$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Light emitting diodes technology-based photobiomodulation therapy (PBMT) for dermatology and aesthetics: Recent applications, challenges, and perspectives

Optics and laser technology, v.135, 2021년, pp.106698 -   

Van Tran, Vinh (Institute of Research and Development, Duy Tan University) ,  Chae, Minhe (Biocell Korea Co., Ltd) ,  Moon, Ju-Young (Department of Beauty Design Management, Hansung University) ,  Lee, Young-Chul (Department of BioNano Technology, Gachon University)

Abstract AI-Helper 아이콘AI-Helper

Abstract Photobiomodulation Therapy (PBMT) is a novel modality using irradiation with light-power-intensity light. Recently, applications of PBMT have been broadened to thousands of people around the world for various medical conditions and dermatological conditions. Normally, light sources used in...

주제어

참고문헌 (211)

  1. 10.15406/mojor.2015.02.00068 H.B. Cotler, R.T. Chow, M.R. Hamblin, J. Carroll, The use of low level laser therapy (LLLT) for musculoskeletal pain, MOJ Orthop Rheumatol. 2(5) (2015) 1-16. 

  2. ACS Biomater Sci. Eng. Mendes 6 9 5132 2020 10.1021/acsbiomaterials.0c00294 Effects of the association between photobiomodulation and hyaluronic acid linked gold nanoparticles in wound healing 

  3. Photochem. Photobiol. Sci. Serrage 18 1877 2019 10.1039/C9PP00089E Under the spotlight: mechanisms of photobiomodulation concentrating on blue and green light 

  4. Photobiomodul. Photomed. Laser Surg. Anders 37 2 63 2019 10.1089/photob.2018.4600 Light-emitting diode therapy and low-level light therapy are photobiomodulation therapy 

  5. Photomed. Laser Surg. Anders 33 4 183 2015 10.1089/pho.2015.9848 Low-level light/laser therapy versus photobiomodulation therapy 

  6. J. Photochem. Photobiol. B Biol. Tsaia 170 197 2017 10.1016/j.jphotobiol.2017.04.014 Biological effects and medical applications of infrared radiation 

  7. Photochem. Photobiol. Sci. Silveira 18 1621 2019 10.1039/C9PP00120D Examining tumor modulating effects of photobiomodulation therapy on head and neck squamous cell carcinomas 

  8. Mol. Neurobiol. Salehpour 55 8 6601 2018 10.1007/s12035-017-0852-4 Brain photobiomodulation therapy: A narrative review 

  9. Biomolecules Salehpour 10 4 610 2020 10.3390/biom10040610 Photobiomodulation for Parkinson’s Disease in Animal Models: A Systematic Review 

  10. IEEE J. Sel. Top. Quantum Electron. Freitas 22 3 2016 10.1109/JSTQE.2016.2561201 Proposed mechanisms of photobiomodulation or low-level light therapy 

  11. Lasers Surg. Med. Hashmi 42 6 450 2010 10.1002/lsm.20950 Effect of pulsing in low-level light therapy 

  12. Semin. Cutan. Med. Surg. Avci 32 1 41 2013 Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring 

  13. Sci. Rep. Kim 7 15927 2017 10.1038/s41598-017-15754-2 Pulse frequency dependency of photobiomodulation on the bioenergetic functions of human dental pulp stem cells 

  14. Br. J. Dermatol. Seaton 155 748 2006 10.1111/j.1365-2133.2006.07429.x Investigation of the mechanism of action of nonablativepulsed-dye laser therapy in photorejuvenation andinflammatory acne vulgaris 

  15. Proc. SPIE Sawhney 8932 1 2014 Low-level light therapy (LLLT) for cosmetics and dermatology 

  16. Photochem. Photobiol. Sci. Heiskanen 17 1003 2018 10.1039/C8PP00176F Photobiomodulation: lasers vs. light emitting diodes? 

