$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] A DLG2 deficiency in mice leads to reduced sociability and increased repetitive behavior accompanied by aberrant synaptic transmission in the dorsal striatum 원문보기

Molecular autism, v.11 no.1, 2020년, pp.19 -   

Yoo, Taesun (Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141 Korea) ,  Kim, Sun-Gyun (Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea) ,  Yang, Soo Hyun (Department of Anatomy, College of Medicine, Korea University, Seoul, 02841 Korea) ,  Kim, Hyun (Department of Anatomy, College of Medicine, Korea University, Seoul, 02841 Korea) ,  Kim, Eunjoon (Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141 Korea) ,  Kim, Soo Young (College of Pharmacy, Yeungnam University, Gyeongsan, 38541 Korea)

Abstract AI-Helper 아이콘AI-Helper

BackgroundDLG2, also known as postsynaptic density protein-93 (PSD-93) or chapsyn-110, is an excitatory postsynaptic scaffolding protein that interacts with synaptic surface receptors and signaling molecules. A recent study has demonstrated that mutations in the DLG2 promoter region are significantl...

Keyword

참고문헌 (76)

  1. 1. Scannevin RH Huganir RL Postsynaptic organization and regulation of excitatory synapses Nat Rev Neurosci. 2000 1 2 133 141 10.1038/35039075 11252776 

  2. 2. Brenman JE Christopherson KS Craven SE McGee AW Bredt DS Cloning and characterization of postsynaptic density 93, a nitric oxide synthase interacting protein J Neurosci. 1996 16 23 7407 7415 10.1523/JNEUROSCI.16-23-07407.1996 8922396 

  3. 3. Kim E Cho KO Rothschild A Sheng M Heteromultimerization and NMDA receptor-clustering activity of chapsyn-110, a member of the PSD-95 family of proteins Neuron. 1996 17 1 103 113 10.1016/S0896-6273(00)80284-6 8755482 

  4. 4. Chen X Levy JM Hou A Winters C Azzam R Sousa AA PSD-95 family MAGUKs are essential for anchoring AMPA and NMDA receptor complexes at the postsynaptic density Proc Natl Acad Sci U S A. 2015 112 50 E6983 E6992 10.1073/pnas.1517045112 26604311 

  5. 5. Nada S Shima T Yanai H Husi H Grant SG Okada M Identification of PSD-93 as a substrate for the Src family tyrosine kinase Fyn J Biol Chem. 2003 278 48 47610 47621 10.1074/jbc.M303873200 13129934 

  6. 6. McGee AW Topinka JR Hashimoto K Petralia RS Kakizawa S Kauer FW PSD-93 knock-out mice reveal that neuronal MAGUKs are not required for development or function of parallel fiber synapses in cerebellum J Neurosci. 2001 21 9 3085 3091 10.1523/JNEUROSCI.21-09-03085.2001 11312293 

  7. 7. Carlisle HJ Fink AE Grant SG O'Dell TJ Opposing effects of PSD-93 and PSD-95 on long-term potentiation and spike timing-dependent plasticity J Physiol. 2008 586 24 5885 5900 10.1113/jphysiol.2008.163469 18936077 

  8. 8. Migaud M Charlesworth P Dempster M Webster LC Watabe AM Makhinson M Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein Nature. 1998 396 6710 433 439 10.1038/24790 9853749 

  9. 9. Kristiansen LV Beneyto M Haroutunian V Meador-Woodruff JH Changes in NMDA receptor subunits and interacting PSD proteins in dorsolateral prefrontal and anterior cingulate cortex indicate abnormal regional expression in schizophrenia Mol Psychiatry. 2006 11 8 737 747 10.1038/sj.mp.4001844 16702973 

  10. 10. Walsh T McClellan JM McCarthy SE Addington AM Pierce SB Cooper GM Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia Science. 2008 320 5875 539 543 10.1126/science.1155174 18369103 

  11. 11. Kirov G Pocklington AJ Holmans P Ivanov D Ikeda M Ruderfer D De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia Mol Psychiatry. 2012 17 2 142 153 10.1038/mp.2011.154 22083728 

  12. 12. Ingason A Giegling I Hartmann AM Genius J Konte B Friedl M Expression analysis in a rat psychosis model identifies novel candidate genes validated in a large case-control sample of schizophrenia Transl Psychiatry. 2015 5 e656 10.1038/tp.2015.151 26460480 

