204 

  122. Astrophys J S Hazra 789 5 2014 10.1088/0004-637X/789/1/5 Hazra S, Passos D, Nandy D (2014) A stochastically forced time delay solar dynamo model: self-consistent recovery from a Maunder-like grand minimum necessitates a mean-field alpha effect. Astrophys J 789:5. https://doi.org/10.1088/0004-637X/789/1/5. arXiv:1307.5751 

  123. Sol Phys G Hazra 290 1851 2015 10.1007/s11207-015-0718-8 Hazra G, Karak BB, Banerjee D, Choudhuri AR (2015) Correlation between decay rate and amplitude of solar cycles as revealed from observations and dynamo theory. Sol Phys 290:1851-1870. https://doi.org/10.1007/s11207-015-0718-8. arXiv:1410.8641 

  124. Astrophys J G Hazra 835 39 2017 10.3847/1538-4357/835/1/39 Hazra G, Choudhuri AR, Miesch MS (2017) A theoretical study of the build-up of the Sun’s polar magnetic field by using a 3D kinematic dynamo model. Astrophys J 835:39. https://doi.org/10.3847/1538-4357/835/1/39. arXiv:1610.02726 

  125. Chaos R Hegger 9 413 1999 10.1063/1.166424 Hegger R, Kantz H, Schreiber T (1999) Practical implementation of nonlinear time series methods: the TISEAN package. Chaos 9:413. https://doi.org/10.1063/1.166424 

  126. Sol Phys R Henwood 262 299 2010 10.1007/s11207-009-9419-5 Henwood R, Chapman SC, Willis DM (2010) Increasing lifetime of recurrent sunspot groups within the greenwich photoheliographic results. Sol Phys 262:299-313. https://doi.org/10.1007/s11207-009-9419-5. arXiv:0907.4274 

  127. Astron Astrophys KM Hiremath 452 591 2006 10.1051/0004-6361:20042619 Hiremath KM (2006) The solar cycle as a forced and damped harmonic oscillator: long-term variations of the amplitudes, frequencies and phases. Astron Astrophys 452:591-595. https://doi.org/10.1051/0004-6361:20042619 

  128. Astrophys Space Sci KM Hiremath 314 45 2008 10.1007/s10509-007-9728-9 Hiremath KM (2008) Prediction of solar cycle 24 and beyond. Astrophys Space Sci 314:45-49. https://doi.org/10.1007/s10509-007-9728-9 

  129. Space Sci Rev JT Hoeksema 72 137 1995 10.1007/BF00768770 Hoeksema JT (1995) The large-scale structure of the heliospheric current sheet during the ulysses epoch. Space Sci Rev 72:137-148. https://doi.org/10.1007/BF00768770 

  130. 10.12942/lrsp-2009-1 Howe R (2009) Solar interior rotation and its variation. Living Rev Sol Phys 6:1. https://doi.org/10.12942/lrsp-2009-1. arXiv:0902.2406 

  131. Astrophys J Lett R Howe 701 L87 2009 10.1088/0004-637X/701/2/L87 Howe R, Christensen-Dalsgaard J, Hill F, Komm R, Schou J, Thompson MJ (2009) A note on the torsional oscillation at solar minimum. Astrophys J Lett 701:L87-L90. https://doi.org/10.1088/0004-637X/701/2/L87. arXiv:0907.2965 

  132. Astrophys J Lett R Howe 767 L20 2013 10.1088/2041-8205/767/1/L20 Howe R, Christensen-Dalsgaard J, Hill F, Komm R, Larson TP, Rempel M, Schou J, Thompson MJ (2013) The high-latitude branch of the solar torsional oscillation in the rising phase of cycle 24. Astrophys J Lett 767:L20. https://doi.org/10.1088/2041-8205/767/1/L20 

  133. 10.1093/mnras/stx1318 Howe R, Davies GR, Chaplin WJ, Elsworth Y, Basu S, Hale SJ, Ball WH, Komm RW (2017) The Sun in transition? Persistence of near-surface structural changes through Cycle 24. Mon Not R Astron Soc 470:1935-1942. https://doi.org/10.1093/mnras/stx1318. arXiv:1705.09099 

  134. Astrophys J Lett R Howe 862 L5 2018 10.3847/2041-8213/aad1ed Howe R, Hill F, Komm R, Chaplin WJ, Elsworth Y, Davies GR, Schou J, Thompson MJ (2018) Signatures of solar cycle 25 in subsurface zonal flows. Astrophys J Lett 862:L5. https://doi.org/10.3847/2041-8213/aad1ed. arXiv:1807.02398 

  135. Sol Phys DV Hoyt 181 491 1998 10.1023/A:1005056326158 Hoyt DV, Schatten KH (1998) Group sunspot numbers: a new solar activity reconstruction. Sol Phys 181:491-512 

  136. Sol Phys H Hudson 289 1341 2014 10.1007/s11207-013-0384-7 Hudson H, Fletcher L, McTiernan J (2014) Cycle 23 variation in solar flare productivity. Sol Phys 289:1341-1347. https://doi.org/10.1007/s11207-013-0384-7. arXiv:1401.6474 

  137. Astrophys J CP Hung 814 151 2015 10.1088/0004-637X/814/2/151 Hung CP, Jouve L, Brun AS, Fournier A, Talagrand O (2015) Estimating the deep solar meridional circulation using magnetic observations and a dynamo model: a variational approach. Astrophys J 814:151. https://doi.org/10.1088/0004-637X/814/2/151. arXiv:1710.02084 

  138. Astrophys J CP Hung 849 160 2017 10.3847/1538-4357/aa91d1 Hung CP, Brun AS, Fournier A, Jouve L, Talagrand O, Zakari M (2017) Variational estimation of the large-scale time-dependent meridional circulation in the Sun: proofs of concept with a solar mean field dynamo model. Astrophys J 849:160. https://doi.org/10.3847/1538-4357/aa91d1. arXiv:1710.02114 

  139. Astron Astrophys H Iijima 607 L2 2017 10.1051/0004-6361/201731813 Iijima H, Hotta H, Imada S, Kusano K, Shiota D (2017) Improvement of solar-cycle prediction: plateau of solar axial dipole moment. Astron Astrophys 607:L2. https://doi.org/10.1051/0004-6361/201731813. arXiv:1710.06528 

  140. Astrophys J Lett E Işık 813 L13 2015 10.1088/2041-8205/813/1/L13 Işık E (2015) A mechanism for the dependence of sunspot group tilt angles on cycle strength. Astrophys J Lett 813:L13. https://doi.org/10.1088/2041-8205/813/1/L13. arXiv:1510.04323 

  141. 10.1017/S1743921318001461 Işık E, Işık S, Kabasakal BB (2018) Sunspot group tilt angles from drawings for cycles 19-24. In: Banerjee D, Jiang J, Kusano K, Solanki S (eds) Long-term datasets for the understanding of solar and stellar magnetic cycles. IAU symposium, vol 340. Cambridge University Press, Cambridge, pp 133-146. https://doi.org/10.1017/S1743921318001461. arXiv:1804.10479 

  142. Geomagn Aeron VG Ivanov 52 999 2012 10.1134/S0016793212080130 Ivanov VG (2012) Joy’s law and its features according to the data of three sunspot catalogs. Geomagn Aeron 52:999-1004. https://doi.org/10.1134/S0016793212080130 

  143. 10.2307/2981658 Izenman AJ (1983) J. R. Wolf and H. A. Wolfer: an historical note on the Zurich sunspot relative numbers. J R Stat Soc A 146:311-318. https://doi.org/10.2307/2981658. http://www.jstor.org/pss/2981658 

  144. Sol Phys J Javaraiah 281 827 2012 10.1007/s11207-012-0106-6 Javaraiah J (2012) The G-O rule and Waldmeier effect in the variations of the numbers of large and small sunspot groups. Sol Phys 281:827-837. https://doi.org/10.1007/s11207-012-0106-6. arXiv:1208.2862 

  145. Astron J JL Jensen 105 350 1993 10.1086/116433 Jensen JL (1993) Comments on nonparametric predictions of sunspot numbers. Astron J 105:350-352. https://doi.org/10.1086/116433 

  146. J Atmos Sol-Terr Phys J Jiang 176 34 2018 10.1016/j.jastp.2017.06.019 Jiang J, Cao J (2018) Predicting solar surface large-scale magnetic field of cycle 24. J Atmos Sol-Terr Phys 176:34-41. https://doi.org/10.1016/j.jastp.2017.06.019. arXiv:1707.00268 

  147. Mon Not R Astron Soc J Jiang 381 1527 2007 10.1111/j.1365-2966.2007.12267.x Jiang J, Chatterjee P, Choudhuri AR (2007) Solar activity forecast with a dynamo model. Mon Not R Astron Soc 381:1527-1542. https://doi.org/10.1111/j.1365-2966.2007.12267.x. arXiv:0707.2258 

  148. Astrophys J J Jiang 709 301 2010 10.1088/0004-637X/709/1/301 Jiang J, Cameron R, Schmitt D, Schüssler M (2010a) Modeling the Sun’s open magnetic flux and the heliospheric current sheet. Astrophys J 709:301-307. https://doi.org/10.1088/0004-637X/709/1/301. arXiv:0912.0108 

  149. Astrophys J J Jiang 717 597 2010 10.1088/0004-637X/717/1/597 Jiang J, Işik E, Cameron RH, Schmitt D, Schüssler M (2010b) The effect of activity-related meridional flow modulation on the strength of the solar polar magnetic field. Astrophys J 717:597-602. https://doi.org/10.1088/0004-637X/717/1/597. arXiv:1005.5317 

  150. Astron Astrophys J Jiang 528 A82 2011 10.1051/0004-6361/201016167 Jiang J, Cameron RH, Schmitt D, Schüssler M (2011a) The solar magnetic field since 1700. I. Characteristics of sunspot group emergence and reconstruction of the butterfly diagram. Astron Astrophys 528:A82. https://doi.org/10.1051/0004-6361/201016167. arXiv:1102.1266 

  151. Astron Astrophys J Jiang 528 A83 2011 10.1051/0004-6361/201016168 Jiang J, Cameron RH, Schmitt D, Schüssler M (2011b) The solar magnetic field since 1700. II. Physical reconstruction of total, polar and open flux. Astron Astrophys 528:A83. https://doi.org/10.1051/0004-6361/201016168. arXiv:1102.1270 

  152. Astrophys J J Jiang 791 5 2014 10.1088/0004-637X/791/1/5 Jiang J, Cameron RH, Schüssler M (2014a) Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface. Astrophys J 791:5. https://doi.org/10.1088/0004-637X/791/1/5. arXiv:1406.5564 

  153. Space Sci Rev J Jiang 186 491 2014 10.1007/s11214-014-0083-1 Jiang J, Hathaway DH, Cameron RH, Solanki SK, Gizon L, Upton L (2014b) Magnetic flux transport at the solar surface. Space Sci Rev 186:491-523. https://doi.org/10.1007/s11214-014-0083-1. arXiv:1408.3186 

  154. Astrophys J Lett J Jiang 808 L28 2015 10.1088/2041-8205/808/1/L28 Jiang J, Cameron RH, Schüssler M (2015) The cause of the weak solar cycle 24. Astrophys J Lett 808:L28. https://doi.org/10.1088/2041-8205/808/1/L28. arXiv:1507.01764 

  155. Astrophys J J Jiang 863 159 2018 10.3847/1538-4357/aad197 Jiang J, Wang JX, Jiao QR, Cao JB (2018) Predictability of the solar cycle over one cycle. Astrophys J 863:159. https://doi.org/10.3847/1538-4357/aad197. arXiv:1807.01543 