  17. Lasers Med. Sci. Bhat 20 1 6 2005 10.1007/s10103-005-0330-5 A single-blinded randomised controlled study to determine the efficacy of Omnilux Revive facial treatment in skin rejuvenation 

  18. Ann. Biomed. Eng. Chung 40 2 516 2012 10.1007/s10439-011-0454-7 The nuts and bolts of low-level laser (light) therapy 

  19. Semin. Cutan. Med. Surg. Barolet 27 4 227 2008 10.1016/j.sder.2008.08.003 Light-Emitting Diodes (LEDs) in Dermatology 

  20. Lasers Med. Sci. Hadis 31 789 2016 10.1007/s10103-016-1914-y The dark art of light measurement: accurate radiometry for low-level light therapy 

  21. Nature Maiman 187 493 1960 10.1038/187493a0 Stimulated optical radiation in ruby 

  22. Best of Both Worlds, Lasers 101: Understanding Aesthetic Lasers. (Accessed 2019/01/30). http://bestofbothworldsaz.com/2011/01/06/lasers-101-understanding-aesthetic-lasers/. 

  23. Sci. King 4 141 1989 Low level laser therapy: A review Lasers Med 

  24. Photomed. Laser Surg. Hode 23 4 431 2005 10.1089/pho.2005.23.431 The importance of the coherency 

  25. 10.1097/00042728-200503000-00016 W. Posten, D.A. Wrone, J.S. Dover, FRCPC, K.A. Arndt, S. Silapunt, M. Alam, Low-level laser therapy for wound healing: mechanism and efficacy, Dermatol. Surg. 31(3) (2005) 334-340. 

  26. J. Trans. Med. Lin 8 16 2010 10.1186/1479-5876-8-16 Lasers, stem cells, and COPD 

  27. J. Lasers Med. Sci. Farivar 5 2 58 2014 Biological effects of low level laser therapy 

  28. A.F. Taub, Understanding lasers, radiofrequency, IPL and other energy based devices, 2019. (Accessed 2019/03/26). https://www.advdermatology.com/blog/understanding-lasers-radiofrequency-ipl-energy-based-devices. 

  29. Renk 2012 Basics of Laser Physics 

  30. J. Am. Acad. Dermatol. Kalka 42 3 389 2000 10.1016/S0190-9622(00)90209-3 Photodynamic therapy in dermatology 

  31. Med. Biol. Wilson 31 4 327 1986 10.1088/0031-9155/31/4/001 The physics of photodynamic therapy Phys 

  32. Phys. Med. Biol. Simpson 43 2465 1998 10.1088/0031-9155/43/9/003 Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique 

  33. H.L. Mats, LED Photon light therapy / Phototherapy / Cold laser therapy. (Accessed 2019/01/30). http://healthylinemats.com/healthy-line-mat-technology/led-photon-light-therapy-phototherapy-cold-laser-therapy/. 

  34. Laser Ther. Kim 20 3 205 2011 10.5978/islsm.20.205 Is light-emitting diode phototherapy (LED-LLLT) really effective? 

  35. 10.5978/islsm.15-OR-17 R.G. Calderhead, W.-S. KIm, T. Ohshiro, M.A. Trelles, D.B. Vasily, Adjunctive 830nm light-emitting diode therapy can improve the results following aesthetic procedures, Laser Therapy 24(4) (2015) 277-289. 

  36. Lasers Med. Sci. Suchonwanit 1-8 2018 Low-level laser therapy for the treatment of androgenetic alopecia in Thai men and women: a 24-week, randomized, double-blind, sham device-controlled trial 

  37. J. Photochem. Photobiol. B, Biol. George 188 60 2018 10.1016/j.jphotobiol.2018.09.004 Effect of red light and near infrared laser on the generation of reactive oxygen species in primary dermal fibroblasts 

  38. Lasers Surg. Med. Weiss 36 85 2005 10.1002/lsm.20107 Clinical trial of a novel non-thermal led array for reversal of photoaging: Clinical, histologic, and surface profilometric results 

