$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Development of microLED

Applied physics letters, v.116 no.10, 2020년, pp.100502 -   

Lin, J. Y. (Department of Electrical and Computer Engineering, Texas Tech University , Lubbock, Texas 79409, USA) ,  Jiang, H. X. (Department of Electrical and Computer Engineering, Texas Tech University , Lubbock, Texas 79409, USA)

Abstract AI-Helper 아이콘AI-Helper

This perspective provides an overview of early developments, current status, and remaining challenges of microLED (μLED) technology, which was first reported in Applied Physics Letters in 2000 [S. X. Jin, J. Li, J. Z. Li, J. Y. Lin and H. X. Jiang, "GaN Microdisk Light Emitting Diodes," Appl. Phy...

참고문헌 (151)

  1. Jpn. J. Appl. Phys., Part 1 45 9001 2006 10.1143/JJAP.45.9001 

  2. The Blue Laser Diode. The complete Story 2000 

  3. Appl. Phys. Lett. 76 631 2000 10.1063/1.125841 

  4. Appl. Phys. Lett. 77 3236 2000 10.1063/1.1326479 

  5. H. X. Jiang , S. X.Jin, J.Li, and J. Y.Lin, “ Micro-size LED and detector arrays for mini-displays, hyperbright light emitting diodes, lighting, and UV detector and imaging sensor applications,” U.S. patent 6,410,940. 

  6. Appl. Phys. Lett. 78 1303 2001 10.1063/1.1351521 

  7. Appl. Phys. Lett. 78 3532 2001 10.1063/1.1376152 

  8. See https://compoundsemiconductor.net/article/105705/Micro-LEDs_with_mammoth_potential for “ Micro-LEDs with Mammoth Potential, News Article, Compound Semiconductors.” 

  9. See https://www.marketwatch.com/press-release/microled-market-2019-research-by-business-opportunities-top-manufacture-industry-growth-industry-share-report-size-regional-analysis-and-global-forecast-to-2025-industry-researchco-2019-08-26 for “ MicroLED Market 2019 Research by Business Opportunities, Top Manufacture, Industry Growth, Industry Share Report, Size, Regional Analysis and Global Forecast to 2025, MarketWatch.” 

  10. See https://www.ledinside.com/news/2018/2/micro_led_vs_oled_competition_between_the_two_display_technologies for “ Micro LED vs OLED: Competition between the Two Display Technologies, LEDinside.” 

  11. Ann. Phys. (Berlin) 527 335 2015 10.1002/andp.201500801 Background story of the invention of efficient blue InGaN light emitting diodes, Nobel Lecture 

  12. Ann. Phys. (Berlin) 527 311 2015 10.1002/andp.201500803 Fascinated journeys into blue light, Nobel Lecture 

  13. Ann. Phys. (Berlin) 527 327 2015 10.1002/andp.201500802 Growth of GaN on sapphire via low-temperature deposited bufer layer and realization of p-type GaN by Mg doping followed by low-energy electron beam irradiation, Nobel Lecture 

  14. Jpn. J. Appl. Phys., Part 1 57 08PA01 2018 10.7567/JJAP.57.08PA01 

  15. Optical Processes in Microcavities 1996 

  16. Phys. Today 46 66 1993 10.1063/1.881356 

  17. III-Vs Rev. 14 32-35 2001 10.1016/S0961-1290(01)80261-1 Advances in III-nitride micro-size light emitters 

  18. Appl. Phys. Lett. 71 2898 1997 10.1063/1.120209 

  19. Appl. Phys. Lett. 72 1530 1998 10.1063/1.120573 

  20. Appl. Phys. Lett. 75 2563 1999 10.1063/1.125078 

  21. Appl. Phys. Lett. 73 2242 1998 10.1063/1.121689 

  22. Appl. Phys. Lett. 74 1227 1999 10.1063/1.123507 

  23. Appl. Phys. Lett. 76 3031 2000 10.1063/1.126569 

  24. Appl. Phys. Lett. 75 166 1999 10.1063/1.124307 

  25. Appl. Phys. Lett. 75 763 1999 10.1063/1.124505 

  26. Chin. Phys. Lett. 18 437 2001 10.1088/0256-307X/18/3/343 

  27. Appl. Phys. Lett. 79 3029 2001 10.1063/1.1415769 

  28. Science 285 1905 1999 10.1126/science.285.5435.1905 

  29. J. Phys. D: Appl. Phys. 41 094001 2008 10.1088/0022-3727/41/9/094001 

  30. Appl. Phys. Lett. 75 2569 1999 10.1063/1.125080 

  31. H. X. Jiang , J. Y.Lin, and S. X.Jin, “ Light emitting diodes for high AC voltage operating and general lighting,” U.S. patents 6,957,899, 7,210,819, and 7,213,942. 