  156. Astrophys J J Jiang 871 16 2019 10.3847/1538-4357/aaf64a Jiang J, Song Q, Wang JX, Baranyi T (2019) Different contributions to space weather and space climate from different big solar active regions. Astrophys J 871:16. https://doi.org/10.3847/1538-4357/aaf64a. arXiv:1901.00116 

  157. 10.4249/scholarpedia.2202 Kanamaru T (2007) Van der Pol oscillator. Scholarpedia 2(1):2202. https://doi.org/10.4249/scholarpedia.2202. http://www.scholarpedia.org/article/Van_der_Pol_oscillator 

  158. 10.4249/scholarpedia.6327 Kanamaru T (2008) Duffing oscillator. Scholarpedia 3(3):6327. https://doi.org/10.4249/scholarpedia.6327. http://www.scholarpedia.org/article/Duffing_oscillator 

  159. Sol Phys RP Kane 189 217 1999 10.1023/A:1005298313886 Kane RP (1999) Prediction of the sunspot maximum of solar cycle 23 by extrapolation of spectral components. Sol Phys 189:217-224. https://doi.org/10.1023/A:1005298313886 

  160. Sol Phys RP Kane 202 395 2001 10.1023/A:1012211803591 Kane RP (2001) Did predictions of the maximum sunspot number for solar cycle 23 come true? Sol Phys 202:395-406 

  161. Sol Phys RP Kane 246 487 2007 10.1007/s11207-007-9059-6 Kane RP (2007) Solar cycle predictions based on extrapolation of spectral components: an update. Sol Phys 246:487-493. https://doi.org/10.1007/s11207-007-9059-6 

  162. Sol Phys RP Kane 248 203 2008 10.1007/s11207-008-9125-8 Kane RP (2008) Prediction of solar cycle maximum using solar cycle lengths. Sol Phys 248:203-209. https://doi.org/10.1007/s11207-008-9125-8 

  163. H Kantz 1997 Nonlinear time series analysis Kantz H, Schreiber T (1997) Nonlinear time series analysis. Cambridge University Press, Cambridge 

  164. Astrophys J BB Karak 832 94 2016 10.3847/0004-637X/832/1/94 Karak BB, Cameron R (2016) Babcock-Leighton solar dynamo: the role of downward pumping and the equatorward propagation of activity. Astrophys J 832:94. https://doi.org/10.3847/0004-637X/832/1/94. arXiv:1605.06224 

  165. Mon Not R Astron Soc BB Karak 410 1503 2011 10.1111/j.1365-2966.2010.17531.x Karak BB, Choudhuri AR (2011) The Waldmeier effect and the flux transport solar dynamo. Mon Not R Astron Soc 410:1503-1512. https://doi.org/10.1111/j.1365-2966.2010.17531.x. arXiv:1008.0824 

  166. Sol Phys BB Karak 278 137 2012 10.1007/s11207-012-9928-5 Karak BB, Choudhuri AR (2012) Quenching of meridional circulation in flux transport dynamo models. Sol Phys 278:137-148. https://doi.org/10.1007/s11207-012-9928-5. arXiv:1111.1540 

  167. Astrophys J BB Karak 847 69 2017 10.3847/1538-4357/aa8636 Karak BB, Miesch M (2017) Solar cycle variability induced by tilt angle scatter in a Babcock-Leighton solar dynamo model. Astrophys J 847:69. https://doi.org/10.3847/1538-4357/aa8636. arXiv:1706.08933 

  168. Astrophys J Lett BB Karak 860 L26 2018 10.3847/2041-8213/aaca97 Karak BB, Miesch M (2018) Recovery from Maunder-like grand minima in a Babcock-Leighton solar dynamo model. Astrophys J Lett 860:L26. https://doi.org/10.3847/2041-8213/aaca97. arXiv:1712.10130 

  169. Space Sci Rev BB Karak 186 561 2014 10.1007/s11214-014-0099-6 Karak BB, Jiang J, Miesch MS, Charbonneau P, Choudhuri AR (2014) Flux transport dynamos: from kinematics to dynamics. Space Sci Rev 186:561-602. https://doi.org/10.1007/s11214-014-0099-6 

  170. Phys Rev A MB Kennel 45 3403 1992 10.1103/PhysRevA.45.3403 Kennel MB, Brown R, Abarbanel HDI (1992) Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A 45:3403 

  171. Astrophys J A Kilcik 693 1173 2009 10.1088/0004-637X/693/2/1173 Kilcik A, Anderson CNK, Rozelot JP, Ye H, Sugihara G, Ozguc A (2009) Nonlinear prediction of solar cycle 24. Astrophys J 693:1173-1177. https://doi.org/10.1088/0004-637X/693/2/1173. arXiv:0811.1708 

  172. Astrophys J A Kilcik 731 30 2011 10.1088/0004-637X/731/1/30 Kilcik A, Yurchyshyn VB, Abramenko V, Goode PR, Ozguc A, Rozelot JP, Cao W (2011) Time distributions of large and small sunspot groups over four solar cycles. Astrophys J 731:30. https://doi.org/10.1088/0004-637X/731/1/30. arXiv:1111.3999 

  173. Astrophys J Lett A Kilcik 794 L2 2014 10.1088/2041-8205/794/1/L2 Kilcik A, Yurchyshyn VB, Ozguc A, Rozelot JP (2014) Solar cycle 24: curious changes in the relative numbers of sunspot group types. Astrophys J Lett 794:L2. https://doi.org/10.1088/2041-8205/794/1/L2 

  174. 10.1007/s11207-018-1285-6 Kilcik A, Yurchyshyn V, Donmez B, Obridko VN, Ozguc A, Rozelot JP (2018) Temporal and periodic variations of sunspot counts in flaring and non-flaring active regions. Sol Phys 293:63. https://doi.org/10.1007/s11207-018-1285-6. arXiv:1705.09065 

  175. Mon Not R Astron Soc H Kimura 73 543 1913 10.1093/mnras/73.7.543 Kimura H (1913) Sun-spots and faculæ, on the harmonic analysis of sun-spot relative numbers. Mon Not R Astron Soc 73:543-548B. https://doi.org/10.1093/mnras/73.7.543 

  176. Astron Lett LL Kitchatinov 37 656 2011 10.1134/S0320010811080031 Kitchatinov LL, Olemskoy SV (2011) Does the Babcock-Leighton mechanism operate on the Sun? Astron Lett 37:656-658. https://doi.org/10.1134/S0320010811080031. arXiv:1109.1351 

  177. Astron Astrophys LL Kitchatinov 615 A38 2018 10.1051/0004-6361/201732549 Kitchatinov LL, Mordvinov AV, Nepomnyashchikh AA (2018) Modelling variability of solar activity cycles. Astron Astrophys 615:A38. https://doi.org/10.1051/0004-6361/201732549. arXiv:1804.02833 

  178. Astrophys J IN Kitiashvili 831 15 2016 10.3847/0004-637X/831/1/15 Kitiashvili IN (2016) Data assimilation approach for forecast of solar activity cycles. Astrophys J 831:15. https://doi.org/10.3847/0004-637X/831/1/15 

  179. Astrophys J Lett IN Kitiashvili 688 L49 2008 10.1086/594999 Kitiashvili IN, Kosovichev AG (2008) Application of data assimilation method for predicting solar cycles. Astrophys J Lett 688:L49-L52. https://doi.org/10.1086/594999. arXiv:0807.3284 

  180. Geophys Astrophys Fluid Dyn IN Kitiashvili 103 53 2009 10.1080/03091920802396518 Kitiashvili IN, Kosovichev AG (2009) Nonlinear dynamical modeling of solar cycles using dynamo formulation with turbulent magnetic helicity. Geophys Astrophys Fluid Dyn 103:53-68. https://doi.org/10.1080/03091920802396518. arXiv:0807.3192 

  181. Astron Astrophys Z Kolláth 501 695 2009 10.1051/0004-6361/200811303 Kolláth Z, Oláh K (2009) Multiple and changing cycles of active stars. I. Methods of analysis and application to the solar cycles. Astron Astrophys 501:695-702. https://doi.org/10.1051/0004-6361/200811303. arXiv:0904.1725 

  182. Sol Phys RW Komm 156 17 1995 10.1007/BF00669572 Komm RW (1995) Hurst analysis of Mt. Wilson rotation measurements. Sol Phys 156:17-28. https://doi.org/10.1007/BF00669572 

  183. Sol Phys R Komm 268 389 2011 10.1007/s11207-010-9552-1 Komm R, Ferguson R, Hill F, Barnes G, Leka KD (2011) Subsurface vorticity of flaring versus flare-quiet active regions. Sol Phys 268:389-406. https://doi.org/10.1007/s11207-010-9552-1 

  184. Space Sci Rev R Komm 196 167 2015 10.1007/s11214-013-0023-5 Komm R, De Moortel I, Fan Y, Ilonidis S, Steiner O (2015) Sub-photosphere to solar atmosphere connection. Space Sci Rev 196:167-199. https://doi.org/10.1007/s11214-013-0023-5 

  185. Sol Phys R Komm 292 122 2017 10.1007/s11207-017-1142-z Komm R, Howe R, Hill F (2017) Solar-cycle variation of subsurface-flow divergence: A proxy of magnetic activity? Sol Phys 292:122. https://doi.org/10.1007/s11207-017-1142-z 

  186. Sol Phys R Komm 293 145 2018 10.1007/s11207-018-1365-7 Komm R, Howe R, Hill F (2018) Subsurface zonal and meridional flow during cycles 23 and 24. Sol Phys 293:145. https://doi.org/10.1007/s11207-018-1365-7 

  187. Bull Astron Inst Czech M Kopecký 2 14 1950 Kopecký M (1950) Cycle de 22 ans de l’activité solaire. Bull Astron Inst Czech 2:14 

  188. Bull Astron Inst Czech M Kopecký 31 267 1980 Kopecký M, Ruzickova-Topolova B, Kuklin GV (1980) On the relative inhomogeneity of long-term series of sunspot indices. Bull Astron Inst Czech 31:267-283 

  189. Astron Astrophys NA Krivova 394 701 2002 10.1051/0004-6361:20021063 Krivova NA, Solanki SK (2002) The 1.3-year and 156-day periodicities in sunspot data: wavelet analysis suggests a common origin. Astron Astrophys 394:701-706. https://doi.org/10.1051/0004-6361:20021063 

  190. Astron Astrophys NA Krivova 396 235 2002 10.1051/0004-6361:20021340 Krivova NA, Solanki SK, Beer J (2002) Was one sunspot cycle in the 18th century really lost? Astron Astrophys 396:235-242. https://doi.org/10.1051/0004-6361:20021340 

  191. Sol Phys J Kurths 126 407 1990 10.1007/BF00153060 Kurths J, Ruzmaikin AA (1990) On forecasting the sunspot numbers. Sol Phys 126:407-410. https://doi.org/10.1007/BF00153060 

  192. Kuzanyan K, Obridko VN, Kotlyarov OL, Loskutov AY, Istomin IA (2008) Predictions of the magnitude of the forthcoming solar cycles using knowledge on the solar dynamo and singular spectrum analysis. In: Peter H (ed) 12th European solar physics meeting (ESPM-12). KIS, Freiburg, pp 2-69 

  193. Sol Phys F Labonville 294 6 82 2019 10.1007/s11207-019-1480-0 Labonville F, Charbonneau P, Lemerle A (2019) A dynamo-based forecast of solar cycle 25. Sol Phys 294(6):82. https://doi.org/10.1007/s11207-019-1480-0 

  194. Sol Phys P Lantos 196 221 2000 10.1023/A:1005219818200 Lantos P (2000) Prediction of the maximum amplitude of solar cycles using the ascending inflexion point. Sol Phys 196:221-225. https://doi.org/10.1023/A:1005219818200 