  39. AIMS Biophys. Hamblin 4 3 337 2017 10.3934/biophy.2017.3.337 Mechanisms and applications of the anti-inflammatory effects of photobiomodulation 

  40. Biochim. Biophys. Acta Mason 1837 11 1882 2014 10.1016/j.bbabio.2014.08.005 Re-evaluation of the near infrared spectra of mitochondrial cytochrome c oxidase: Implications for non invasive in vivo monitoring of tissues 

  41. J. Photochem. Photobiol. B Biol. Karu 27 219 1995 10.1016/1011-1344(94)07078-3 Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro 

  42. Nature Lane 443 901 2006 10.1038/443901a Cell biology: Power games 

  43. Lasers Surg. Med. Karu 36 307 2005 10.1002/lsm.20148 Cellular effects of low power laser therapy can be mediated by nitric oxide 

  44. Proc. Natl Acad. Sci. USA Antunes 101 16774 2004 10.1073/pnas.0405368101 On the mechanism and biology of cytochrome oxidase inhibition by nitric oxide 

  45. J. Appl. Physiol. Pannala 121 1196 2016 10.1152/japplphysiol.00524.2016 Modeling the detailed kinetics of mitochondrial cytochrome c oxidase: Catalytic mechanism and nitric oxide inhibition 

  46. J. Photochem. Photobiol. B. Ball 102 182 2011 10.1016/j.jphotobiol.2010.12.002 Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: Implications for phototherapy 

  47. J. Mol. Cell. Cardiol. Lohr 47 256 2009 10.1016/j.yjmcc.2009.03.009 NeilHogg, Enhancement of nitric oxide release from nitrosyl hemoglobin and nitrosyl myoglobin by red/near infrared radiation: Potential role in cardioprotection 

  48. J. Mol. Cell. Cardiol. Zhang 46 4 2009 10.1016/j.yjmcc.2008.09.707 MartinBienengraeber, Near infrared light protects cardiomyocytes from hypoxia and reoxygenation injury by a nitric oxide dependent mechanism 

  49. Lasers Surg. Med. Moore 36 1 8 2005 10.1002/lsm.20117 Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro 

  50. J. Invest. Dermatol. Yu 120 56 2003 10.1046/j.1523-1747.2003.12011.x Helium-neon laser irradiation stimulates migration and proliferation in melanocytes and induces repigmentation in segmental-type vitiligo 

  51. J. Invest. Dermatol. Song 120 5 849 2003 10.1046/j.1523-1747.2003.12133.x ZhongYang, MengsuYang, cDNA microarray analysis of gene expression profiles in human fibroblast cells irradiated with red light 

  52. Ann. NY Acad. Sci. Evans 1056 486 2005 10.1196/annals.1352.040 Low level laser therapy (LLLT) as an effective therapeutic modality for delayed wound healing 

  53. 10.3390/jcm9061724 C. Dompe, L. Moncrieff, J. Matys, K. Grzech-Lésniak, I. Kocherova, A. Bryja, M. Bruska, M. Dominiak, P. Mozdziak, T.H.I. Skiba, J.A. Shibli, A.A. Volponi, B. Kempisty, M. Dyszkiewicz-Konwinska, Photobiomodulation-Underlying Mechanism and Clinical Applications, J. Clin. Med. 9 (2020) 1724. 

  54. Temperature Poletini 2 4 522 2015 10.1080/23328940.2015.1115803 TRP channels: a missing bond in the entrainment mechanism of peripheral clocks throughout evolution 

  55. Pharmaceuticals Caterina 9 4 77 2016 10.3390/ph9040077 TRP Channels in Skin Biology and Pathophysiology 

  56. Biochim. Biophys. Acta Smani 2015 1772 1853 Functional and physiopathological implications of TRP channels 

  57. Front. Physiol. Wu 9 1658 2018 10.3389/fphys.2018.01658 Changes of Intracellular Porphyrin, Reactive Oxygen Species, and Fatty Acids Profiles During Inactivation of Methicillin-Resistant Staphylococcus aureus by Antimicrobial Blue Light 

  58. Drug Resist Updat. Dai 15 4 223 2012 10.1016/j.drup.2012.07.001 Blue light for infectious diseases: Propionibacterium acnes, helicobacter pylori, and beyond? 