  13. 13. Fromer M Pocklington AJ Kavanagh DH Williams HJ Dwyer S Gormley P De novo mutations in schizophrenia implicate synaptic networks Nature. 2014 506 7487 179 184 10.1038/nature12929 24463507 

  14. 14. Reggiani C Coppens S Sekhara T Dimov I Pichon B Lufin N Novel promoters and coding first exons in DLG2 linked to developmental disorders and intellectual disability Genome Med. 2017 9 1 67 10.1186/s13073-017-0452-y 28724449 

  15. 15. Smeland OB Wang Y Frei O Li W Hibar DP Franke B Genetic overlap between schizophrenia and volumes of hippocampus, putamen, and intracranial volume indicates shared molecular genetic mechanisms Schizophr Bull. 2018 44 4 854 864 10.1093/schbul/sbx148 29136250 

  16. 16. Egger G Roetzer KM Noor A Lionel AC Mahmood H Schwarzbraun T Identification of risk genes for autism spectrum disorder through copy number variation analysis in Austrian families Neurogenetics. 2014 15 2 117 127 10.1007/s10048-014-0394-0 24643514 

  17. 17. Ruzzo EK Perez-Cano L Jung JY Wang LK Kashef-Haghighi D Hartl C Inherited and de novo genetic risk for autism impacts shared networks Cell. 2019 178 4 850 866 10.1016/j.cell.2019.07.015 31398340 

  18. 18. Nithianantharajah J Komiyama NH McKechanie A Johnstone M Blackwood DH St Clair D Synaptic scaffold evolution generated components of vertebrate cognitive complexity Nat Neurosci. 2013 16 1 16 24 10.1038/nn.3276 23201973 

  19. 19. Winkler D Daher F Wustefeld L Hammerschmidt K Poggi G Seelbach A Hypersocial behavior and biological redundancy in mice with reduced expression of PSD95 or PSD93 Behav Brain Res. 2018 352 35 45 10.1016/j.bbr.2017.02.011 28189758 

  20. 20. Ha S Lee D Cho YS Chung C Yoo YE Kim J Cerebellar Shank2 regulates excitatory synapse density, motor coordination, and specific repetitive and anxiety-like behaviors J Neurosci. 2016 36 48 12129 12143 10.1523/JNEUROSCI.1849-16.2016 27903723 

  21. 21. Schindelin J Arganda-Carreras I Frise E Kaynig V Longair M Pietzsch T Fiji: an open-source platform for biological-image analysis Nat Methods. 2012 9 7 676 682 10.1038/nmeth.2019 22743772 

  22. 22. Quinn LP Stean TO Trail B Duxon MS Stratton SC Billinton A LABORAS: initial pharmacological validation of a system allowing continuous monitoring of laboratory rodent behaviour Journal of neuroscience methods. 2003 130 1 83 92 10.1016/S0165-0270(03)00227-9 14583407 

  23. 23. Jung H Park H Choi Y Kang H Lee E Kweon H Sexually dimorphic behavior, neuronal activity, and gene expression in Chd8-mutant mice Nat Neurosci. 2018 21 9 1218 1228 10.1038/s41593-018-0208-z 30104731 

  24. 24. Yoo T Cho H Lee J Park H Yoo YE Yang E GABA neuronal deletion of Shank3 exons 14-16 in mice suppresses striatal excitatory synaptic input and induces social and locomotor abnormalities Front Cell Neurosci. 2018 12 341 10.3389/fncel.2018.00341 30356810 

  25. 25. Yook C Kim K Kim D Kang H Kim SG Kim E A TBR1-K228E mutation induces Tbr1 upregulation, altered cortical distribution of interneurons, increased inhibitory synaptic transmission, and autistic-like behavioral deficits in mice Front Mol Neurosci. 2019 12 241 10.3389/fnmol.2019.00241 31680851 

  26. 26. Kalueff AV Stewart AM Song C Berridge KC Graybiel AM Fentress JC Neurobiology of rodent self-grooming and its value for translational neuroscience Nat Rev Neurosci. 2016 17 1 45 59 10.1038/nrn.2015.8 26675822 