  195. Sol Phys JL Le Mouël 292 43 2017 10.1007/s11207-017-1067-6 Le Mouël JL, Lopes F, Courtillot V (2017) Identification of Gleissberg cycles and a rising trend in a 315-year-long series of sunspot numbers. Sol Phys 292:43. https://doi.org/10.1007/s11207-017-1067-6 

  196. Geophys Res Lett JL Lean 35 L18701 2008 10.1029/2008GL034864 Lean JL, Rind DH (2008) How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys Res Lett 35:L18701. https://doi.org/10.1029/2008GL034864 

  197. Astron Astrophys L Lefèvre 536 L11 2011 10.1051/0004-6361/201118034 Lefèvre L, Clette F (2011) A global small sunspot deficit at the base of the index anomalies of solar cycle 23. Astron Astrophys 536:L11. https://doi.org/10.1051/0004-6361/201118034 

  198. Astrophys J RB Leighton 156 1 1969 10.1086/149943 Leighton RB (1969) A magneto-kinematic model of the solar cycle. Astrophys J 156:1. https://doi.org/10.1086/149943 

  199. Astrophys J A Lemerle 834 133 2017 10.3847/1538-4357/834/2/133 Lemerle A, Charbonneau P (2017) A coupled 2 $$\times$$ 2D Babcock-Leighton solar dynamo model. II. Reference dynamo solutions. Astrophys J 834:133. https://doi.org/10.3847/1538-4357/834/2/133. arXiv:1606.07375 

  200. Astrophys J A Lemerle 810 78 2015 10.1088/0004-637X/810/1/78 Lemerle A, Charbonneau P, Carignan-Dugas A (2015) A coupled $$2\times 2$$D Babcock-Leighton solar dynamo model. I. Surface magnetic flux evolution. Astrophys J 810:78. https://doi.org/10.1088/0004-637X/810/1/78. arXiv:1511.08548 

  201. Astron Astrophys R Leussu 592 A160 2016 10.1051/0004-6361/201628335 Leussu R, Usoskin IG, Arlt R, Mursula K (2016) Properties of sunspot cycles and hemispheric wings since the 19th century. Astron Astrophys 592:A160. https://doi.org/10.1051/0004-6361/201628335 

  202. Astron Astrophys R Leussu 599 A131 2017 10.1051/0004-6361/201629533 Leussu R, Usoskin IG, Senthamizh Pavai V, Diercke A, Arlt R, Denker C, Mursula K (2017) Wings of the butterfly: sunspot groups for 1826-2015. Astron Astrophys 599:A131. https://doi.org/10.1051/0004-6361/201629533 

  203. Astrophys J Lett EH Levy 254 L19 1982 10.1086/183748 Levy EH, Boyer D (1982) Oscillating dynamo in the presence of a fossil magnetic field-the solar cycle. Astrophys J Lett 254:L19-L22. https://doi.org/10.1086/183748 

  204. Astrophys J J Li 758 115 2012 10.1088/0004-637X/758/2/115 Li J, Ulrich RK (2012) Long-term measurements of sunspot magnetic tilt angles. Astrophys J 758:115. https://doi.org/10.1088/0004-637X/758/2/115. arXiv:1209.1642 

  205. Astron Astrophys KJ Li 368 285 2001 10.1051/0004-6361:20000547 Li KJ, Yun HS, Gu XM (2001) On long-term predictions of the maximum sunspot numbers of solar cycles 21 to 23. Astron Astrophys 368:285-291. https://doi.org/10.1051/0004-6361:20000547 

  206. Publ Astron Soc Japan KJ Li 54 787 2002 10.1093/pasj/54.5.787 Li KJ, Irie M, Wang J, Xiong S, Yun H, Liang H, Zhan L, Zhao H (2002) Activity cycle of polar faculae. Publ Astron Soc Japan 54:787-792. https://doi.org/10.1093/pasj/54.5.787 

  207. Sol Phys KJ Li 229 181 2005 10.1007/s11207-005-5001-y Li KJ, Gao PX, Su TW (2005) The Schwabe and Gleissberg periods in the Wolf sunspot numbers and the group sunspot numbers. Sol Phys 229:181-198. https://doi.org/10.1007/s11207-005-5001-y 

  208. J Atmos Sol-Terr Phys KJ Li 135 72 2015 10.1016/j.jastp.2015.09.010 Li KJ, Feng W, Li FY (2015) Predicting the maximum amplitude of solar cycle 25 and its timing. J Atmos Sol-Terr Phys 135:72-76. https://doi.org/10.1016/j.jastp.2015.09.010 

  209. Astron Astrophys ZC Liang 619 A99 2018 10.1051/0004-6361/201833673 Liang ZC, Gizon L, Birch AC, Duvall TL, Rajaguru SP (2018) Solar meridional circulation from twenty-one years of SOHO/MDI and SDO/HMI observations. Helioseismic travel times and forward modeling in the ray approximation. Astron Astrophys 619:A99. https://doi.org/10.1051/0004-6361/201833673. arXiv:1808.08874 

  210. Astrophys Space Sci CH Lin 352 361 2014 10.1007/s10509-014-1931-x Lin CH (2014) A statistical study of the subsurface structure and eruptivity of solar active regions. Astrophys Space Sci 352:361-371. https://doi.org/10.1007/s10509-014-1931-x. arXiv:1512.07007 

  211. Astrophys J CH Lin 860 48 2018 10.3847/1538-4357/aac026 Lin CH, Chou DY (2018) Solar-cycle variations of meridional flows in the solar convection zone using helioseismic methods. Astrophys J 860:48. https://doi.org/10.3847/1538-4357/aac026 

  212. Astrophys J Lett W Livingston 757 L8 2012 10.1088/2041-8205/757/1/L8 Livingston W, Penn MJ, Svalgaard L (2012) Decreasing sunspot magnetic fields explain unique 10.7 cm radio flux. Astrophys J Lett 757:L8. https://doi.org/10.1088/2041-8205/757/1/L8 

  213. J Geophys Res M Lockwood 106 16021 2001 10.1029/2000JA000115 Lockwood M (2001) Long-term variations in the magnetic fields of the Sun and the heliosphere: their origin, effects, and implications. J Geophys Res 106:16021-16038. https://doi.org/10.1029/2000JA000115 

  214. Living Rev Sol Phys M Lockwood 10 4 2013 10.12942/lrsp-2013-4 Lockwood M (2013) Reconstruction and prediction of variations in the open solar magnetic flux and interplanetary conditions. Living Rev Sol Phys 10:4. https://doi.org/10.12942/lrsp-2013-4 

  215. Mon Not R Astron Soc NR Lomb 190 723 1980 10.1093/mnras/190.4.723 Lomb NR, Andersen AP (1980) The analysis and forecasting of the Wolf sunspot numbers. Mon Not R Astron Soc 190:723-732. https://doi.org/10.1093/mnras/190.4.723 

  216. Sol Phys I Lopes 257 1 2009 10.1007/s11207-009-9372-3 Lopes I, Passos D (2009) Solar variability induced in a dynamo code by realistic meridional circulation variations. Sol Phys 257:1-12. https://doi.org/10.1007/s11207-009-9372-3 

  217. Space Sci Rev I Lopes 186 535 2014 10.1007/s11214-014-0066-2 Lopes I, Passos D, Nagy M, Petrovay K (2014) Oscillator models of the solar cycle. Towards the development of inversion methods. Space Sci Rev 186:535-559. https://doi.org/10.1007/s11214-014-0066-2. arXiv:1407.4918 

  218. Astron Astrophys B Löptien 606 A28 2017 10.1051/0004-6361/201731064 Löptien B, Birch AC, Duvall TL, Gizon L, Proxauf B, Schou J (2017) Measuring solar active region inflows with local correlation tracking of granulation. Astron Astrophys 606:A28. https://doi.org/10.1051/0004-6361/201731064. arXiv:1705.08833 

  219. Astron Lett AY Loskutov 27 745 2001 10.1134/1.1415865 Loskutov AY, Istomin IA, Kotlyarov OL, Kuzanyan KM (2001) A study of the regularities in solar magnetic activity by singular spectral analysis. Astron Lett 27:745-753. https://doi.org/10.1134/1.1415865 

  220. Geophys Res Lett JJ Love 39 L10103 2012 10.1029/2012GL051818 Love JJ, Rigler EJ (2012) Sunspot random walk and 22-year variation. Geophys Res Lett 39:L10103. https://doi.org/10.1029/2012GL051818 

  221. Sol Phys VI Makarov 163 267 1996 10.1007/BF00148001 Makarov VI, Makarova VV (1996) Polar faculae and sunspot cycles. Sol Phys 163:267-289. https://doi.org/10.1007/BF00148001 

  222. Sol Phys VI Makarov 119 45 1989 10.1007/BF00146211 Makarov VI, Makarova VV, Sivaraman KR (1989) Do polar faculae on the Sun predict a sunspot cycle? Sol Phys 119:45-54. https://doi.org/10.1007/BF00146211 

  223. Sol Phys VI Makarov 198 409 2001 10.1023/A:1005249531228 Makarov VI, Tlatov AG, Callebaut DK, Obridko VN, Shelting BD (2001) Large-scale magnetic field and sunspot cycles. Sol Phys 198:409-421. https://doi.org/10.1023/A:1005249531228 

  224. Astrophys J S Mandal 851 70 2017 10.3847/1538-4357/aa97dc Mandal S, Karak BB, Banerjee D (2017) Latitude distribution of sunspots: analysis using sunspot data and a dynamo model. Astrophys J 851:70. https://doi.org/10.3847/1538-4357/aa97dc. arXiv:1711.00222 

  225. Water Resour Res BB Mandelbrot 5 321 1969 10.1029/WR005i002p00321 Mandelbrot BB, Wallis JR (1969) On forecasting the sunspot numbers. Water Resour Res 5:321-340. https://doi.org/10.1029/WR005i002p00321 

  226. Sun and Geosphere G Maris 1 1 8 2006 Maris G, Oncica A (2006) Solar cycle 24 forecasts. Sun and Geosphere 1(1):8-11 

  227. Astron Astrophys D Martin-Belda 586 A73 2016 10.1051/0004-6361/201527213 Martin-Belda D, Cameron RH (2016) Surface flux transport simulations: effect of inflows toward active regions and random velocities on the evolution of the Sun’s large-scale magnetic field. Astron Astrophys 586:A73. https://doi.org/10.1051/0004-6361/201527213. arXiv:1512.02541 

  228. Astron Astrophys D Martin-Belda 597 A21 2017 10.1051/0004-6361/201629061 Martin-Belda D, Cameron RH (2017) Inflows towards active regions and the modulation of the solar cycle: a parameter study. Astron Astrophys 597:A21. https://doi.org/10.1051/0004-6361/201629061. arXiv:1609.01199 

  229. Astrophys J D Mason 645 1543 2006 10.1086/503761 Mason D, Komm R, Hill F, Howe R, Haber D, Hindman BW (2006) Flares, magnetic fields, and subsurface vorticity: a survey of GONG and MDI data. Astrophys J 645:1543-1553. https://doi.org/10.1086/503761 

  230. Knowl Illus Mag Sci EW Maunder 17 173 1894 Maunder EW (1894) A prolonged sunspot minimum. Knowl Illus Mag Sci 17:173-176 

  231. Sol Phys BH McClintock 287 215 2013 10.1007/s11207-013-0338-0 McClintock BH, Norton AA (2013) Recovering Joy’s law as a function of solar cycle, hemisphere, and longitude. Sol Phys 287:215-227. https://doi.org/10.1007/s11207-013-0338-0. arXiv:1305.3205 

