최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Applied physics letters, v.116 no.10, 2020년, pp.100502 -
Lin, J. Y. (Department of Electrical and Computer Engineering, Texas Tech University , Lubbock, Texas 79409, USA) , Jiang, H. X. (Department of Electrical and Computer Engineering, Texas Tech University , Lubbock, Texas 79409, USA)
This perspective provides an overview of early developments, current status, and remaining challenges of microLED (μLED) technology, which was first reported in Applied Physics Letters in 2000 [S. X. Jin, J. Li, J. Z. Li, J. Y. Lin and H. X. Jiang, "GaN Microdisk Light Emitting Diodes," Appl. Phy...
Jpn. J. Appl. Phys., Part 1 45 9001 2006 10.1143/JJAP.45.9001
The Blue Laser Diode. The complete Story 2000
Appl. Phys. Lett. 76 631 2000 10.1063/1.125841
Appl. Phys. Lett. 77 3236 2000 10.1063/1.1326479
H. X. Jiang , S. X.Jin, J.Li, and J. Y.Lin, “ Micro-size LED and detector arrays for mini-displays, hyperbright light emitting diodes, lighting, and UV detector and imaging sensor applications,” U.S. patent 6,410,940.
Appl. Phys. Lett. 78 1303 2001 10.1063/1.1351521
Appl. Phys. Lett. 78 3532 2001 10.1063/1.1376152
See https://compoundsemiconductor.net/article/105705/Micro-LEDs_with_mammoth_potential for “ Micro-LEDs with Mammoth Potential, News Article, Compound Semiconductors.”
See https://www.marketwatch.com/press-release/microled-market-2019-research-by-business-opportunities-top-manufacture-industry-growth-industry-share-report-size-regional-analysis-and-global-forecast-to-2025-industry-researchco-2019-08-26 for “ MicroLED Market 2019 Research by Business Opportunities, Top Manufacture, Industry Growth, Industry Share Report, Size, Regional Analysis and Global Forecast to 2025, MarketWatch.”
See https://www.ledinside.com/news/2018/2/micro_led_vs_oled_competition_between_the_two_display_technologies for “ Micro LED vs OLED: Competition between the Two Display Technologies, LEDinside.”
Ann. Phys. (Berlin) 527 335 2015 10.1002/andp.201500801 Background story of the invention of efficient blue InGaN light emitting diodes, Nobel Lecture
Ann. Phys. (Berlin) 527 311 2015 10.1002/andp.201500803 Fascinated journeys into blue light, Nobel Lecture
Ann. Phys. (Berlin) 527 327 2015 10.1002/andp.201500802 Growth of GaN on sapphire via low-temperature deposited bufer layer and realization of p-type GaN by Mg doping followed by low-energy electron beam irradiation, Nobel Lecture
Jpn. J. Appl. Phys., Part 1 57 08PA01 2018 10.7567/JJAP.57.08PA01
Optical Processes in Microcavities 1996
Phys. Today 46 66 1993 10.1063/1.881356
III-Vs Rev. 14 32-35 2001 10.1016/S0961-1290(01)80261-1 Advances in III-nitride micro-size light emitters
Appl. Phys. Lett. 71 2898 1997 10.1063/1.120209
Appl. Phys. Lett. 72 1530 1998 10.1063/1.120573
Appl. Phys. Lett. 75 2563 1999 10.1063/1.125078
Appl. Phys. Lett. 73 2242 1998 10.1063/1.121689
Appl. Phys. Lett. 74 1227 1999 10.1063/1.123507
Appl. Phys. Lett. 76 3031 2000 10.1063/1.126569
Appl. Phys. Lett. 75 166 1999 10.1063/1.124307
Appl. Phys. Lett. 75 763 1999 10.1063/1.124505
Chin. Phys. Lett. 18 437 2001 10.1088/0256-307X/18/3/343
Appl. Phys. Lett. 79 3029 2001 10.1063/1.1415769
Science 285 1905 1999 10.1126/science.285.5435.1905
J. Phys. D: Appl. Phys. 41 094001 2008 10.1088/0022-3727/41/9/094001
Appl. Phys. Lett. 75 2569 1999 10.1063/1.125080
H. X. Jiang , J. Y.Lin, and S. X.Jin, “ Light emitting diodes for high AC voltage operating and general lighting,” U.S. patents 6,957,899, 7,210,819, and 7,213,942.