  27. 27. Silverman JL Yang M Lord C Crawley JN Behavioural phenotyping assays for mouse models of autism Nature reviews Neuroscience. 2010 11 7 490 502 10.1038/nrn2851 20559336 

  28. 28. Moy SS Nadler JJ Perez A Barbaro RP Johns JM Magnuson TR Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice Genes Brain Behav. 2004 3 5 287 302 10.1111/j.1601-1848.2004.00076.x 15344922 

  29. 29. Ting JT Daigle TL Chen Q Feng G Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics Methods Mol Biol. 2014 1183 221 242 10.1007/978-1-4939-1096-0_14 25023312 

  30. 30. Feyder M Karlsson RM Mathur P Lyman M Bock R Momenan R Association of mouse Dlg4 (PSD-95) gene deletion and human DLG4 gene variation with phenotypes relevant to autism spectrum disorders and Williams' syndrome Am J Psychiatry. 2010 167 12 1508 1517 10.1176/appi.ajp.2010.10040484 20952458 

  31. 31. Kulesskaya N Voikar V Assessment of mouse anxiety-like behavior in the light-dark box and open-field arena: role of equipment and procedure Physiol Behav. 2014 133 30 38 10.1016/j.physbeh.2014.05.006 24832050 

  32. 32. Chung C Ha S Kang H Lee J Um SM Yan H Early correction of N-methyl-D-aspartate receptor function improves autistic-like social behaviors in adult shank2(-/-) mice Biol Psychiatry. 2019 85 7 534 543 10.1016/j.biopsych.2018.09.025 30466882 

  33. 33. Schmeisser MJ Ey E Wegener S Bockmann J Stempel AV Kuebler A Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2 Nature. 2012 486 7402 256 260 10.1038/nature11015 22699619 

  34. 34. Reynolds S Urruela M Devine DP Effects of environmental enrichment on repetitive behaviors in the BTBR T+tf/J mouse model of autism Autism Res. 2013 6 5 337 343 10.1002/aur.1298 23813950 

  35. 35. Won H Lee HR Gee HY Mah W Kim JI Lee J Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function Nature. 2012 486 7402 261 265 10.1038/nature11208 22699620 

  36. 36. Krakowiak P Goodlin-Jones B Hertz-Picciotto I Croen LA Hansen RL Sleep problems in children with autism spectrum disorders, developmental delays, and typical development: a population-based study J Sleep Res. 2008 17 2 197 206 10.1111/j.1365-2869.2008.00650.x 18482108 

  37. 37. Ballester P Martinez MJ Javaloyes A Inda MD Fernandez N Gazquez P Sleep problems in adults with autism spectrum disorder and intellectual disability Autism Res. 2019 12 1 66 79 10.1002/aur.2000 30273974 

  38. 38. Burguiere E Monteiro P Mallet L Feng G Graybiel AM Striatal circuits, habits, and implications for obsessive-compulsive disorder Curr Opin Neurobiol. 2015 30 59 65 10.1016/j.conb.2014.08.008 25241072 

  39. 39. Baez-Mendoza R Schultz W The role of the striatum in social behavior Front Neurosci. 2013 7 233 10.3389/fnins.2013.00233 24339801 

  40. 40. Graybiel AM Grafton ST The striatum: where skills and habits meet Cold Spring Harb Perspect Biol. 2015 7 8 a021691 10.1101/cshperspect.a021691 26238359 

  41. 41. Kang HJ Kawasawa YI Cheng F Zhu Y Xu X Li M Spatio-temporal transcriptome of the human brain Nature. 2011 478 7370 483 489 10.1038/nature10523 22031440 

  42. 42. Chuhma N Mingote S Kalmbach A Yetnikoff L Rayport S Heterogeneity in dopamine neuron synaptic actions across the striatum and its relevance for schizophrenia Biol Psychiatry. 2017 81 1 43 51 10.1016/j.biopsych.2016.07.002 27692238 

  43. 43. McCutcheon RA Abi-Dargham A Howes OD Schizophrenia, dopamine and the striatum: from biology to symptoms Trends Neurosci. 2019 42 3 205 220 10.1016/j.tins.2018.12.004 30621912 

  44. 44. Piantadosi SC Chamberlain BL Glausier JR 2019 Lewis DA Ahmari SE. Lower excitatory synaptic gene expression in orbitofrontal cortex and striatum in an initial study of subjects with obsessive compulsive disorder. Mol Psychiatry 