  232. Astrophys J BH McClintock 797 130 2014 10.1088/0004-637X/797/2/130 McClintock BH, Norton AA, Li J (2014) Re-examining sunspot tilt angle to include anti-Hale statistics. Astrophys J 797:130. https://doi.org/10.1088/0004-637X/797/2/130. arXiv:1412.5094 

  233. McCracken KG, Beer J (2008) The 2300 year modulation in the galactic cosmic radiation. In: Caballero R et al (eds) Proceedings of the 30th international cosmic ray conference, vol 1. UNAM, Mexico City, pp 549-552 

  234. Astrophys J AA Michelson 38 268 1913 10.1086/142033 Michelson AA (1913) Determination of periodicities by the harmonic analyzer with an application to the sun-spot cycle. Astrophys J 38:268. https://doi.org/10.1086/142033 

  235. Astrophys J Lett MS Miesch 785 L8 2014 10.1088/2041-8205/785/1/L8 Miesch MS, Dikpati M (2014) A three-dimensional Babcock-Leighton solar dynamo model. Astrophys J Lett 785:L8. https://doi.org/10.1088/2041-8205/785/1/L8. arXiv:1401.6557 

  236. Adv Space Res MS Miesch 58 1571 2016 10.1016/j.asr.2016.02.018 Miesch MS, Teweldebirhan K (2016) A three-dimensional Babcock-Leighton solar dynamo model: initial results with axisymmetric flows. Adv Space Res 58:1571-1588. https://doi.org/10.1016/j.asr.2016.02.018. arXiv:1511.03613 

  237. Phys Rev Lett PD Mininni 85 5476 2000 10.1103/PhysRevLett.85.5476 Mininni PD, Gómez DO, Mindlin GB (2000) Stochastic relaxation oscillator model for the solar cycle. Phys Rev Lett 85:5476-5479. https://doi.org/10.1103/PhysRevLett.85.5476 

  238. Sol Phys PD Mininni 201 203 2001 10.1023/A:1017515709106 Mininni PD, Gomez DO, Mindlin GB (2001) Simple model of a stochastically excited solar dynamo. Sol Phys 201:203-223. https://doi.org/10.1023/A:1017515709106 

  239. Sol Phys PD Mininni 208 167 2002 10.1023/A:1019658530185 Mininni PD, Gomez DO, Mindlin GB (2002) Instantaneous phase and amplitude correlation in the solar cycle. Sol Phys 208:167-179. https://doi.org/10.1023/A:1019658530185 

  240. Sol Phys D Moss 250 221 2008 10.1007/s11207-008-9202-z Moss D, Sokoloff D, Usoskin I, Tutubalin V (2008) Solar grand minima and random fluctuations in dynamo parameters. Sol Phys 250:221-234. https://doi.org/10.1007/s11207-008-9202-z. arXiv:0806.3331 

  241. MSFC (2017) Solar cycle 24 prediction. http://solarscience.msfc.nasa.gov/predict.shtml 

  242. Astrophys J Lett A Muñoz-Jaramillo 720 L20 2010 10.1088/2041-8205/720/1/L20 Muñoz-Jaramillo A, Nandy D, Martens PCH, Yeates AR (2010) A double-ring algorithm for modeling solar active regions: unifying kinematic dynamo models and surface flux-transport simulations. Astrophys J Lett 720:L20-L25. https://doi.org/10.1088/2041-8205/720/1/L20. arXiv:1007.1262 

  243. Astrophys J A Muñoz-Jaramillo 753 146 2012 10.1088/0004-637X/753/2/146 Muñoz-Jaramillo A, Sheeley NR, Zhang J, DeLuca EE (2012) Calibrating 100 years of polar faculae measurements: implications for the evolution of the heliospheric magnetic field. Astrophys J 753:146. https://doi.org/10.1088/0004-637X/753/2/146. arXiv:1303.0345 

  244. Phys Rev Lett A Muñoz-Jaramillo 111 4 041106 2013 10.1103/PhysRevLett.111.041106 Muñoz-Jaramillo A, Balmaceda LA, DeLuca EE (2013a) Using the dipolar and quadrupolar moments to improve solar-cycle predictions based on the polar magnetic fields. Phys Rev Lett 111(4):041106. https://doi.org/10.1103/PhysRevLett.111.041106. arXiv:1308.2038 

  245. Astrophys J Lett A Muñoz-Jaramillo 767 L25 2013 10.1088/2041-8205/767/2/L25 Muñoz-Jaramillo A, Dasi-Espuig M, Balmaceda LA, DeLuca EE (2013b) Solar cycle propagation, memory, and prediction: insights from a century of magnetic proxies. Astrophys J Lett 767:L25. https://doi.org/10.1088/2041-8205/767/2/L25. arXiv:1304.3151 

  246. 10.1007/s11207-016-0898-x Muraközy J, Baranyi T, Ludmány A (2016) An alternative measure of solar activity from detailed sunspot datasets. Sol Phys 291:2941-2950. https://doi.org/10.1007/s11207-016-0898-x. arXiv:1603.05870 

  247. Adv Space Res K Mursula 25 1939 2000 10.1016/S0273-1177(99)00608-0 Mursula K, Zieger B (2000) The 1.3-year variation in solar wind speed and geomagnetic activity. Adv Space Res 25:1939-1942. https://doi.org/10.1016/S0273-1177(99)00608-0 

  248. Sol Phys K Mursula 198 51 2001 10.1023/A:1005218414790 Mursula K, Usoskin IG, Kovaltsov GA (2001) Persistent 22-year cycle in sunspot activity: evidence for a relic solar magnetic field. Sol Phys 198:51-56. https://doi.org/10.1023/A:1005218414790 

  249. Astron Lett YA Nagovitsyn 23 742 1997 Nagovitsyn YA (1997) A nonlinear mathematical model for the solar cyclicity and prospects for reconstructing the solar activity in the past. Astron Lett 23:742-748 

  250. Astron Lett YA Nagovitsyn 35 564 2009 10.1134/S1063773709080064 Nagovitsyn YA, Nagovitsyna EY, Makarova VV (2009) The Gnevyshev-Ohl rule for physical parameters of the solar magnetic field: the 400-year interval. Astron Lett 35:564-571. https://doi.org/10.1134/S1063773709080064 

  251. Astron Lett YA Nagovitsyn 42 703 2016 10.1134/S1063773716090048 Nagovitsyn YA, Pevtsov AA, Osipova AA, Tlatov AG, Miletskii EV, Nagovitsyna EY (2016) Two populations of sunspots and secular variations of their characteristics. Astron Lett 42:703-712. https://doi.org/10.1134/S1063773716090048 

  252. 10.1002/asna.201613035 Nagovitsyn YA, Pevtsov AA, Osipova AA (2017) Long-term variations in sunspot magnetic field-area relation. Astron Nachr 338:26-34. https://doi.org/10.1002/asna.201613035. arXiv:1608.01132 

  253. Astron Nachr M Nagy 334 964 2013 10.1002/asna.201211971 Nagy M, Petrovay K (2013) Oscillator models of the solar cycle and the Waldmeier effect. Astron Nachr 334:964. https://doi.org/10.1002/asna.201211971. arXiv:1404.3668 

  254. Sol Phys M Nagy 292 167 2017 10.1007/s11207-017-1194-0 Nagy M, Lemerle A, Labonville F, Petrovay K, Charbonneau P (2017a) The effect of “rogue” active regions on the solar cycle. Sol Phys 292:167. https://doi.org/10.1007/s11207-017-1194-0. arXiv:1712.02185 

  255. Climate Dyn M Nagy 48 1883 2017 10.1007/s00382-016-3179-3 Nagy M, Petrovay K, Erdélyi R (2017b) The Atlanto-Pacific multidecadal oscillation and its imprint on the global temperature record. Climate Dyn 48:1883-1891. https://doi.org/10.1007/s00382-016-3179-3 

  256. Astrophys J NJ Nelson 762 73 2013 10.1088/0004-637X/762/2/73 Nelson NJ, Brown BP, Brun AS, Miesch MS, Toomre J (2013) Magnetic wreaths and cycles in convective dynamos. Astrophys J 762:73. https://doi.org/10.1088/0004-637X/762/2/73. arXiv:1211.3129 

  257. Astron Nachr R Neuhäuser 339 219 2018 10.1002/asna.201813481 Neuhäuser R, Arlt R, Richter S (2018) Reconstructed sunspot positions in the Maunder minimum based on the correspondence of Gottfried Kirch. Astron Nachr 339:219-267. https://doi.org/10.1002/asna.201813481. arXiv:1807.10241 

  258. Sci Rep KK Ng 6 21028 2016 10.1038/srep21028 Ng KK (2016) Prediction methods in solar sunspots cycles. Sci Rep 6:21028. https://doi.org/10.1038/srep21028 

  259. Sol Phys AA Norton 261 193 2010 10.1007/s11207-009-9479-6 Norton AA, Gallagher JC (2010) Solar-cycle characteristics examined in separate hemispheres: phase, Gnevyshev gap, and length of minimum. Sol Phys 261:193-207. https://doi.org/10.1007/s11207-009-9479-6. arXiv:1001.3186 

  260. J Phys: Conf Ser AA Norton 440 012038 2013 10.1088/1742-6596/440/1/012038 Norton AA, Jones EH, Liu Y (2013) How do the magnetic field strengths and intensities of sunspots vary over the solar cycle? J Phys: Conf Ser 440:012038. https://doi.org/10.1088/1742-6596/440/1/012038 

  261. Space Sci Rev AA Norton 186 251 2014 10.1007/s11214-014-0100-4 Norton AA, Charbonneau P, Passos D (2014) Hemispheric coupling: comparing dynamo simulations and observations. Space Sci Rev 186:251-283. https://doi.org/10.1007/s11214-014-0100-4. arXiv:1411.7052 

  262. Sol Phys VN Obridko 248 191 2008 10.1007/s11207-008-9138-3 Obridko VN, Shelting BD (2008) On prediction of the strength of the 11-year solar cycle no. 24. Sol Phys 248:191-202. https://doi.org/10.1007/s11207-008-9138-3 

  263. Geophys Res Lett AR Ochadlick Jr 20 1471 1993 10.1029/93GL01593 Ochadlick AR Jr, Kritikos HN, Giegengack R (1993) Variations in the period of the sunspot cycle. Geophys Res Lett 20:1471-1474. https://doi.org/10.1029/93GL01593 

  264. Sol Phys MG Ogurtsov 220 93 2004 10.1023/B:sola.0000023439.59453.e5 Ogurtsov MG (2004) New evidence for long-term persistence in the Sun’s activity. Sol Phys 220:93-105. https://doi.org/10.1023/B:sola.0000023439.59453.e5 

  265. ISRN Astron Astrophys MG Ogurtsov 2011 640817 2011 10.5402/2011/640817 Ogurtsov MG, Lindholm M (2011) Statistical effects in the solar activity cycles during AD 1823-1996. ISRN Astron Astrophys 2011:640817. https://doi.org/10.5402/2011/640817 

  266. Soln Dannye AI Ohl 12 84 1966 Ohl AI (1966) Forecast of sunspot maximum number of cycle 20. Soln Dannye 12:84 

  267. Astron Astrophys K Oláh 501 703 2009 10.1051/0004-6361/200811304 Oláh K, Kolláth Z, Granzer T, Strassmeier KG, Lanza AF, Järvinen S, Korhonen H, Baliunas SL, Soon W, Messina S, Cutispoto G (2009) Multiple and changing cycles of active stars. II. results. Astron Astrophys 501:703-713. https://doi.org/10.1051/0004-6361/200811304. arXiv:0904.1747 

  268. Sol Phys R Oliver 169 215 1996 10.1007/BF00153842 Oliver R, Ballester JL (1996) Rescaled range analysis of the asymmetry of solar activity. Sol Phys 169:215-224. https://doi.org/10.1007/BF00153842 