  59. FEMS Immunol. Med. Microbiol. Ashkenazi 35 17 2003 10.1111/j.1574-695X.2003.tb00644.x Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light 

  60. Antimicrob. Agents Chemother. Hamblin 49 2822 2005 10.1128/AAC.49.7.2822-2827.2005 Helicobacter pylori accumulates photoactive porphyrins and is killed by visible light 

  61. J. Photochem. Photobiol. B. Maclean 92 180 2008 10.1016/j.jphotobiol.2008.06.006 The role of oxygen in the visible-light inactivation of Staphylococcus aureus 

  62. Exp. Dermatol. Yu 28 10 2019 10.1111/exd.13823 Mechanisms of repigmentation induced by photobiomodulation therapy in vitiligo 

  63. J. Cosmet Laser Ther. Nestor 19 4 2017 10.1080/14764172.2017.1293828 Photobiomodulation with non-thermal lasers: Mechanisms of action and therapeutic uses in dermatology and aesthetic medicine 

  64. Clin. Cosmet. Investig. Dermatol. Hamblin 12 669 2019 10.2147/CCID.S184979 Photobiomodulation for the management of alopecia: mechanisms of action, patient selection and perspectives 

  65. Sci. Rep. Mignon 7 2797 2017 10.1038/s41598-017-02802-0 Photobiomodulation of human dermal fibroblasts in vitro: decisive role of cell culture conditions and treatment protocols on experimental outcome 

  66. Laser Surg. Med. Jagdeo 50 613 2018 10.1002/lsm.22791 Light-emitting diodes in dermatology: A systematic review of randomized controlled trials 

  67. Lasers Med. Sci. Jahan 34 1193 2019 10.1007/s10103-018-02710-3 Transcranial near-infrared photobiomodulation could modulate brain electrophysiological features and attentional performance in healthy young adults 

  68. United States Francis 2011 Phototherapy mask 

  69. Apira Science, The iderma facial beautification system. (Accessed 2019/01/30). https://www.apirascience.com/iderma-product-page/. 

  70. Dermatol. Surg. Kim 39 1177 2013 10.1111/dsu.12200 Low-Level Light Therapy for Androgenetic Alopecia: A 24-Week, Randomized, Double-Blind, Sham Device-Controlled Multicenter Trial 

  71. United States Hamid 2012 Portable light hair restoration helmet 

  72. I. Lin, LED Helmet Unveiled in Japan to Save Hair Loss, 2016. (Accessed 2019/11/08). https://www.ledinside.com/news/2016/11/japan_unveils_led_helmet_for_hair_growth. 

  73. Am. J. Med. Bolognia 98 S99 1995 10.1016/S0002-9343(99)80066-7 Aging skin 

  74. J. Dermatol. Griffiths 127 S37 1992 10.1111/j.1365-2133.1992.tb16986.x The clinical identification and quantification of photodamage Br 

  75. Dermatol. Ther. Dierickx 18 191 2005 10.1111/j.1529-8019.2005.05019.x Visible light treatment of photoaging 

  76. Dermatol. Clin. Hardaway 20 97 2002 10.1016/S0733-8635(03)00049-4 Nonablative laser skin remodeling 

  77. Semin. Cutan. Med. Surg. Weiss 22 2 93 2003 10.1053/sder.2003.50008 Review of nonablative photorejuvenation: Reversal of the aging effects of the sun and environmental damage using laser and light sources 

  78. J. Cutan. Laser. Ther. Goldberg 2 59 2000 10.1080/14628830050516461 New collagen formation after dermal remodeling with an intense pulsed light source 

  79. Dermatol. Surg. Hernández-Pérez 28 8 651 2002 Gross and microscopic findings in patients submitted to nonablative full-face resurfacing using intense pulsed light: A preliminary study 