  45. 45. Fuccillo MV Striatal circuits as a common node for autism pathophysiology Front Neurosci. 2016 10 27 10.3389/fnins.2016.00027 26903795 

  46. 46. Hollander E Anagnostou E Chaplin W Esposito K Haznedar MM Licalzi E Striatal volume on magnetic resonance imaging and repetitive behaviors in autism Biol Psychiatry. 2005 58 3 226 232 10.1016/j.biopsych.2005.03.040 15939406 

  47. 47. Li W, Pozzo-Miller L. Dysfunction of the corticostriatal pathway in autism spectrum disorders. J Neurosci Res. 2019. 

  48. 48. Hibar DP Stein JL Renteria ME Arias-Vasquez A Desrivieres S Jahanshad N Common genetic variants influence human subcortical brain structures Nature. 2015 520 7546 224 229 10.1038/nature14101 25607358 

  49. 49. Gertler TS Chan CS Surmeier DJ Dichotomous anatomical properties of adult striatal medium spiny neurons J Neurosci. 2008 28 43 10814 10824 10.1523/JNEUROSCI.2660-08.2008 18945889 

  50. 50. Lieberman OJ McGuirt AF Mosharov EV Pigulevskiy I Hobson BD Choi S Dopamine triggers the maturation of striatal spiny projection neuron excitability during a critical period Neuron. 2018 99 3 540 554 10.1016/j.neuron.2018.06.044 30057204 

  51. 51. Cazorla M Shegda M Ramesh B Harrison NL Kellendonk C Striatal D2 receptors regulate dendritic morphology of medium spiny neurons via Kir2 channels J Neurosci. 2012 32 7 2398 2409 10.1523/JNEUROSCI.6056-11.2012 22396414 

  52. 52. Leonoudakis D Conti LR Anderson S Radeke CM McGuire LM Adams ME Protein trafficking and anchoring complexes revealed by proteomic analysis of inward rectifier potassium channel (Kir2.x)-associated proteins J Biol Chem. 2004 279 21 22331 22346 10.1074/jbc.M400285200 15024025 

  53. 53. Silverman JL Tolu SS Barkan CL Crawley JN Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP Neuropsychopharmacology. 2010 35 4 976 989 10.1038/npp.2009.201 20032969 

  54. 54. Yoo T Cho H Park H Lee J Kim E Shank3 exons 14-16 Deletion in glutamatergic neurons leads to social and repetitive behavioral deficits associated with increased cortical layer 2/3 neuronal excitability Front Cell Neurosci. 2019 13 458 10.3389/fncel.2019.00458 31649512 

  55. 55. Yoo YE Yoo T Lee S Lee J Kim D Han HM Shank3 mice carrying the human Q321R mutation display enhanced self-grooming, abnormal electroencephalogram patterns, and suppressed neuronal excitability and seizure susceptibility Front Mol Neurosci. 2019 12 155 10.3389/fnmol.2019.00155 31275112 

  56. 56. Boeve BF. Idiopathic REM sleep behaviour disorder in the development of Parkinson’s disease. Lancet Neurol. 2013;12(5):469-482. 

  57. 57. Mehta SH Morgan JC Sethi KD Sleep disorders associated with Parkinson’s disease: role of dopamine, epidemiology, and clinical scales of assessment CNS Spectr. 2008 13 3 Suppl 4 6 11 10.1017/S1092852900017260 18323761 

  58. 58. Weber F Dan Y Circuit-based interrogation of sleep control Nature. 2016 538 7623 51 59 10.1038/nature19773 27708309 

  59. 59. Debas K Carrier J Orban P Barakat M Lungu O Vandewalle G Brain plasticity related to the consolidation of motor sequence learning and motor adaptation Proc Natl Acad Sci U S A. 2010 107 41 17839 17844 10.1073/pnas.1013176107 20876115 

  60. 60. Mahon S Vautrelle N Pezard L Slaght SJ Deniau JM Chouvet G Distinct patterns of striatal medium spiny neuron activity during the natural sleep-wake cycle J Neurosci. 2006 26 48 12587 12595 10.1523/JNEUROSCI.3987-06.2006 17135420 

  61. 61. Jiang P Scarpa JR Gao VD Vitaterna MH Kasarskis A Turek FW Parkinson’s disease is associated with dysregulations of a dopamine-modulated gene network relevant to sleep and affective neurobehaviors in the striatum Sci Rep. 2019 9 1 4808 10.1038/s41598-019-41248-4 30886221 

  62. 62. Burgdorf JS, Vitaterna MH, Olker CJ, Song EJ, Christian EP, Sorensen L, et al. NMDAR activation regulates the daily rhythms of sleep and mood. Sleep. 2019;42(10). 