  269. Phys Rev E R Oliver 58 5650 1998 10.1103/PhysRevE.58.5650 Oliver R, Ballester JL (1998) Is there memory in solar activity? Phys Rev E 58:5650-5654. https://doi.org/10.1103/PhysRevE.58.5650 

  270. Geomagn Aeron AA Osipova 57 1092 2017 10.1134/S0016793217080199 Osipova AA, Nagovitsyn YA (2017) The Waldmeier effect for two sunspot populations. Geomagn Aeron 57:1092-1100. https://doi.org/10.1134/S0016793217080199 

  271. Astron Astrophys Rev M Ossendrijver 11 287 2003 10.1007/s00159-003-0019-3 Ossendrijver M (2003) The solar dynamo. Astron Astrophys Rev 11:287-367. https://doi.org/10.1007/s00159-003-0019-3 

  272. Astron Astrophys AJH Ossendrijver 313 938 1996 Ossendrijver AJH, Hoyng P, Schmitt D (1996) Stochastic excitation and memory of the solar dynamo. Astron Astrophys 313:938-948 

  273. J Space Weather Space Clim MJ Owens 7 27 A33 2017 10.1051/swsc/2017034 Owens MJ, Lockwood M, Hawkins E, Usoskin I, Jones GS, Barnard L, Schurer A, Fasullo J (2017) The Maunder minimum and the Little Ice Age: an update from recent reconstructions and climate simulations. J Space Weather Space Clim 7(27):A33. https://doi.org/10.1051/swsc/2017034 

  274. Phys Rev Lett M Paluš 83 3406 1999 10.1103/PhysRevLett.83.3406 Paluš M, Novotná D (1999) Sunspot cycle: A driven nonlinear oscillator? Phys Rev Lett 83:3406-3409. https://doi.org/10.1103/PhysRevLett.83.3406 

  275. J Atmos Sol-Terr Phys S Panchev 69 2391 2007 10.1016/j.jastp.2007.07.011 Panchev S, Tsekov M (2007) Empirical evidences of persistence and dynamical chaos in solar terrestrial phenomena. J Atmos Sol-Terr Phys 69:2391-2404. https://doi.org/10.1016/j.jastp.2007.07.011 

  276. Astrophys J EN Parker 122 293 1955 10.1086/146087 Parker EN (1955) Hydromagnetic dynamo models. Astrophys J 122:293-314. https://doi.org/10.1086/146087 

  277. Astrophys J D Passos 744 172 2012 10.1088/0004-637X/744/2/172 Passos D (2012) Evolution of solar parameters since 1750 based on a truncated dynamo model. Astrophys J 744:172. https://doi.org/10.1088/0004-637X/744/2/172 

  278. Astron Astrophys D Passos 607 A120 2017 10.1051/0004-6361/201730568 Passos D, Miesch M, Guerrero G, Charbonneau P (2017) Meridional circulation dynamics in a cyclic convective dynamo. Astron Astrophys 607:A120. https://doi.org/10.1051/0004-6361/201730568. arXiv:1702.02421 

  279. Geophys Res Lett KI Paularena 22 3001 1995 10.1029/95GL02802 Paularena KI, Szabo A, Richardson JD (1995) Coincident 1.3-year periodicities in the $$ap$$ geomagnetic index and the solar wind. Geophys Res Lett 22:3001-3004. https://doi.org/10.1029/95GL02802 

  280. Sol Phys WD Pesnell 252 209 2008 10.1007/s11207-008-9252-2 Pesnell WD (2008) Predictions of solar cycle 24. Sol Phys 252:209-220. https://doi.org/10.1007/s11207-008-9252-2 

  281. Sol Phys WD Pesnell 281 507 2012 10.1007/s11207-012-9997-5 Pesnell WD (2012) Solar cycle predictions (invited review). Sol Phys 281:507-532. https://doi.org/10.1007/s11207-012-9997-5 

  282. Sol Phys WD Pesnell 289 2317 2014 10.1007/s11207-013-0470-x Pesnell WD (2014) Predicting solar cycle 24 using a geomagnetic precursor pair. Sol Phys 289:2317-2331. https://doi.org/10.1007/s11207-013-0470-x 

  283. Space Weather WD Pesnell 14 10 2016 10.1002/2015SW001304 Pesnell WD (2016) Predictions of solar cycle 24: How are we doing? Space Weather 14:10-21. https://doi.org/10.1002/2015SW001304 

  284. Sol Phys WD Pesnell 293 112 2018 10.1007/s11207-018-1330-5 Pesnell WD, Schatten KH (2018) An early prediction of the amplitude of solar cycle 25. Sol Phys 293:112. https://doi.org/10.1007/s11207-018-1330-5 

  285. Living Rev Sol Phys GJD Petrie 12 5 2015 10.1007/lrsp-2015-5 Petrie GJD (2015) Solar magnetism in the polar regions. Living Rev Sol Phys 12:5. https://doi.org/10.1007/lrsp-2015-5 

  286. Space Sci Rev GJD Petrie 210 77 2017 10.1007/s11214-015-0189-0 Petrie GJD, Ettinger S (2017) Polar field reversals and active region decay. Space Sci Rev 210:77-108. https://doi.org/10.1007/s11214-015-0189-0 

  287. Astrophys J GJD Petrie 699 871 2009 10.1088/0004-637X/699/1/871 Petrie GJD, Patrikeeva I (2009) A comparative study of magnetic fields in the solar photosphere and chromosphere at equatorial and polar latitudes. Astrophys J 699:871-884. https://doi.org/10.1088/0004-637X/699/1/871. arXiv:1010.6041 

  288. Space Sci Rev GJD Petrie 186 325 2014 10.1007/s11214-014-0064-4 Petrie GJD, Petrovay K, Schatten K (2014) Solar polar fields and the 22-year activity cycle: observations and models. Space Sci Rev 186:325-357. https://doi.org/10.1007/s11214-014-0064-4 

  289. K Petrovay 415 1994 Solar surface magnetism, NATO ASI magnetism. NATO ASI Series C 10.1007/978-94-011-1188-1_35 Petrovay K (1994) Theory of passive magnetic field transport. In: Rutten RJ, Schrijver CJ (eds) Solar surface magnetism, NATO ASI Series C, vol 433. Kluwer, Dordrecht, pp 415-440 

  290. Petrovay K (2000) What makes the Sun tick? The origin of the solar cycle. In: Wilson A (ed) The solar cycle and terrestrial climate, solar and space weather. ESA Special Publication, vol SP-463. ESA Publications Division, Noordwijk, p 3. arXiv:astro-ph/0010096 

  291. Astron Nachr K Petrovay 328 777 2007 10.1002/asna.200710804 Petrovay K (2007) On the possibility of a bimodal solar dynamo. Astron Nachr 328:777-780. https://doi.org/10.1002/asna.200710804. arXiv:0708.2131 

  292. 10.1017/S1743921309992560 Petrovay K (2010a) Harmonic analysis approach to solar cycle prediction and the Waldmeier effect. In: Kosovichev A, Andrei A, Rozelot JP (eds) Solar and stellar variability: impact on earth and planets, IAU symposium, vol 264. Cambridge University Press, Cambridge, pp 150-154. https://doi.org/10.1017/S1743921309992560 

  293. Living Rev Sol Phys K Petrovay 7 6 2010 10.12942/lrsp-2010-6 Petrovay K (2010) Solar cycle prediction. Living Rev Sol Phys 7:6. https://doi.org/10.12942/lrsp-2010-6. arXiv:1012.5513 

  294. Sol Phys K Petrovay 205 39 2002 10.1023/A:1013833709489 Petrovay K, Forgács-Dajka E (2002) The role of active regions in the generation of torsional oscillations. Sol Phys 205:39-52. https://doi.org/10.1023/A:1013833709489 

  295. Sol Phys K Petrovay 176 249 1997 10.1023/A:1004988123265 Petrovay K, van Driel-Gesztelyi L (1997) Making sense of sunspot decay. I. Parabolic decay law and Gnevyshev-Waldmeier relation. Sol Phys 176:249-266. https://doi.org/10.1023/A:1004988123265 

  296. 10.1017/S1743921318001254 Petrovay K, Nagy M (2018) Rogue active regions and the inherent unpredictability of the solar dynamo. In: Banerjee D, Jiang J, Kusano K, Solanki S (eds) Long-term datasets for the understanding of solar and stellar magnetic cycles. IAU symposium, vol 340. Cambridge University Press, Cambridge, pp 307-312. https://doi.org/10.1017/S1743921318001254. arXiv:1804.03427 

  297. Astron Astrophys K Petrovay 632 A87 2019 10.1051/0004-6361/201936099 Petrovay K, Talafha M (2019) Optimization of surface flux transport models for the solar polar magnetic field. Astron Astrophys 632:A87. https://doi.org/10.1051/0004-6361/201936099. arXiv:1909.06125 

  298. Sol Phys K Petrovay 188 315 1999 10.1023/A:1005213212336 Petrovay K, Martínez Pillet V, van Driel-Gesztelyi L (1999) Making sense of sunspot decay. II. Deviations from the mean law and plage effects. Sol Phys 188:315-330 arXiv:astro-ph/9906258 

  299. Petrovay K, Chaterjee P, Choudhuri A (2006) Helical magnetic fields in solar active regions: theory vs. observations. Publ Astron Dep Eotvos Lorand Univ 17:5 

  300. J Atmos Sol-Terr Phys K Petrovay 176 15 2018 10.1016/j.jastp.2017.12.011 Petrovay K, Nagy M, Gerják T, Juhász L (2018) Precursors of an upcoming solar cycle at high latitudes from coronal green line data. J Atmos Sol-Terr Phys 176:15-20. https://doi.org/10.1016/j.jastp.2017.12.011. arXiv:1802.05628 

  301. Space Sci Rev AA Pevtsov 186 285 2014 10.1007/s11214-014-0082-2 Pevtsov AA, Berger MA, Nindos A, Norton AA, van Driel-Gesztelyi L (2014) Magnetic helicity, tilt, and twist. Space Sci Rev 186:285-324. https://doi.org/10.1007/s11214-014-0082-2 

  302. Astrophys J VV Pipin 741 1 2011 10.1088/0004-637X/741/1/1 Pipin VV, Kosovichev AG (2011) The asymmetry of sunspot cycles and Waldmeier relations as a result of nonlinear surface-shear shaped dynamo. Astrophys J 741:1. https://doi.org/10.1088/0004-637X/741/1/1. arXiv:1105.1828 

  303. Phys Scripta VV Pipin 84 6 065903 2011 10.1088/0031-8949/84/06/065903 Pipin VV, Sokoloff DD (2011) The fluctuating $$\alpha$$-effect and Waldmeier relations in the nonlinear dynamo models. Phys Scripta 84(6):065903. https://doi.org/10.1088/0031-8949/84/06/065903. arXiv:1110.2255 

  304. Astron Astrophys VV Pipin 542 A26 2012 10.1051/0004-6361/201118733 Pipin VV, Sokoloff DD, Usoskin IG (2012) Variations of the solar cycle profile in a solar dynamo with fluctuating dynamo governing parameters. Astron Astrophys 542:A26. https://doi.org/10.1051/0004-6361/201118733. arXiv:1112.6218 

  305. Kinemat Phys Celest Bodies MI Pishkalo 24 242 2008 10.3103/S0884591308050036 Pishkalo MI (2008) Preliminary prediction of solar cycles 24 and 25 based on the correlation between cycle parameters. Kinemat Phys Celest Bodies 24:242-247. https://doi.org/10.3103/S0884591308050036 