Z. Y. Fan , H. X.Jiang, and J. Y.Lin, “ Micro-LED based high voltage AC/DC indicator lamp,” U.S. patent 7,535,028;
Z. Y. Fan , H. X.Jiang, and J. Y.Lin, “ Heterogeneous integrated high voltage DC/AC light emitter,” U.S. patent 7,221,044;
Z. Y. Fan , H. X.Jiang, and J. Y.Lin, “ AC/DC light emitting diodes with integrated protection mechanism,” U.S. patent 7,714,348;
Z. Y. Fan , H. X.Jiang, and J. Y.Lin, “ Light emitting diode lamp capable of high AC/DC voltage operation,” U.S. patent 8,272,757.
Phys. Status Solidi A 194 376 2002 10.1002/1521-396X(200212)194:2<376::AID-PSSA376>3.0.CO;2-3 Monolithic blue LED series arrays for high-voltage AC operation
J. Appl. Phys. 93 5978 2003 10.1063/1.1567803
IEEE Electron Device Lett. 25 277 2004 10.1109/LED.2004.826541
J. Phys. D: Appl. Phys. 41 090301 2008 10.1088/0022-3727/41/9/090301
IEEE Photonics Technol. Lett. 21 811 2009 10.1109/LPT.2009.2019114
J. Phys. D: Appl. Phys. 41 094014 2008 10.1088/0022-3727/41/9/094014
J. Neural Eng. 7 016004 2010 10.1088/1741-2560/7/1/016004
J. Neural Eng. 6 035007 2009 10.1088/1741-2560/6/3/035007
IEEE J. Sel. Top. Quantum Electron. 15 1298 2009 10.1109/JSTQE.2009.2015675
J. Disp. Technol. 9 678 2013 10.1109/JDT.2013.2256107
K. M. Lau , C. W.Keung, and Z. J.Liu, “ Method for manufacturing a monolithic LED micro-display on an active matrix panel using flip-chip technology and display apparatus having the monolithic LED micro-display,” U.S. patent 8,557,616.
Appl. Phys. Lett. 99 031116 2011 10.1063/1.3615679
2011 High-resolution group III nitride microdisplays
J. Day , J.Li, D.Lie, Z. Y.Fan, J. Y.Lin, and H. X.Jiang, “ CMOS IC for micro-emitter based microdisplay,” U.S. patent 9,047,818.
Opt. Express 21 A475 2013 10.1364/OE.21.00A475
Dig. Tech. Pap. Soc. Inf. Disp. Int. Symp. 49 506 2018 10.1002/sdtp.12445 Microdisplays for augmented and virtual reality
J. Soc. Inf. Disp. 24 669 2016 10.1002/jsid.516
IEEE J. Quantum Electron. 55 1 2019 10.1109/JQE.2018.2888876
See https://www.allaboutcircuits.com/news/tiny-displays-mojo-vision-microled-display-highest-pixel-density/ for “ Tiny MicroLED Display from Mojo Vision Features Highest-Yet Pixel Density-But for What Applications, All About Circuits.”
See https://www.microled-info.com/jbd-demonstrates-2-million-nits-and-10000-ppi-micro-led-microdisplays for “ JBD demonstrates 2-million nits and 10,000 PPI Micro-LED microdisplays, MICROLED-info.”