  32. Z. Y. Fan , H. X.Jiang, and J. Y.Lin, “ Micro-LED based high voltage AC/DC indicator lamp,” U.S. patent 7,535,028; 

  33. Z. Y. Fan , H. X.Jiang, and J. Y.Lin, “ Heterogeneous integrated high voltage DC/AC light emitter,” U.S. patent 7,221,044; 

  34. Z. Y. Fan , H. X.Jiang, and J. Y.Lin, “ AC/DC light emitting diodes with integrated protection mechanism,” U.S. patent 7,714,348; 

  35. Z. Y. Fan , H. X.Jiang, and J. Y.Lin, “ Light emitting diode lamp capable of high AC/DC voltage operation,” U.S. patent 8,272,757. 

  36. Phys. Status Solidi A 194 376 2002 10.1002/1521-396X(200212)194:2<376::AID-PSSA376>3.0.CO;2-3 Monolithic blue LED series arrays for high-voltage AC operation 

  37. J. Appl. Phys. 93 5978 2003 10.1063/1.1567803 

  38. IEEE Electron Device Lett. 25 277 2004 10.1109/LED.2004.826541 

  39. J. Phys. D: Appl. Phys. 41 090301 2008 10.1088/0022-3727/41/9/090301 

  40. IEEE Photonics Technol. Lett. 21 811 2009 10.1109/LPT.2009.2019114 

  41. J. Phys. D: Appl. Phys. 41 094014 2008 10.1088/0022-3727/41/9/094014 

  42. J. Neural Eng. 7 016004 2010 10.1088/1741-2560/7/1/016004 

  43. J. Neural Eng. 6 035007 2009 10.1088/1741-2560/6/3/035007 

  44. IEEE J. Sel. Top. Quantum Electron. 15 1298 2009 10.1109/JSTQE.2009.2015675 

  45. J. Disp. Technol. 9 678 2013 10.1109/JDT.2013.2256107 

  46. K. M. Lau , C. W.Keung, and Z. J.Liu, “ Method for manufacturing a monolithic LED micro-display on an active matrix panel using flip-chip technology and display apparatus having the monolithic LED micro-display,” U.S. patent 8,557,616. 

  47. Appl. Phys. Lett. 99 031116 2011 10.1063/1.3615679 

  48. 2011 High-resolution group III nitride microdisplays 

  49. Proc. SPIE 8268 82681X 2012 10.1117/12.914061 

  50. J. Day , J.Li, D.Lie, Z. Y.Fan, J. Y.Lin, and H. X.Jiang, “ CMOS IC for micro-emitter based microdisplay,” U.S. patent 9,047,818. 

  51. Opt. Express 21 A475 2013 10.1364/OE.21.00A475 

  52. Dig. Tech. Pap. Soc. Inf. Disp. Int. Symp. 49 506 2018 10.1002/sdtp.12445 Microdisplays for augmented and virtual reality 

  53. J. Soc. Inf. Disp. 24 669 2016 10.1002/jsid.516 

  54. IEEE J. Quantum Electron. 55 1 2019 10.1109/JQE.2018.2888876 

  55. See https://www.allaboutcircuits.com/news/tiny-displays-mojo-vision-microled-display-highest-pixel-density/ for “ Tiny MicroLED Display from Mojo Vision Features Highest-Yet Pixel Density-But for What Applications, All About Circuits.” 

  56. See https://www.microled-info.com/jbd-demonstrates-2-million-nits-and-10000-ppi-micro-led-microdisplays for “ JBD demonstrates 2-million nits and 10,000 PPI Micro-LED microdisplays, MICROLED-info.” 