  306. Astrophys J T Podladchikova 850 81 2017 10.3847/1538-4357/aa93ef Podladchikova T, Van der Linden R, Veronig AM (2017) Sunspot number second differences as a precursor of the following 11-year sunspot cycle. Astrophys J 850:81. https://doi.org/10.3847/1538-4357/aa93ef. arXiv:1712.05782 

  307. WH Press 1992 Numerical recipes in FORTRAN. The art of scientific computing 2 Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN. The art of scientific computing, 2nd edn. Cambridge University Press, Cambridge 

  308. J Geophys Res CP Price 97 19113 1992 10.1029/92JA01459 Price CP, Prichard D, Hogenson EA (1992) Do the sunspot numbers form a ‘chaotic’ set? J Geophys Res 97:19113. https://doi.org/10.1029/92JA01459 

  309. Astrophys J Lett M Priyal 793 L4 2014 10.1088/2041-8205/793/1/L4 Priyal M, Banerjee D, Karak BB, Muñoz-Jaramillo A, Ravindra B, Choudhuri AR, Singh J (2014) Polar network index as a magnetic proxy for the solar cycle studies. Astrophys J Lett 793:L4. https://doi.org/10.1088/2041-8205/793/1/L4. arXiv:1407.4944 

  310. Qian B, Rasheed K (2004) Hurst exponent and financial market predictability. In: Hamza MH 

  311. (ed) Financial engineering and applications (FEA 2004). Acta Press, pp 203-209 

  312. Astrophys J É Racine 735 46 2011 10.1088/0004-637X/735/1/46 Racine É, Charbonneau P, Ghizaru M, Bouchat A, Smolarkiewicz PK (2011) On the mode of dynamo action in a global large-eddy simulation of solar convection. Astrophys J 735:46. https://doi.org/10.1088/0004-637X/735/1/46 

  313. Earth Planets Space GK Rangarajan 50 91 1998 10.1186/BF03352090 Rangarajan GK (1998) Sunspot variability and an attempt to predict solar cycle 23 by adaptive filtering. Earth Planets Space 50:91-100. https://doi.org/10.1186/BF03352090 

  314. Astron Astrophys R Rezaei 541 A60 2012 10.1051/0004-6361/201118635 Rezaei R, Beck C, Schmidt W (2012) Variation in sunspot properties between 1999 and 2011 as observed with the Tenerife Infrared Polarimeter. Astron Astrophys 541:A60. https://doi.org/10.1051/0004-6361/201118635. arXiv:1203.1444 

  315. Astron Astrophys R Rezaei 578 A43 2015 10.1051/0004-6361/201425557 Rezaei R, Beck C, Lagg A, Borrero JM, Schmidt W, Collados M (2015) Variation in sunspot properties between 1999 and 2014. Astron Astrophys 578:A43. https://doi.org/10.1051/0004-6361/201425557 

  316. Sol Phys JG Richard 223 319 2004 10.1007/s11207-004-1165-0 Richard JG (2004) The eight-Schwabe-cycle pulsation. Sol Phys 223:319-333. https://doi.org/10.1007/s11207-004-1165-0 

  317. Geophys Res Lett JD Richardson 21 1559 1994 10.1029/94GL01076 Richardson JD, Paularena KI, Belcher JW, Lazarus AJ (1994) Solar wind oscillations with a 1.3 year period. Geophys Res Lett 21:1559-1560. https://doi.org/10.1029/94GL01076 

  318. Nature E Rieger 312 623 1984 10.1038/312623a0 Rieger E, Kanbach G, Reppin C, Share GH, Forrest DJ, Chupp EL (1984) A 154-day periodicity in the occurrence of hard solar flares? Nature 312:623-625. https://doi.org/10.1038/312623a0 

  319. J Atmos Sol-Terr Phys NR Rigozo 73 11-12 1294 2011 10.1016/j.jastp.2010.09.005 Rigozo NR, Souza Echer MP, Evangelista H, Nordemann DJR, Echer E (2011) Prediction of sunspot number amplitude and solar cycle length for cycles 24 and 25. J Atmos Sol-Terr Phys 73(11-12):1294-1299. https://doi.org/10.1016/j.jastp.2010.09.005 

  320. 10.1029/2006JA012130 Rouillard AP, Lockwood M, Finch I (2007) Centennial changes in the solar wind speed and in the open solar flux. J Geophys Res 112(A11):5103. https://doi.org/10.1029/2006JA012130 

  321. Sol Phys D Ruždjak 292 179 2017 10.1007/s11207-017-1199-8 Ruždjak D, Brajša R, Sudar D, Skokić I, Poljančić Beljan I (2017) A relationship between the solar rotation and activity analysed by tracing sunspot groups. Sol Phys 292:179. https://doi.org/10.1007/s11207-017-1199-8. arXiv:1711.03723 

  322. Astron Astrophys A Ruzmaikin 319 L13 1997 Ruzmaikin A (1997) On the origin of sunspots. Astron Astrophys 319:L13-L16 

  323. Sol Phys A Ruzmaikin 149 395 1994 10.1007/BF00690625 Ruzmaikin A, Feynman J, Robinson P (1994) Long-term persistence of solar activity. Sol Phys 149:395-403. https://doi.org/10.1007/BF00690625 

  324. J Geophys Res M Rypdal 117 A04103 2012 10.1029/2011JA017283 Rypdal M, Rypdal K (2012) Is there long-range memory in solar activity on timescales shorter than the sunspot period? J Geophys Res 117:A04103. https://doi.org/10.1029/2011JA017283. arXiv:1111.4787 

  325. Mon Not R Astron Soc V Sarp 481 2981 2018 10.1093/mnras/sty2470 Sarp V, Kilcik A, Yurchyshyn V, Rozelot JP, Ozguc A (2018) Prediction of solar cycle 25: a non-linear approach. Mon Not R Astron Soc 481:2981-2985. https://doi.org/10.1093/mnras/sty2470 

  326. Geophys Res Lett KH Schatten 20 2275 1993 10.1029/93GL02431 Schatten KH, Pesnell WD (1993) An early solar dynamo prediction: cycle 23 is approximately cycle 22. Geophys Res Lett 20:2275-2278. https://doi.org/10.1029/93GL02431 

  327. Geophys Res Lett KH Schatten 14 632 1987 10.1029/GL014i006p00632 Schatten KH, Sofia S (1987) Forecast of an exceptionally large even-numbered solar cycle. Geophys Res Lett 14:632-635. https://doi.org/10.1029/GL014i006p00632 

  328. Geophys Res Lett KH Schatten 5 411 1978 10.1029/GL005i005p00411 Schatten KH, Scherrer PH, Svalgaard L, Wilcox JM (1978) Using dynamo theory to predict the sunspot number during solar cycle 21. Geophys Res Lett 5:411-414. https://doi.org/10.1029/GL005i005p00411 

  329. Geophys Res Lett KH Schatten 23 605 1996 10.1029/96GL00451 Schatten KH, Myers DJ, Sofia S (1996) Solar activity forecast for solar cycle 23. Geophys Res Lett 23:605-608. https://doi.org/10.1029/96GL00451 

  330. 10.1017/S0074180900021379 Schmidt HU (1968) Magnetohydrodynamics of an active region. In: Kiepenheuer KO (ed) Structure and development of solar active regions, IAU symposium, vol 35. Cambridge University Press, Cambridge, pp 93-107. https://doi.org/10.1017/S0074180900021379 

  331. Astron Astrophys M Schüssler 459 945 2006 10.1051/0004-6361:20065871 Schüssler M, Baumann I (2006) Modeling the Sun’s open magnetic flux. Astron Astrophys 459:945-953. https://doi.org/10.1051/0004-6361:20065871 

  332. Astron Astrophys M Schüssler 618 A89 2018 10.1051/0004-6361/201833532 Schüssler M, Cameron RH (2018) Origin of the hemispheric asymmetry of solar activity. Astron Astrophys 618:A89. https://doi.org/10.1051/0004-6361/201833532. arXiv:1807.10061 

  333. Astron Astrophys V Senthamizh Pavai 584 A73 2015 10.1051/0004-6361/201527080 Senthamizh Pavai V, Arlt R, Dasi-Espuig M, Krivova NA, Solanki SK (2015) Sunspot areas and tilt angles for solar cycles 7-10. Astron Astrophys 584:A73. https://doi.org/10.1051/0004-6361/201527080. arXiv:1508.07849 

  334. Astron Astrophys T Serre 360 319 2000 Serre T, Nesme-Ribes E (2000) Nonlinear analysis of solar cycles. Astron Astrophys 360:319-330 

  335. Astrophys J NR Sheeley Jr 140 731 1964 10.1086/147966 Sheeley NR Jr (1964) Polar faculae during the sunspot cycle. Astrophys J 140:731. https://doi.org/10.1086/147966 

  336. 10.12942/lrsp-2005-5 Sheeley NR Jr (2005) Surface evolution of the Sun’s magnetic field: a historical review of the flux-transport mechanism. Living Rev Sol Phys 2:5. https://doi.org/10.12942/lrsp-2005-5 

  337. Sol Phys T Shirai 222 199 2004 10.1023/B:SOLA.0000043565.83411.ec Shirai T (2004) Time variation of the solar neutrino fluxes from Super-Kamiokande data. Sol Phys 222:199-201. https://doi.org/10.1023/B:SOLA.0000043565.83411.ec 

  338. Adv Space Res C Simard 58 1522 2016 10.1016/j.asr.2016.03.041 Simard C, Charbonneau P, Dubé C (2016) Characterisation of the turbulent electromotive force and its magnetically-mediated quenching in a global EULAG-MHD simulation of solar convection. Adv Space Res 58:1522-1537. https://doi.org/10.1016/j.asr.2016.03.041. arXiv:1604.01533 

  339. Astrophys Space Sci AK Singh 362 199 2017 10.1007/s10509-017-3180-2 Singh AK, Bhargawa A (2017) An early prediction of 25th solar cycle using Hurst exponent. Astrophys Space Sci 362:199. https://doi.org/10.1007/s10509-017-3180-2 

  340. Sol Phys HB Snodgrass 163 21 1996 10.1007/BF00165454 Snodgrass HB, Dailey SB (1996) Meridional motions of magnetic features in the solar photosphere. Sol Phys 163:21-42. https://doi.org/10.1007/BF00165454 

  341. Astron Astrophys SK Solanki 396 1029 2002 10.1051/0004-6361:20021436 Solanki SK, Krivova NA, Schüssler M, Fligge M (2002) Search for a relationship between solar cycle amplitude and length. Astron Astrophys 396:1029-1035. https://doi.org/10.1051/0004-6361:20021436 

  342. Rep Prog Phys S Solanki 69 563 2006 10.1088/0034-4885/69/3/R02 Solanki S, Inhester B, Schüssler M (2006) The solar magnetic field. Rep Prog Phys 69:563-668. https://doi.org/10.1088/0034-4885/69/3/R02 

  343. Sol Phys HC Spruit 213 1 2003 10.1023/A:1023202605379 Spruit HC (2003) Origin of the torsional oscillation pattern of solar rotation. Sol Phys 213:1-21. https://doi.org/10.1023/A:1023202605379. arXiv:astro-ph/0209146 

  344. 10.1007/978-94-009-3011-7 Stephenson FR, Wolfendale AW (eds) (1988) Secular solar and geomagnetic variations in the last 10,000 years. NATO ASI Series C, vol 236. Kluwer, Dordrecht. https://doi.org/10.1007/978-94-009-3011-7 

  345. Astron Astrophys M Stix 20 9 1972 Stix M (1972) Non-linear dynamo waves. Astron Astrophys 20:9 

  346. Nature G Sugihara 344 734 1990 10.1038/344734a0 Sugihara G, May RM (1990) Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344:734-741. https://doi.org/10.1038/344734a0 