Opt. Express 23 32504 2015 10.1364/OE.23.032504
Photonics Res. 5 411 2017 10.1364/PRJ.5.000411
525 2018 10.1109/MSPEC.2018.8302384
IEEE Spectrum 55 28 2018
2016
Nano Lett. 16 4608 2016 10.1021/acs.nanolett.6b01929
10.3390/mi10080492 H. Q. T. Bui , R. T.Velpula, B.Jain, O. H.Aref, H. D.Nguyen, T. R.Lenka, and H. P. T.Nguyen, Micromachines10, 492 (2019).
20 2019
Neurophotonics 6 035010 2019 10.1117/1.NPh.6.3.035010
Sci. Rep. 6 28381 2016 10.1038/srep28381
Neuron 88 1136 2015 10.1016/j.neuron.2015.10.032
Science 340 211 2013 10.1126/science.1232437
Jpn. J. Appl. Phys., Part 1 58 SCCC25 2019 10.7567/1347-4065/ab09e3
Curr. Opin. Neurobiol. 50 42 2018 10.1016/j.conb.2017.12.007
Nature 565 361 2019 10.1038/s41586-018-0823-6
Opt. Photonics News 29 24 2018 10.1364/OPN.29.4.000024 Optogenetics: Controlling neurons with photons
Front. Neurosci. 12 659 2018 10.3389/fnins.2018.00659
Front. Neurosci. 13 745 2019 10.3389/fnins.2019.00745
See https://en.wikipedia.org/wiki/Crystal_LED for “ Crystal LED, Wikipedia.”
See https://www.samsung.com/us/business/products/displays/direct-view-led/the-wall/ for “ Samsung's The Wall, Samsung.”
Opt. Express 26 31474 2018 10.1364/OE.26.031474
Rev. Phys. 3 26 2018 10.1016/j.revip.2017.10.001
Opt. Express 27 A1517 2019 10.1364/OE.27.0A1517
Appl. Phys. Lett. 112 191102 2018 10.1063/1.5032115
Appl. Phys. Lett. 115 163301 2019 10.1063/1.5115410
Adv. Mater. Technol. 4 1800099 2019 10.1002/admt.201800099
Appl. Phys. Lett. 113 221601 2018 10.1063/1.5060717
J. Phys. D: Appl. Phys. 47 205401 2014 10.1088/0022-3727/47/20/205401
C. Goßler , U.Schwarz, and P.Ruther, “ Method for producing a micro-LED matrix, micro-LED matrix and use of a micro-LED matrix,” U.S. patent 10276631B2.
A. P. Paranjpe and C. J.Morath, “ Micro-LED transfer methods using light-based debonding,” U.S. patent 20190393069A1.
J. Mech. Sci. Technol 33 5321 2019 10.1007/s12206-019-1024-4
Appl. Sci. 9 4243 2019 10.3390/app9204243
Nat. Mater 5 33 2006 10.1038/nmat1532
Nat. Photonics 6 615 2012 10.1038/nphoton.2012.160
Appl. Phys. Lett. 112 141106 2018 10.1063/1.5021475
Appl. Phys. Lett. 112 251108 2018 10.1063/1.5038106
Appl. Phys. Lett. 113 071107 2018 10.1063/1.5044383
Appl. Phys. Lett. 114 151103 2019 10.1063/1.5092585
Appl. Phys. Lett. 115 223502 2019 10.1063/1.5124123
Appl. Phys. Lett. 114 101104 2019 10.1063/1.5091517
Appl. Phys. Lett. 101 231110 2012 10.1063/1.4769835
Appl. Phys. Lett. 112 262103 2018 10.1063/1.5031785
Appl. Phys. Lett. 112 211901 2018 10.1063/1.5030645
Appl. Phys. Lett. 112 233501 2018 10.1063/1.5033436
Appl. Phys. Lett. 113 233502 2018 10.1063/1.5052479
Appl. Phys. Lett. 115 172103 2019 10.1063/1.5124904