  80. Lasers Med. Sci. Trelles 18 2 104 2003 10.1007/s10103-003-0257-7 Non-ablative facial skin photorejuvenation with an intense pulsed light system and adjunctive epidermal care 

  81. J. Photochem. Photobiol. B, Biol. Lee 88 51 2007 10.1016/j.jphotobiol.2007.04.008 

  82. J. Drugs Dermatol. Weiss 3 605 2004 A novel non-thermal non-ablative full panel LED photomodulation device for reversal of photoaging: digital microscopic and clinical results in various skin types 

  83. J. Cosmet. Laser. Ther. Russell 7 196 2005 10.1080/14764170500370059 A study to determine the efficacy of combination LED light therapy (633 nm and 830 nm) in facial skin rejuvenation 

  84. J. Invest. Dermatol. Barolet 129 2751 2009 10.1038/jid.2009.186 Regulation of skin collagen metabolismin vitrousing a pulsed 660 nm led light source: Clinicalcorrelation with a single-blinded study 

  85. J. Drugs Dermatol. Goldberg 5 8 748 2006 Combined 633-nm and 830-nm led treatment of photoaging skin 

  86. Clin. Exp. Dermatol. Kim 41 798 2016 10.1111/ced.12902 Skin photorejuvenation effects of light-emitting diodes (LEDs): a comparative study of yellow and red LEDs in vitro and in vivo 

  87. Med. Young 9 497 1989 Macrophage responsiveness to light therapy Lasers Surg 

  88. Dermatol. Surg. Weiss 31 1199 2005 10.1111/j.1524-4725.2005.31926 Clinical experience with light-emitting diode (LED) photomodulation 

  89. J. Cosmet. Dermatol. Baez 6 189 2007 10.1111/j.1473-2165.2007.00329.x The use of light-emitting diode therapy in the treatment of photoaged skin 

  90. J. Am. Acad. Dermatol. Webster 33 247 1995 10.1016/0190-9622(95)90243-0 Inflammation in acne vulgaris 

  91. New Engl. J. Med. James 352 1463 2005 10.1056/NEJMcp033487 Clinical practice - Acne 

  92. J. Control. Release Tran 300 114 2019 10.1016/j.jconrel.2019.03.003 Young-ChulLee, Liposomes for delivery of antioxidants in cosmeceuticals: Challenges and development strategies 

  93. Chem. Eng. J. Tran 368 88 2019 10.1016/j.cej.2019.02.168 Young-ChulLee, Core-shell materials, lipid particles and nanoemulsions, for delivery of active anti-oxidants in cosmetics applications: challenges and development strategies 

  94. J. Am. Acad. Dermatol. Thiboutot 60 S1 2009 10.1016/j.jaad.2009.01.019 New insights into the management of acne: An update from the Global Alliance to ImproveOutcomes in Acne Group 

  95. J. Eur. Acad. Dermatol. Venereol. Hædersdal 22 267 2008 10.1111/j.1468-3083.2007.02503.x Evidence-based review of lasers, light sources and photodynamic therapy in the treatment of acne vulgaris 

  96. J. Cosmet. Laser. Ther. Gold 13 308 2011 10.3109/14764172.2011.630081 Clinical effi cacy of home-use blue-light therapy for mild-to-moderate acne 

  97. J. Bacter. Lee 133 811 1978 10.1128/jb.133.2.811-815.1978 Comparative studies of porphyrin production in propionibacterium acnes and propionibacterium granulosum 

  98. Photochem. Photobiol. Kjeldstad 43 67 1986 10.1111/j.1751-1097.1986.tb05592.x An action spectrum for blue and near ultraviolet in activation of propionibacterium acnes 

  99. Br. J. Dermatol. Papageorgiou 142 973 2000 10.1046/j.1365-2133.2000.03481.x Phototherapy with blue (415 nm) and red (660 nm) light in thetreatment of acne vulgaris 