  347. Astrophys J X Sun 798 114 2015 10.1088/0004-637X/798/2/114 Sun X, Hoeksema JT, Liu Y, Zhao J (2015) On polar magnetic field reversal and surface flux transport during solar cycle 24. Astrophys J 798:114. https://doi.org/10.1088/0004-637X/798/2/114. arXiv:1410.8867 

  348. Sol Phys L Svalgaard 291 2981 2016 10.1007/s11207-016-0921-2 Svalgaard L (2016) Reconstruction of solar extreme ultraviolet flux 1740-2015. Sol Phys 291:2981-3010. https://doi.org/10.1007/s11207-016-0921-2. arXiv:1506.04408 

  349. Sol Phys L Svalgaard 292 4 2017 10.1007/s11207-016-1023-x Svalgaard L (2017) A recount of sunspot groups on Staudach’s drawings. Sol Phys 292:4. https://doi.org/10.1007/s11207-016-1023-x 

  350. J Geophys Res L Svalgaard 110 A9 12103 2005 10.1029/2005JA011203 Svalgaard L, Cliver EW (2005) The IDV index: its derivation and use in inferring long-term variations of the interplanetary magnetic field strength. J Geophys Res 110(A9):12103. https://doi.org/10.1029/2005JA011203 

  351. J Geophys Res L Svalgaard 112 A11 10111 2007 10.1029/2007JA012437 Svalgaard L, Cliver EW (2007) Interhourly variability index of geomagnetic activity and its use in deriving the long-term variation of solar wind speed. J Geophys Res 112(A11):10111. https://doi.org/10.1029/2007JA012437. arXiv:0706.0961 

  352. Sol Phys L Svalgaard 291 2653 2016 10.1007/s11207-015-0815-8 Svalgaard L, Schatten KH (2016) Reconstruction of the sunspot group number: the backbone method. Sol Phys 291:2653-2684. https://doi.org/10.1007/s11207-015-0815-8. arXiv:1506.00755 

  353. Sol Phys L Svalgaard 58 225 1978 10.1007/BF00157268 Svalgaard L, Duvall TL Jr, Scherrer PH (1978) The strength of the Sun’s polar fields. Sol Phys 58:225-239. https://doi.org/10.1007/BF00157268 

  354. Geophys Res Lett L Svalgaard 32 1104 2005 10.1029/2004GL021664 Svalgaard L, Cliver EW, Kamide Y (2005) Sunspot cycle 24: Smallest cycle in 100 years? Geophys Res Lett 32:1104. https://doi.org/10.1029/2004GL021664 

  355. Sol Phys L Svalgaard 292 34 2017 10.1007/s11207-016-1024-9 Svalgaard L, Cagnotti M, Cortesi S (2017) The effect of sunspot weighting. Sol Phys 292:34. https://doi.org/10.1007/s11207-016-1024-9 

  356. Astrophys J Lett M Švanda 670 L69 2007 10.1086/524059 Švanda M, Kosovichev AG, Zhao J (2007) Speed of meridional flows and magnetic flux transport on the Sun. Astrophys J Lett 670:L69-L72. https://doi.org/10.1086/524059. arXiv:0710.0590 

  357. Astrophys J Lett M Švanda 680 L161 2008 10.1086/589997 Švanda M, Kosovichev AG, Zhao J (2008) Effects of solar active regions on meridional flows. Astrophys J Lett 680:L161. https://doi.org/10.1086/589997. arXiv:0805.1789 

  358. SWPC (2009) Solar cycle 24 prediction. https://www.swpc.noaa.gov/content/solar-cycle-24-prediction-updated-may-2009 

  359. Geophys Res Lett A Szabo 22 1845 1995 10.1029/95GL01737 Szabo A, Lepping RP, King JH (1995) Magnetic field observations of the 1.3-year solar wind oscillations. Geophys Res Lett 22:1845-1848. https://doi.org/10.1029/95GL01737 

  360. Sol Phys RJ Thompson 148 383 1993 10.1007/BF00645097 Thompson RJ (1993) A technique for predicting the amplitude of the solar cycle. Sol Phys 148:383-388. https://doi.org/10.1007/BF00645097 

  361. Sol Phys AG Tlatov 260 465 2009 10.1007/s11207-009-9451-5 Tlatov AG (2009) The minimum activity epoch as a precursor of the solar activity. Sol Phys 260:465-477. https://doi.org/10.1007/s11207-009-9451-5 

  362. Astrophys J AG Tlatov 717 357 2010 10.1088/0004-637X/717/1/357 Tlatov AG, Vasil’eva VV, Pevtsov AA (2010) Distribution of magnetic bipoles on the Sun over three solar cycles. Astrophys J 717:357-362. https://doi.org/10.1088/0004-637X/717/1/357 

  363. Sol Phys K Tlatova 293 118 2018 10.1007/s11207-018-1337-y Tlatova K, Tlatov A, Pevtsov A, Mursula K, Vasil’eva V, Heikkinen E, Bertello L, Pevtsov A, Virtanen I, Karachik N (2018) Tilt of sunspot bipoles in solar cycles 15 to 24. Sol Phys 293:118. https://doi.org/10.1007/s11207-018-1337-y. arXiv:1807.07913 

  364. H Tong 1993 Non-linear time series: a dynamical system approach Tong H (1993) Non-linear time series: a dynamical system approach. Oxford University Press, Oxford 

  365. Astrophys Space Sci BP Tritakis 82 463 1982 10.1007/BF00651452 Tritakis BP (1982) Evidence of interdependence within 22-year solar cycles. Astrophys Space Sci 82:463-471. https://doi.org/10.1007/BF00651452 

  366. Astrophys J S Tsuneta 688 1374 2008 10.1086/592226 Tsuneta S, Ichimoto K, Katsukawa Y, Lites BW, Matsuzaki K, Nagata S, Orozco Suárez D, Shimizu T, Shimojo M, Shine RA, Suematsu Y, Suzuki TK, Tarbell TD, Title AM (2008) The magnetic landscape of the Sun’s polar region. Astrophys J 688:1374-1381. https://doi.org/10.1086/592226. arXiv:0807.4631 

  367. Mon Not R Astron Soc HH Turner 74 82 1913 10.1093/mnras/74.2.82 Turner HH (1913a) On a simple method of detecting discontinuities in a series of recorded observations, with an application to sun-spots, suggesting that they are caused by a meteor swarm. Mon Not R Astron Soc 74:82-109. https://doi.org/10.1093/mnras/74.2.82 

  368. Mon Not R Astron Soc HH Turner 73 714 1913 10.1093/mnras/73.9.714 Turner HH (1913b) Sun-spots and faculæ, on the expression of sun-spot periodicity as a Fourier sequence, in similar problems. Mon Not R Astron Soc 73:714-732. https://doi.org/10.1093/mnras/73.9.714 

  369. Mon Not R Astron Soc HH Turner 73 549 1913 10.1093/mnras/73.7.549 Turner HH (1913c) Sun-spots and faculæ, on the harmonic analysis of Wolf’s sun-spot numbers, with special reference to Mr. Kimura’s paper. Mon Not R Astron Soc 73:549-552. https://doi.org/10.1093/mnras/73.7.549 

  370. Astrophys J DC Turner 855 108 2018 10.3847/1538-4357/aaaf1c Turner DC, Ladde GS (2018) Stochastic modelling, analysis, and simulations of the solar cycle dynamic process. Astrophys J 855:108. https://doi.org/10.3847/1538-4357/aaaf1c 

  371. Philos Trans R Soc London, Ser A G Udny Yule 226 267 1927 10.1098/rsta.1927.0007 Udny Yule G (1927) On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer’s Sunspot Numbers. Philos Trans R Soc London, Ser A 226:267-298 

  372. Astrophys J L Upton 792 142 2014 10.1088/0004-637X/792/2/142 Upton L, Hathaway DH (2014a) Effects of meridional flow variations on solar cycles 23 and 24. Astrophys J 792:142. https://doi.org/10.1088/0004-637X/792/2/142. arXiv:1408.0035 

  373. Astrophys J L Upton 780 5 2014 10.1088/0004-637X/780/1/5 Upton L, Hathaway DH (2014b) Predicting the Sun’s polar magnetic fields with a surface flux transport model. Astrophys J 780:5. https://doi.org/10.1088/0004-637X/780/1/5. arXiv:1311.0844 

  374. Geophys Res Lett LA Upton 45 8091 2018 10.1029/2018GL078387 Upton LA, Hathaway DH (2018) An updated solar cycle 25 prediction with AFT: the modern minimum. Geophys Res Lett 45:8091-8095. https://doi.org/10.1029/2018GL078387. arXiv:1808.04868 

  375. Living Rev Sol Phys IG Usoskin 14 3 2017 10.1007/s41116-017-0006-9 Usoskin IG (2017) A history of solar activity over millennia. Living Rev Sol Phys 14:3. https://doi.org/10.1007/s41116-017-0006-9 

  376. J Atmos Sol-Terr Phys IG Usoskin 176 69 2018 10.1016/j.jastp.2017.09.018 Usoskin IG (2018) Comment on the paper by Popova, et al. On a role of quadruple component of magnetic field in defining solar activity in grand cycles. J Atmos Sol-Terr Phys 176:69-71. https://doi.org/10.1016/j.jastp.2017.09.018. arXiv:1710.05203 

  377. Astron Astrophys IG Usoskin 370 L31 2001 10.1051/0004-6361:20010319 Usoskin IG, Mursula K, Kovaltsov GA (2001) Was one sunspot cycle lost in late xviii century? Astron Astrophys 370:L31-L34. https://doi.org/10.1051/0004-6361:20010319 

  378. Astron Astrophys IG Usoskin 471 301 2007 10.1051/0004-6361:20077704 Usoskin IG, Solanki SK, Kovaltsov GA (2007) Grand minima and maxima of solar activity: new observational constraints. Astron Astrophys 471:301-309. https://doi.org/10.1051/0004-6361:20077704. arXiv:0706.0385 

  379. Astrophys J Lett IG Usoskin 700 L154 2009 10.1088/0004-637X/700/2/L154 Usoskin IG, Mursula K, Arlt R, Kovaltsov GA (2009a) A solar cycle lost in 1793-1800: early sunspot observations resolve the old mystery. Astrophys J Lett 700:L154-L157. https://doi.org/10.1088/0004-637X/700/2/L154. arXiv:0907.0063 

  380. Sol Phys IG Usoskin 254 345 2009 10.1007/s11207-008-9293-6 Usoskin IG, Sokoloff D, Moss D (2009b) Grand minima of solar activity and the mean-field dynamo. Sol Phys 254:345-355. https://doi.org/10.1007/s11207-008-9293-6 

  381. Astron Astrophys IG Usoskin 581 A95 2015 10.1051/0004-6361/201526652 Usoskin IG, Arlt R, Asvestari E, Hawkins E, Käpylä M, Kovaltsov GA, Krivova N, Lockwood M, Mursula K, O’Reilly J, Owens M, Scott CJ, Sokoloff DD, Solanki SK, Soon W, Vaquero JM (2015) The Maunder minimum (1645-1715) was indeed a grand minimum: a reassessment of multiple datasets. Astron Astrophys 581:A95. https://doi.org/10.1051/0004-6361/201526652. arXiv:1507.05191 

  382. Sol Phys IG Usoskin 291 2685 2016 10.1007/s11207-015-0838-1 Usoskin IG, Kovaltsov GA, Lockwood M, Mursula K, Owens M, Solanki SK (2016) A new calibrated sunspot group series since 1749: statistics of active day fractions. Sol Phys 291:2685-2708. https://doi.org/10.1007/s11207-015-0838-1. arXiv:1512.06421 