  63. 63. Balaan C Corley MJ Eulalio T Leite-Ahyo K Pang APS Fang R Juvenile Shank3b deficient mice present with behavioral phenotype relevant to autism spectrum disorder Behav Brain Res. 2019 356 137 147 10.1016/j.bbr.2018.08.005 30134148 

  64. 64. Lee J Chung C Ha S Lee D Kim DY Kim H Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, enhanced rearing, and spatial memory deficit Front Cell Neurosci. 2015 9 94 25852484 

  65. 65. Abramov U Puussaar T Raud S Kurrikoff K Vasar E Behavioural differences between C57BL/6 and 129S6/SvEv strains are reinforced by environmental enrichment Neurosci Lett. 2008 443 3 223 227 10.1016/j.neulet.2008.07.075 18687379 

  66. 66. Ryan K Thompson L Mendoza PA Chadman KK Inbred strain preference in the BTBR T(+) Itpr3(tf) /J mouse model of autism spectrum disorder: does the stranger mouse matter in social approach? Autism Res. 2019 12 8 1184 1191 10.1002/aur.2158 31206258 

  67. 67. Leonzino M Ponzoni L Braida D Gigliucci V Busnelli M Ceresini I Impaired approach to novelty and striatal alterations in the oxytocin receptor deficient mouse model of autism Horm Behav. 2019 114 104543 10.1016/j.yhbeh.2019.06.007 31220463 

  68. 68. Ishii T Sawamoto N Tabu H Kawashima H Okada T Togashi K Altered striatal circuits underlie characteristic personality traits in Parkinson’s disease J Neurol. 2016 263 9 1828 1839 10.1007/s00415-016-8206-0 27334907 

  69. 69. Menegas W Akiti K Amo R Uchida N Watabe-Uchida M Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli Nat Neurosci. 2018 21 10 1421 1430 10.1038/s41593-018-0222-1 30177795 

  70. 70. Welch JM Lu J Rodriguiz RM Trotta NC Peca J Ding JD Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice Nature. 2007 448 7156 894 900 10.1038/nature06104 17713528 

  71. 71. Peca J Feliciano C Ting JT Wang W Wells MF Venkatraman TN Shank3 mutant mice display autistic-like behaviours and striatal dysfunction Nature. 2011 472 7344 437 442 10.1038/nature09965 21423165 

  72. 72. Diaz-Hernandez E Contreras-Lopez R Sanchez-Fuentes A Rodriguez-Sibrian L Ramirez-Jarquin JO Tecuapetla F The thalamostriatal projections contribute to the initiation and execution of a sequence of movements Neuron. 2018 100 3 739 752 10.1016/j.neuron.2018.09.052 30344045 

  73. 73. Alloway KD Smith JB Mowery TM Watson GDR Sensory processing in the dorsolateral striatum: the contribution of thalamostriatal pathways Front Syst Neurosci. 2017 11 53 10.3389/fnsys.2017.00053 28790899 

  74. 74. Burke DA Rotstein HG Alvarez VA Striatal local circuitry: a new framework for lateral inhibition Neuron. 2017 96 2 267 284 10.1016/j.neuron.2017.09.019 29024654 

  75. 75. Licheri V Lagstrom O Lotfi A Patton MH Wigstrom H Mathur B Complex control of striatal neurotransmission by nicotinic acetylcholine receptors via excitatory inputs onto medium spiny neurons J Neurosci. 2018 38 29 6597 6607 10.1523/JNEUROSCI.0071-18.2018 29941445 

  76. 76. Parker MJ Zhao S Bredt DS Sanes JR Feng G PSD93 regulates synaptic stability at neuronal cholinergic synapses J Neurosci. 2004 24 2 378 388 10.1523/JNEUROSCI.3865-03.2004 14724236 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로