  100. Lasers Surg. Med. Avci 46 144 2014 10.1002/lsm.22170 Low-level laser (light) therapy (LLLT) for treatment of hair loss 

  101. J. Dermatol. Sci. Kawada 30 129 2002 10.1016/S0923-1811(02)00068-3 Acne phototherapy with a high-intensity, enhanced, narrowband, blue light source: an open study and in vitro investigation 

  102. Lasers Surg. Med. Lee 39 180 2007 10.1002/lsm.20412 Blue and red light combination led phototherapy for acne vulgaris in patients with skin phototype IV 

  103. J. Clin. Aesthet. Dermatol. Opel 8 36 2015 Light-emitting diodes: A brief review and clinical experience 

  104. J. Photochem. Photobiol. B, Biol. Futsaether 31 125 1995 10.1016/1011-1344(95)07102-4 Intracellular pH changes induced in Propionibacterium acnes by UVA radiation and blue light 

  105. J Cosmet Laser Ther. Goldberg 8 71 2006 10.1080/14764170600735912 Combination blue (415 nm) and red (633 nm) LED phototherapy in the treatment of mild to severe acne vulgaris 

  106. J. Drugs Dermatol. Sadick 7 347 2008 Handheld led array device in the treatment of acne vulgaris 

  107. Br. J. Dermatol. Kwon 168 1088 2013 10.1111/bjd.12186 The clinical and histological effect of home-use, combination blue-red LED phototherapy for mild-to-moderate acne vulgaris in Korean patients: a double-blind, randomized controlled trial 

  108. Trials Nguyen 20 432 2019 10.1186/s13063-019-3546-6 A dose-ranging, parallel group, split-face, single-blind phase II study of light emitting diode-red light (LED-RL) for skin scarring prevention: study protocol for a randomized controlled trial 

  109. Adv. Wound Care Marshall 7 29 2016 10.1089/wound.2016.0696 Cutaneous scarring: Basic science, current treatments, and future directions 

  110. Dermatol. Surg. Lev-Tov 39 422 2013 10.1111/dsu.12087 Inhibition of Fibroblast Proliferation In Vitro Using Low-Level Infrared Light-Emitting Diodes 

  111. J. Dermatol. Sci. Uitto 24 S60 2000 10.1016/S0923-1811(00)00143-2 Cytokine modulation of extracellular matrix gene expression: relevance to fibrotic skin diseases 

  112. J. Invest. Dermatol. Uitto 127 6 2007 10.1038/sj.jid.5700604 IL-6 Signaling Pathway in Keloids: A Target for Pharmacologic Intervention? 

  113. J. Invest. Dermatol. Ghazizadeh 127 98 2007 10.1038/sj.jid.5700564 Functional Implications of the IL-6 Signaling Pathway in Keloid Pathogenesis 

  114. Laser Surg. Med. Barolet 42 597 2010 10.1002/lsm.20952 Prophylactic low-level light therapy for the treatment of hypertrophic scars and keloids: A case series 

  115. Photodiagn. Photodyn. Campbell 7 3 183 2010 10.1016/j.pdpdt.2010.07.003 Effect of MAL-photodynamic therapy on hypertrophic scarring 

  116. Photodermatol. Photoimmunol. Photomed. Nie 26 330 2010 10.1111/j.1600-0781.2010.00539.x Positive response of a recurrent keloid scar to topical methyl aminolevulinate-photodynamic therapy 

  117. Br. J. Dermatol. Sakamoto 166 413 2012 10.1111/j.1365-2133.2011.10576.x Surgical scar remodelling after photodynamic therapy using aminolaevulinic acid or its methylester: a retrospective, blinded study of patients with field cancerization 

  118. Dermatol. Surg. Mamalis 41 35 2015 10.1097/01.DSS.0000452650.06765.51 Light-emitting diode-generated red light inhibits keloid fibroblast proliferation 