  383. J Atmos Sol-Terr Phys J Uwamahoro 71 569 2009 10.1016/j.jastp.2008.12.003 Uwamahoro J, McKinnell L, Cilliers PJ (2009) Forecasting solar cycle 24 using neural networks. J Atmos Sol-Terr Phys 71:569-574. https://doi.org/10.1016/j.jastp.2008.12.003 

  384. Adv Space Res JM Vaquero 40 929 2007 10.1016/j.asr.2007.01.087 Vaquero JM (2007) Historical sunspot observations: a review. Adv Space Res 40:929-941. https://doi.org/10.1016/j.asr.2007.01.087. arXiv:astro-ph/0702068 

  385. Sol Phys JM Vaquero 250 199 2008 10.1007/s11207-008-9211-y Vaquero JM, Trigo RM (2008) Can the solar cycle amplitude be predicted using the preceding solar cycle length? Sol Phys 250:199-206. https://doi.org/10.1007/s11207-008-9211-y 

  386. Astron Astrophys JM Vaquero 577 A71 2015 10.1051/0004-6361/201525962 Vaquero JM, Kovaltsov GA, Usoskin IG, Carrasco VMS, Gallego MC (2015a) Level and length of cyclic solar activity during the Maunder minimum as deduced from the active-day statistics. Astron Astrophys 577:A71. https://doi.org/10.1051/0004-6361/201525962. arXiv:1503.07664 

  387. Adv Space Res JM Vaquero 55 1546 2015 10.1016/j.asr.2015.01.006 Vaquero JM, Nogales JM, Sánchez-Bajo F (2015b) Sunspot latitudes during the Maunder minimum: a machine-readable catalogue from previous studies. Adv Space Res 55:1546-1552. https://doi.org/10.1016/j.asr.2015.01.006. arXiv:1501.05989 

  388. Sol Phys JM Vaquero 291 3061 2016 10.1007/s11207-016-0982-2 Vaquero JM, Svalgaard L, Carrasco VMS, Clette F, Lefèvre L, Gallego MC, Arlt R, Aparicio AJP, Richard JG, Howe R (2016) A revised collection of sunspot group numbers. Sol Phys 291:3061-3074. https://doi.org/10.1007/s11207-016-0982-2. arXiv:1609.04882 

  389. Sol Phys A Vigouroux 152 267 1994 10.1007/BF01473214 Vigouroux A, Delachie P (1994) Sunspot numbers uncertainties and parametric representations of solar activity variations. Sol Phys 152:267-274. https://doi.org/10.1007/BF01473214 

  390. Astron Astrophys IOI Virtanen 604 A8 2017 10.1051/0004-6361/201730415 Virtanen IOI, Virtanen II, Pevtsov AA, Yeates A, Mursula K (2017) Reconstructing solar magnetic fields from historical observations. II. Testing the surface flux transport model. Astron Astrophys 604:A8. https://doi.org/10.1051/0004-6361/201730415 

  391. Virtanen IOI, Virtanen II, Pevtsov AA, Bertello L, Yeates A, Mursula K (2019) Reconstructing solar magnetic fields from historical observations. V. Testing the reconstruction method. Astron Astrophys 627:A11 

  392. YI Vitinsky 1963 Prognozi solnechnoi aktivnosti Vitinsky YI (1963) Prognozi solnechnoi aktivnosti. Nauka, Leningrad 

  393. YI Vitinsky 1973 Tsiklichnost i prognozi solnechnoi aktivnosti Vitinsky YI (1973) Tsiklichnost i prognozi solnechnoi aktivnosti. Nauka, Leningrad 

  394. YI Vitinsky 1986 Statistika Pyatnoobrazovatel’noy Deyatel’nosti Solntsa Vitinsky YI, Kopecký M, Kuklin GV (1986) Statistika Pyatnoobrazovatel’noy Deyatel’nosti Solntsa. Nauka, Moscow 

  395. Sol Phys MV Vokhmyanin 293 31 2018 10.1007/s11207-018-1245-1 Vokhmyanin MV, Zolotova NV (2018) Sunspot positions and areas from observations by Galileo Galilei. Sol Phys 293:31. https://doi.org/10.1007/s11207-018-1245-1 

  396. Astr Mitt Zürich M Waldmeier 14 105 1935 Waldmeier M (1935) Neue Eigenschaften der Sonnenfleckenkurve. Astr Mitt Zürich 14:105-130 

  397. M Waldmeier 1961 The sunspot activity in the years 1610-1960 Waldmeier M (1961) The sunspot activity in the years 1610-1960. Schultheiss & Co., Zürich 

  398. Space Sci Rev YM Wang 210 351 2017 10.1007/s11214-016-0257-0 Wang YM (2017) Surface flux transport and the evolution of the Sun’s polar fields. Space Sci Rev 210:351-365. https://doi.org/10.1007/s11214-016-0257-0 

  399. Astrophys J Lett YM Wang 694 L11 2009 10.1088/0004-637X/694/1/L11 Wang YM, Sheeley NR (2009) Understanding the geomagnetic precursor of the solar cycle. Astrophys J Lett 694:L11-L15. https://doi.org/10.1088/0004-637X/694/1/L11 

  400. Astrophys J YM Wang 707 1372 2009 10.1088/0004-637X/707/2/1372 Wang YM, Robbrecht E, Sheeley NR (2009) On the weakening of the polar magnetic fields during solar cycle 23. Astrophys J 707:1372-1386. https://doi.org/10.1088/0004-637X/707/2/1372 

  401. Astron Astrophys J Warnecke 609 A51 2018 10.1051/0004-6361/201628136 Warnecke J, Rheinhardt M, Tuomisto S, Käpylä PJ, Käpylä MJ, Brandenburg A (2018) Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars. Astron Astrophys 609:A51. https://doi.org/10.1051/0004-6361/201628136. arXiv:1601.03730 

  402. Astrophys J FT Watson 787 22 2014 10.1088/0004-637X/787/1/22 Watson FT, Penn MJ, Livingston W (2014) A multi-instrument analysis of sunspot umbrae. Astrophys J 787:22. https://doi.org/10.1088/0004-637X/787/1/22. arXiv:1511.07300 

  403. WWS Wei 2005 Time series analysis: univariate and multivariate methods 2 Wei WWS (2005) Time series analysis: univariate and multivariate methods, 2nd edn. Addison Wesley, Reading 

  404. Geophys Astrophys Fluid Dyn NO Weiss 30 305 1984 10.1080/03091928408219262 Weiss NO, Cattaneo F, Jones CA (1984) Periodic and aperiodic dynamo waves. Geophys Astrophys Fluid Dyn 30:305-341. https://doi.org/10.1080/03091928408219262 

  405. Astron Astrophys T Whitbread 607 A76 2017 10.1051/0004-6361/201730689 Whitbread T, Yeates AR, Muñoz-Jaramillo A, Petrie GJD (2017) Parameter optimization for surface flux transport models. Astron Astrophys 607:A76. https://doi.org/10.1051/0004-6361/201730689. arXiv:1708.01098 

  406. Astrophys J T Whitbread 863 116 2018 10.3847/1538-4357/aad17e Whitbread T, Yeates AR, Muñoz-Jaramillo A (2018) How many active regions are necessary to predict the solar dipole moment? Astrophys J 863:116. https://doi.org/10.3847/1538-4357/aad17e. arXiv:1807.01617 

  407. Astron Astrophys T Willamo 601 A109 2017 10.1051/0004-6361/201629839 Willamo T, Usoskin IG, Kovaltsov GA (2017) Updated sunspot group number reconstruction for 1749-1996 using the active day fraction method. Astron Astrophys 601:A109. https://doi.org/10.1051/0004-6361/201629839. arXiv:1705.05109 

  408. Sol Phys T Willamo 293 69 2018 10.1007/s11207-018-1292-7 Willamo T, Usoskin IG, Kovaltsov GA (2018) A test of the active-day fraction method of sunspot group number calibration: dependence on the level of solar activity. Sol Phys 293:69. https://doi.org/10.1007/s11207-018-1292-7. arXiv:1803.10501 

  409. Astrophys J AL Wilmot-Smith 652 696 2006 10.1086/508013 Wilmot-Smith AL, Nandy D, Hornig G, Martens PCH (2006) A time delay model for solar and stellar dynamos. Astrophys J 652:696-708. https://doi.org/10.1086/508013 

  410. Geophys J Int DE Winch 160 487 2005 10.1111/j.1365-246X.2004.02472.x Winch DE, Ivers DJ, Turner JPR, Stening RJ (2005) Geomagnetism and Schmidt quasi-normalization. Geophys J Int 160:487-504. https://doi.org/10.1111/j.1365-246X.2004.02472.x 

  411. Sol Phys LM Winter 291 9-10 3011 2016 10.1007/s11207-016-0901-6 Winter LM, Pernak RL, Balasubramaniam KS (2016) Comparing SSN index to X-ray flare and coronal mass ejection rates from solar cycles 22-24. Sol Phys 291(9-10):3011-3023. https://doi.org/10.1007/s11207-016-0901-6. arXiv:1605.00503 

  412. Astr Mitt Zürich R Wolf 1 3 1850 Wolf R (1850) Mittheilungen über die Sonnenflecken I. Astr Mitt Zürich 1:3-13 

  413. Mon Not R Astron Soc R Wolf 21 77 1861 10.1093/mnras/21.3.77 Wolf R (1861) Abstract of his latest results. Mon Not R Astron Soc 21:77. https://doi.org/10.1093/mnras/21.3.77 

  414. Astron Astrophys CJ Wu 615 A93 2018 10.1051/0004-6361/201731892 Wu CJ, Usoskin IG, Krivova N, Kovaltsov GA, Baroni M, Bard E, Solanki SK (2018) Solar activity over nine millennia: a consistent multi-proxy reconstruction. Astron Astrophys 615:A93. https://doi.org/10.1051/0004-6361/201731892. arXiv:1804.01302 

  415. Sol Phys AR Yeates 289 631 2014 10.1007/s11207-013-0301-0 Yeates AR (2014) Coronal magnetic field evolution from 1996 to 2012: continuous non-potential simulations. Sol Phys 289:631-648. https://doi.org/10.1007/s11207-013-0301-0. arXiv:1304.0609 

  416. Mon Not R Astron Soc AR Yeates 436 3366 2013 10.1093/mnras/stt1818 Yeates AR, Muñoz-Jaramillo A (2013) Kinematic active region formation in a three-dimensional solar dynamo model. Mon Not R Astron Soc 436:3366-3379. https://doi.org/10.1093/mnras/stt1818. arXiv:1309.6342 

  417. Astrophys J AR Yeates 673 544 2008 10.1086/524352 Yeates AR, Nandy D, Mackay DH (2008) Exploring the physical basis of solar cycle predictions: flux transport dynamics and persistence of memory in advection- versus diffusion-dominated solar convection zones. Astrophys J 673:544-556. https://doi.org/10.1086/524352. arXiv:0709.1046 

  418. Sol Phys AR Yeates 290 3189 2015 10.1007/s11207-015-0660-9 Yeates AR, Baker D, van Driel-Gesztelyi L (2015) Source of a prominent poleward surge during solar cycle 24. Sol Phys 290:3189-3201. https://doi.org/10.1007/s11207-015-0660-9. arXiv:1502.04854 

  419. Astrophys J TV Zaqarashvili 709 749 2010 10.1088/0004-637X/709/2/749 Zaqarashvili TV, Carbonell M, Oliver R, Ballester JL (2010) Magnetic Rossby waves in the solar tachocline and Rieger-type periodicities. Astrophys J 709:749-758. https://doi.org/10.1088/0004-637X/709/2/749. arXiv:0911.4591 

  420. YB Zeldovich 1984 Magnetic fields in astrophysics Zeldovich YB, Ruzmaikin AA, Sokoloff DD (1984) Magnetic fields in astrophysics. Gordon & Breach, New York 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로