  57. Opt. Express 23 32504 2015 10.1364/OE.23.032504 

  58. Photonics Res. 5 411 2017 10.1364/PRJ.5.000411 

  59. 525 2018 10.1109/MSPEC.2018.8302384 

  60. IEEE Spectrum 55 28 2018 

  61. 2016 

  62. Nano Lett. 16 4608 2016 10.1021/acs.nanolett.6b01929 

  63. 10.3390/mi10080492 H. Q. T. Bui , R. T.Velpula, B.Jain, O. H.Aref, H. D.Nguyen, T. R.Lenka, and H. P. T.Nguyen, Micromachines10, 492 (2019). 

  64. 20 2019 

  65. Neurophotonics 6 035010 2019 10.1117/1.NPh.6.3.035010 

  66. Sci. Rep. 6 28381 2016 10.1038/srep28381 

  67. Neuron 88 1136 2015 10.1016/j.neuron.2015.10.032 

  68. Science 340 211 2013 10.1126/science.1232437 

  69. Jpn. J. Appl. Phys., Part 1 58 SCCC25 2019 10.7567/1347-4065/ab09e3 

  70. Curr. Opin. Neurobiol. 50 42 2018 10.1016/j.conb.2017.12.007 

  71. Nature 565 361 2019 10.1038/s41586-018-0823-6 

  72. Opt. Photonics News 29 24 2018 10.1364/OPN.29.4.000024 Optogenetics: Controlling neurons with photons 

  73. Front. Neurosci. 12 659 2018 10.3389/fnins.2018.00659 

  74. Front. Neurosci. 13 745 2019 10.3389/fnins.2019.00745 

  75. See https://en.wikipedia.org/wiki/Crystal_LED for “ Crystal LED, Wikipedia.” 

  76. See https://www.samsung.com/us/business/products/displays/direct-view-led/the-wall/ for “ Samsung's The Wall, Samsung.” 

  77. Opt. Express 26 31474 2018 10.1364/OE.26.031474 

  78. Rev. Phys. 3 26 2018 10.1016/j.revip.2017.10.001 

  79. Opt. Express 27 A1517 2019 10.1364/OE.27.0A1517 

  80. Appl. Phys. Lett. 112 191102 2018 10.1063/1.5032115 

  81. Appl. Phys. Lett. 115 163301 2019 10.1063/1.5115410 

  82. Adv. Mater. Technol. 4 1800099 2019 10.1002/admt.201800099 

  83. Appl. Phys. Lett. 113 221601 2018 10.1063/1.5060717 

  84. J. Phys. D: Appl. Phys. 47 205401 2014 10.1088/0022-3727/47/20/205401 

  85. C. Goßler , U.Schwarz, and P.Ruther, “ Method for producing a micro-LED matrix, micro-LED matrix and use of a micro-LED matrix,” U.S. patent 10276631B2. 

  86. Proc. SPIE 10918 109181Q 2019 10.1117/12.2509915 

  87. A. P. Paranjpe and C. J.Morath, “ Micro-LED transfer methods using light-based debonding,” U.S. patent 20190393069A1. 

