$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map 원문보기

Nature neuroscience, v.23 no.4, 2020년, pp.500 - 509  

Bayraktar, Omer Ali ,  Bartels, Theresa ,  Holmqvist, Staffan ,  Kleshchevnikov, Vitalii ,  Martirosyan, Araks ,  Polioudakis, Damon ,  Ben Haim, Lucile ,  Young, Adam M. H. ,  Batiuk, Mykhailo Y. ,  Prakash, Kirti ,  Brown, Alexander ,  Roberts, Kenny ,  Paredes, Mercedes F. ,  Kawaguchi, Riki ,  Stockley, John H. ,  Sabeur, Khalida ,  Chang, Sandra M. ,  Huang, Eric ,  Hutchinson, Peter ,  Ullian, Erik M. ,  Hemberg, Martin ,  Coppola, Giovanni ,  Holt, Matthew G. ,  Geschwind, Daniel H. ,  Rowitch, David H.

초록이 없습니다.

참고문헌 (47)

  1. Nat. Rev. Neurosci. BJ Molyneaux 8 427 2007 10.1038/nrn2151 Molyneaux, B. J., Arlotta, P., Menezes, J. R. L. & Macklis, J. D. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 8, 427-437 (2007). 

  2. Neuron MR Freeman 80 613 2013 10.1016/j.neuron.2013.10.034 Freeman, M. R. & Rowitch, D. H. Evolving concepts of gliogenesis: a look way back and ahead to the next 25 years. Neuron 80, 613-623 (2013). 

  3. Cell JP Doyle 135 749 2008 10.1016/j.cell.2008.10.029 Doyle, J. P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749-762 (2008). 

  4. Chai, H. et al. Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron 548, 396-397 (2017). 

  5. John Lin, C.-C. et al. Identification of diverse astrocyte populations and their malignant analogs. Nat. Neurosci. 20, 396-405 (2017). 

  6. Cell Rep. MM Boisvert 22 269 2018 10.1016/j.celrep.2017.12.039 Boisvert, M. M., Erikson, G. A., Shokhirev, M. N. & Allen, N. J. The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep. 22, 269-285 (2018). 

  7. Nat. Commun. D Lanjakornsiripan 9 2018 10.1038/s41467-018-03940-3 Lanjakornsiripan, D. et al. Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers. Nat. Commun. 9, 1623 (2018). 

  8. Nature AV Molofsky 509 189 2014 10.1038/nature13161 Molofsky, A. V. et al. Astrocyte-encoded positional cues maintain sensorimotor circuit integrity. Nature 509, 189-194 (2014). 

  9. Science E Lein 358 64 2017 10.1126/science.aan6827 Lein, E., Borm, L. E. & Linnarsson, S. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science 358, 64-69 (2017). 

  10. Proc. Natl Acad. Sci. USA JR Moffitt 113 14456 2016 10.1073/pnas.1617699113 Moffitt, J. R. et al. High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proc. Natl Acad. Sci. USA 113, 14456-14461 (2016). 

  11. Neuron S Shah 92 342 2016 10.1016/j.neuron.2016.10.001 Shah, S., Lubeck, E., Zhou, W. & Cai, L. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron 92, 342-357 (2016). 

  12. 10.1126/science.aat5691 Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018). 

  13. Nat. Methods N Battich 10 1127 2013 10.1038/nmeth.2657 Battich, N., Stoeger, T. & Pelkmans, L. Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat. Methods 10, 1127-1133 (2013). 

  14. J. Chem. Neuroanat. K Nikouei 71 1 2016 10.1016/j.jchemneu.2015.12.004 Nikouei, K., Muñoz-Manchado, A. B. & Hjerling-Leffler, J. BCL11B/CTIP2 is highly expressed in GABAergic interneurons of the mouse somatosensory cortex. J. Chem. Neuroanat. 71, 1-5 (2016). 

  15. Nat. Neurosci. B Tasic 19 335 2016 10.1038/nn.4216 Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335-346 (2016). 

  16. J. Neurosci. AA Sosunov 34 2285 2014 10.1523/JNEUROSCI.4037-13.2014 Sosunov, A. A. et al. Phenotypic heterogeneity and plasticity of isocortical and hippocampal astrocytes in the human brain. J. Neurosci. 34, 2285-2298 (2014). 

  17. J. Neurosci. JD Cahoy 28 264 2008 10.1523/JNEUROSCI.4178-07.2008 Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264-278 (2008). 

  18. Dev. Biol. N Nakayama 232 372 2001 10.1006/dbio.2001.0200 Nakayama, N. et al. A novel chordin-like protein inhibitor for bone morphogenetic proteins expressed preferentially in mesenchymal cell lineages. Dev. Biol. 232, 372-387 (2001). 

  19. 10.1126/science.aal3589 Vainchtein, I. D. et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 359, 1269-1273 (2018). 

  20. Genomics MF Champliaud 70 264 2000 10.1006/geno.2000.6390 Champliaud, M. F. et al. Gene characterization of sciellin (SCEL) and protein localization in vertebrate epithelia displaying barrier properties. Genomics 70, 264-268 (2000). 

  21. Trends Cell Biol. MB Ruzinova 13 410 2003 10.1016/S0962-8924(03)00147-8 Ruzinova, M. B. & Benezra, R. Id proteins in development, cell cycle and cancer. Trends Cell Biol. 13, 410-418 (2003). 