  119. Dermatol. Ther. Seok 29 45 2016 10.1111/dth.12280 Depressed scar after filler injection successfully treated with pneumatic needleless injector and radiofrequency device 

  120. Nat. Rev. Dis. Prim. Pratt 3 17011 2017 10.1038/nrdp.2017.11 Alopecia areata 

  121. Nat. Commun. Pirastu 8 1584 2017 10.1038/s41467-017-01490-8 GWAS for male-pattern baldness identifies 71 susceptibility loci explaining 38% of the risk 

  122. Eur. J. Cardiovasc. Prev. Rehabil. Matilainen 10 227 2003 10.1097/01.hjr.0000070200.72977.c6 Hair loss, insulin resistance, and heredity in middle-aged women. A population-based study 

  123. J. Dermatol. Sci. Tajima 45 93 2007 10.1016/j.jdermsci.2006.10.011 Characteristic features of Japanese women's hair with aging and with progressing hair loss 

  124. J. Dermatol. García-Hernández 26 625 1999 10.1111/j.1346-8138.1999.tb02063.x Alopecia areata, stress and psychiatric disorders: a review 

  125. J. Am. Acad. Dermatol. Olsen 52 301 2005 10.1016/j.jaad.2004.04.008 Evaluation and treatment of male and female pattern hair loss 

  126. Clinical Dermatol. Res. Ther. Menezes 1 123 2018 Photobiomodulation and photodynamic cosmetic therapy on hair growth: Case report 

  127. J. Biophotonics Hamblin 9 1122 2016 10.1002/jbio.201670113 Photobiomodulation or low-level laser therapy 

  128. ACS Nano Lee 12 9587 2018 10.1021/acsnano.8b05568 Trichogenic photostimulation using monolithic flexible vertical Algainp light emitting diodes 

  129. J. Invest. Dermatol. Carrasco 135 2611 2015 10.1038/jid.2015.248 Photoactivation of ROS production in situ transiently activates cell proliferation in mouse skin and in the hair follicle stem cell niche promoting hair growth and wound healing 

  130. Expert Opin. Drug Discov. Santos 10 269 2015 10.1517/17460441.2015.1009892 Drug discovery for alopecia: gone today, hair tomorrow 

  131. Lasers Surg. Med. Lanzafame 45 487 2013 10.1002/lsm.22173 The growth of human scalp hair mediated by visible red light laser and LED sources in males 

  132. J. Dermatol. Sci. Fushimi 64 246 2011 10.1016/j.jdermsci.2011.09.004 Narrow-band red LED light promotes mouse hair growth through paracrine growth factors from dermal papilla 

  133. Lasers Surg. Med. Sheen 47 50 2015 10.1002/lsm.22316 Visible red light enhances physiological anagen entry in vivo and has direct and indirect stimulative effects in vitro 

  134. J. Invest. Dermatol. Carrasco 135 2611 2015 10.1038/jid.2015.248 Photoactivation of ROS production in situ transiently activates cell proliferation in mouse skin and in the hair follicle stem cell niche promoting hair growth and wound healing 

  135. Laser Surg. Med. Avci 45 349 2013 10.1002/lsm.22153 Low-level laser therapy for fat layer reduction: a comprehensive review 

  136. American Board of Cosmetic Surgery, Non-surgical fat reduction, 2019. (Accessed 2019/11/14). https://www.americanboardcosmeticsurgery.org/procedure-learning-center/non-surgical/fat-reduction/. 