  88. J. Mech. Sci. Technol 33 5321 2019 10.1007/s12206-019-1024-4 

  89. Appl. Sci. 9 4243 2019 10.3390/app9204243 

  90. Nat. Mater 5 33 2006 10.1038/nmat1532 

  91. Nat. Photonics 6 615 2012 10.1038/nphoton.2012.160 

  92. Appl. Phys. Lett. 112 141106 2018 10.1063/1.5021475 

  93. Appl. Phys. Lett. 112 251108 2018 10.1063/1.5038106 

  94. Appl. Phys. Lett. 113 071107 2018 10.1063/1.5044383 

  95. Appl. Phys. Lett. 114 151103 2019 10.1063/1.5092585 

  96. Appl. Phys. Lett. 115 223502 2019 10.1063/1.5124123 

  97. Appl. Phys. Lett. 114 101104 2019 10.1063/1.5091517 

  98. Appl. Phys. Lett. 101 231110 2012 10.1063/1.4769835 

  99. Appl. Phys. Lett. 112 262103 2018 10.1063/1.5031785 

  100. Appl. Phys. Lett. 112 211901 2018 10.1063/1.5030645 

  101. Appl. Phys. Lett. 112 233501 2018 10.1063/1.5033436 

  102. Appl. Phys. Lett. 113 233502 2018 10.1063/1.5052479 

  103. Appl. Phys. Lett. 115 172103 2019 10.1063/1.5124904 

  104. Appl. Phys. Lett. 112 182106 2018 10.1063/1.5024704 

  105. Appl. Phys. Lett. 114 232105 2019 10.1063/1.5097767 

  106. Appl. Phys. Lett. 113 031904 2018 10.1063/1.5030190 

  107. Appl. Phys. Lett. 115 112104 2019 10.1063/1.5109389 

  108. Appl. Phys. Lett. 113 023502 2018 10.1063/1.5035267 

  109. Appl. Phys. Lett. 112 252103 2018 10.1063/1.5035293 

  110. Appl. Phys. Lett. 113 111106 2018 10.1063/1.5048010 

  111. Appl. Phys. Lett. 112 151607 2018 10.1063/1.5022237 

  112. Appl. Phys. Lett. 112 212102 2018 10.1063/1.5025221 

  113. Appl. Phys. Lett. 115 202103 2019 10.1063/1.5118853 

  114. Appl. Phys. Lett. 113 031101 2018 10.1063/1.5036761 

  115. Appl. Phys. Lett. 112 041104 2018 10.1063/1.5019730 

  116. Appl. Phys. Lett. 114 131105 2019 10.1063/1.5085012 

  117. III-Nitride Semiconductors: Optical Properties II Manasreh 219 2002 Electric fields in polarized GaInN/GaN heterostructures 

  118. Appl. Phys. Lett. 114 052101 2019 10.1063/1.5064852 

  119. Appl. Phys. Lett. 112 052105 2018 10.1063/1.4997319 

  120. Science 327 60 2010 10.1126/science.1183226 

  121. Appl. Phys. Lett. 112 182104 2018 10.1063/1.5023521 

  122. Appl. Phys. Lett. 115 172105 2019 10.1063/1.5124326 

  123. Appl. Phys. Express 12 124003 2019 10.7567/1882-0786/ab50e0 

  124. Appl. Phys. Lett. 92 141102 2008 10.1063/1.2908034 

  125. Appl. Phys. Lett. 112 111106 2018 10.1063/1.5007746 

  126. Appl. Phys. Lett. 115 041101 2019 10.1063/1.5104289 

  127. Appl. Phys. Lett. 112 262105 2018 10.1063/1.5033456 

  128. Rep. Prog. Phys. 82 012502 2019 10.1088/1361-6633/aad3e9 

  129. Appl. Phys. Lett. 115 171102 2019 10.1063/1.5118953 

  130. Appl. Phys. Lett. 114 071103 2019 10.1063/1.5086762 

  131. Nanowire-Based Visible Light Emitters, Present Status and Outlook, Semiconductors and Semimetals, 94: Semiconductor Nanowires II: Properties and Applications 227 2016 

  132. Appl. Phys. Lett. 114 172101 2019 10.1063/1.5094627 

  133. Appl. Phys. Lett. 112 091105 2018 10.1063/1.5022298 

  134. Appl. Phys. Express 13 014003 2020 10.7567/1882-0786/ab5ad3 

  135. Crystals 9 39 2019 10.3390/cryst9010039 

  136. Opt. Express 27 30864 2019 10.1364/OE.27.030864 

  137. Appl. Phys. Lett. 113 121106 2018 10.1063/1.5046857 

  138. Appl. Phys. Lett. 114 062106 2019 10.1063/1.5053856 

  139. Appl. Phys. Lett. 114 112109 2019 10.1063/1.5088205 

  140. Appl. Phys. Lett. 114 071101 2019 10.1063/1.5087102 

  141. Appl. Phys. Lett. 114 082101 2019 10.1063/1.5083018 

  142. Sci. Adv. 6 eaav7523 2020 10.1126/sciadv.aav7523 

  143. Nanoscale 11 8994 2019 10.1039/C9NR01262A 

  144. Nature 484 223 2012 10.1038/nature10970 

  145. Appl. Phys. Lett. 112 233106 2018 10.1063/1.5030537 

  146. Appl. Phys. Lett. 114 091107 2019 10.1063/1.5081112 

  147. Appl. Phys. Lett. 114 151102 2019 10.1063/1.5084190 

  148. Appl. Phys. Lett. 115 072108 2019 10.1063/1.5097984 

  149. Appl. Phys. Lett. 114 222102 2019 10.1063/1.5098331 

  150. Appl. Phys. Lett. 112 162103 2018 10.1063/1.5026291 

  151. Proc. SPIE 10940 109400F 2019 10.1117/12.2506926 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로