  22. 10.1038/s41467-019-14198-8 Batiuk, M. Y. et al. Molecularly distinct astrocyte subpopulations spatially pattern the adult mouse brain. Nat. Commun. https://doi.org/10.1038/s41467-019-14198-8 (in the press). 

  23. 10.1038/nature21065 Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352-356 (2017). 

  24. Nature W-P Ge 484 376 2012 10.1038/nature10959 Ge, W.-P., Miyawaki, A., Gage, F. H., Jan, Y.-N. & Jan, L. Y. Local generation of glia is a major astrocyte source in postnatal cortex. Nature 484, 376-380 (2012). 

  25. Neuron EA Alcamo 57 364 2008 10.1016/j.neuron.2007.12.012 Alcamo, E. A. et al. Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron 57, 364-377 (2008). 

  26. Proc. Natl Acad. Sci. USA WL McKenna 112 11702 2015 10.1073/pnas.1504144112 McKenna, W. L. et al. Mutual regulation between Satb2 and Fezf2 promotes subcerebral projection neuron identity in the developing cerebral cortex. Proc. Natl Acad. Sci. USA 112, 11702-11707 (2015). 

  27. Cereb. Cortex DP Leone 25 3406 2015 10.1093/cercor/bhu156 Leone, D. P. et al. Satb2 regulates the differentiation of both callosal and subcerebral projection neurons in the developing cerebral cortex. Cereb. Cortex 25, 3406-3419 (2015). 

  28. Development E Hartfuss 130 4597 2003 10.1242/dev.00654 Hartfuss, E. Reelin signaling directly affects radial glia morphology and biochemical maturation. Development 130, 4597-4609 (2003). 

  29. Development KY Kwan 139 1535 2012 10.1242/dev.069963 Kwan, K. Y., Sestan, N. & Anton, E. S. Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development 139, 1535-1546 (2012). 

  30. J. Comp. Neurol MP Boyle 519 2061 2011 10.1002/cne.22655 Boyle, M. P. et al. Cell-type-specific consequences of reelin deficiency in the mouse neocortex, hippocampus, and amygdala. J. Comp. Neurol 519, 2061-2089 (2011). 

  31. Nature Y Cui 554 323 2018 10.1038/nature25752 Cui, Y. et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 554, 323-327 (2018). 

  32. Neuron KW Kelley 98 306 2018 10.1016/j.neuron.2018.03.010 Kelley, K. W. et al. Kir4.1-dependent astrocyte-fast motor neuron interactions are required for peak strength. Neuron 98, 306-307 (2018). 

  33. Neuron E Blanco-Suarez 100 1116 2018 10.1016/j.neuron.2018.09.043 Blanco-Suarez, E., Liu, T.-F., Kopelevich, A. & Allen, N. J. Astrocyte-secreted chordin-like 1 drives synapse maturation and limits plasticity by increasing synaptic GluA2 AMPA receptors. Neuron 100, 1116-1132.e13 (2018). 

  34. 10.1126/science.aaw5202 Marshel, J. H. et al. Cortical layer-specific critical dynamics triggering perception. Science 365, eaaw5202 (2019). 

  35. J. Cell Sci. MA Karreman 129 444 2016 10.1242/jcs.181842 Karreman, M. A. et al. Fast and precise targeting of single tumor cells in vivo by multimodal correlative microscopy. J. Cell Sci. 129, 444-456 (2016). 

  36. Science D Velmeshev 364 685 2019 10.1126/science.aav8130 Velmeshev, D. et al. Single-cell genomics identifies cell type-specific molecular changes in autism. Science 364, 685-689 (2019). 

  37. Nature S Gong 425 917 2003 10.1038/nature02033 Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917-925 (2003). 

  38. J. Neurosci. JA Gorski 22 6309 2002 10.1523/JNEUROSCI.22-15-06309.2002 Gorski, J. A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22, 6309-6314 (2002). 

  39. J. Mol. Diagn. F Wang 14 22 2012 10.1016/j.jmoldx.2011.08.002 Wang, F. et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 14, 22-29 (2012). 

  40. J. Histochem. Cytochem. HM Kerstens 43 347 1995 10.1177/43.4.7897179 Kerstens, H. M., Poddighe, P. J. & Hanselaar, A. G. A novel in situ hybridization signal amplification method based on the deposition of biotinylated tyramine. J. Histochem. Cytochem. 43, 347-352 (1995). 

  41. Nat. Biotechnol. A Butler 36 411 2018 10.1038/nbt.4096 Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411-420 (2018). 

  42. Genome Biol. BioMed. Cent. D Kim 14 R36 2013 10.1186/gb-2013-14-4-r36 Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. BioMed. Cent. 14, R36 (2013). 

  43. Bioinformatics H Li 25 1754 2009 10.1093/bioinformatics/btp324 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760 (2009). 

  44. Bioinformatics S Anders 31 166 2015 10.1093/bioinformatics/btu638 Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166-169 (2015). 

  45. Genome Biol. BioMed. Cent. MI Love 15 550 2014 10.1186/s13059-014-0550-8 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. BioMed. Cent. 15, 550 (2014). 

  46. Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309-315 (2017). 

  47. F1000Res. ATL Lun 5 2122 2016 Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res. 5, 2122 (2016). 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로