Appl. Phys. Lett. 112 182106 2018 10.1063/1.5024704
Appl. Phys. Lett. 114 232105 2019 10.1063/1.5097767
Appl. Phys. Lett. 113 031904 2018 10.1063/1.5030190
Appl. Phys. Lett. 115 112104 2019 10.1063/1.5109389
Appl. Phys. Lett. 113 023502 2018 10.1063/1.5035267
Appl. Phys. Lett. 112 252103 2018 10.1063/1.5035293
Appl. Phys. Lett. 113 111106 2018 10.1063/1.5048010
Appl. Phys. Lett. 112 151607 2018 10.1063/1.5022237
Appl. Phys. Lett. 112 212102 2018 10.1063/1.5025221
Appl. Phys. Lett. 115 202103 2019 10.1063/1.5118853
Appl. Phys. Lett. 113 031101 2018 10.1063/1.5036761
Appl. Phys. Lett. 112 041104 2018 10.1063/1.5019730
Appl. Phys. Lett. 114 131105 2019 10.1063/1.5085012
III-Nitride Semiconductors: Optical Properties II Manasreh 219 2002 Electric fields in polarized GaInN/GaN heterostructures
Appl. Phys. Lett. 114 052101 2019 10.1063/1.5064852
Appl. Phys. Lett. 112 052105 2018 10.1063/1.4997319
Science 327 60 2010 10.1126/science.1183226
Appl. Phys. Lett. 112 182104 2018 10.1063/1.5023521
Appl. Phys. Lett. 115 172105 2019 10.1063/1.5124326
Appl. Phys. Express 12 124003 2019 10.7567/1882-0786/ab50e0
Appl. Phys. Lett. 92 141102 2008 10.1063/1.2908034
Appl. Phys. Lett. 112 111106 2018 10.1063/1.5007746
Appl. Phys. Lett. 115 041101 2019 10.1063/1.5104289
Appl. Phys. Lett. 112 262105 2018 10.1063/1.5033456
Rep. Prog. Phys. 82 012502 2019 10.1088/1361-6633/aad3e9
Appl. Phys. Lett. 115 171102 2019 10.1063/1.5118953
Appl. Phys. Lett. 114 071103 2019 10.1063/1.5086762
Nanowire-Based Visible Light Emitters, Present Status and Outlook, Semiconductors and Semimetals, 94: Semiconductor Nanowires II: Properties and Applications 227 2016
Appl. Phys. Lett. 114 172101 2019 10.1063/1.5094627
Appl. Phys. Lett. 112 091105 2018 10.1063/1.5022298
Appl. Phys. Express 13 014003 2020 10.7567/1882-0786/ab5ad3
Crystals 9 39 2019 10.3390/cryst9010039
Opt. Express 27 30864 2019 10.1364/OE.27.030864
Appl. Phys. Lett. 113 121106 2018 10.1063/1.5046857
Appl. Phys. Lett. 114 062106 2019 10.1063/1.5053856
Appl. Phys. Lett. 114 112109 2019 10.1063/1.5088205
Appl. Phys. Lett. 114 071101 2019 10.1063/1.5087102
Appl. Phys. Lett. 114 082101 2019 10.1063/1.5083018
Sci. Adv. 6 eaav7523 2020 10.1126/sciadv.aav7523
Nanoscale 11 8994 2019 10.1039/C9NR01262A
Nature 484 223 2012 10.1038/nature10970
Appl. Phys. Lett. 112 233106 2018 10.1063/1.5030537
Appl. Phys. Lett. 114 091107 2019 10.1063/1.5081112
Appl. Phys. Lett. 114 151102 2019 10.1063/1.5084190
Appl. Phys. Lett. 115 072108 2019 10.1063/1.5097984
Appl. Phys. Lett. 114 222102 2019 10.1063/1.5098331
Appl. Phys. Lett. 112 162103 2018 10.1063/1.5026291
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.