  137. Plast. Reconstr. Surg. Neira 110 912 2002 10.1097/01.PRS.0000019876.96703.AE Fat liquefaction: Effect of low-level laser energy on adipose tissue 

  138. PLoS One Chen 6 2011 Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts 

  139. Photomed. Laser Surg. Tafur 26 323 2008 10.1089/pho.2007.2184 Low-intensity light therapy: exploring the role of redox mechanisms 

  140. Lasers Med. Sci. Silva 33 559 2018 10.1007/s10103-017-2408-2 Infrared photobiomodulation (PBM) therapy improves glucose metabolism and intracellular insulin pathway in adipose tissue of high-fat fed mice 

  141. Obes Surg Caruso-Davis 21 722 2011 10.1007/s11695-010-0126-y Efficacy of low-level laser therapy for body contouring and spot fat reduction 

  142. J. Cosmet. Laser Ther. Sasaki 9 87 2007 10.1080/14764170701213439 The effectiveness and safety of topical PhotoActif phosphatidylcholinebased anti-cellulite gel and LED (red and near-infrared) light on Grade II-III thigh cellulite: A randomized, double-blinded study 

  143. Dermatol. Ther. Katz 20 448 2007 10.1111/j.1529-8019.2007.00160.x The new laser liposuction for men 

  144. J. Cosmet. Dermatol. Sadick 7 263 2008 10.1111/j.1473-2165.2008.00404.x A study to determine the efficacy of a novel handheld light-emitting diode device in the treatment of photoaged skin 

  145. Photomed. Laser Surg. Sommer 27 969 2009 10.1089/pho.2009.2547 Green tea and red light-A powerful duo in skin rejuvenation 

  146. Lasers Med. Sci. Kaviani 21 90 2006 10.1007/s10103-006-0380-3 Low-level laser therapy in management of postmastectomy lymphedema 

  147. J. Cosmet. Laser Ther. Paolillo 13 166 2011 10.3109/14764172.2011.594065 New treatment of cellulite with infrared-LED illumination applied during high-intensity treadmill training 

  148. Photomed. Laser Surg. Makihara 23 191 2005 10.1089/pho.2005.23.191 Evaluation of facial thermographic changes before and after low-level laser irradiation 

  149. Lasers Med. Sci. Vanin 33 181 2018 10.1007/s10103-017-2368-6 Photobiomodulation therapy for the improvement of muscular performance and reduction of muscular fatigue associated with exercise in healthy people: a systematic review and meta-analysis 

  150. Laser Surg Med. Sene-Fiorese 47 634 2015 10.1002/lsm.22395 The Potential of Phototherapy to Reduce Body Fat, InsulinResistance and “Metabolic Inflexibility” Related to Obesityin Women Undergoing Weight Loss Treatment, 

  151. J. Dent. Joiner 34 412 2006 10.1016/j.jdent.2006.02.002 The bleaching of teeth: A review of the literature 

  152. J. Appl. Oral Sci. Bizhang 25 575 2017 10.1590/1678-7757-2016-0463 Effectiveness of a new non-hydrogen peroxide bleaching agent after single use - a double-blind placebocontrolled short-term study 

  153. Adv. Healthcare Mater. Prajatelistia 5 919 2016 10.1002/adhm.201500878 Tunicate-inspired gallic acid/metal ion complex for instant and efficient treatment of dentin hypersensitivity 

  154. Clin. Oral Investig. Abouassi 15 673 2011 10.1007/s00784-010-0439-1 Effect of carbamide peroxide and hydrogen peroxide on enamel surface: an in vitro study 

  155. J. Evid. Based Dent. Pract. Carey 14 70 2014 10.1016/j.jebdp.2014.02.006 Tooth whitening: what we now know 

  156. J. Mater. Chem. B Qu 1 4764 2013 10.1039/c3tb21002b Nano-structured gelatin/bioactive glass hybrid scaffolds for the enhancement of odontogenic differentiation of human dental pulp stem cells 

  157. Sci. World J. Moor 2015 2015 Laser teeth bleaching: Evaluation of eventual side effects on enamel and the pulp and the efficiency in vitro and in vivo 

  158. J. Am. Dent. Assoc. Luk 135 194 2004 10.14219/jada.archive.2004.0151 Effect of light energy on peroxide tooth bleaching 

  159. J. Am. Dent. Assoc. Tavares 167 2003 10.14219/jada.archive.2003.0130 Light augments tooth whitening with peroxide 

  160. Laser Phys. Martín 25 2015 10.1088/1054-660X/25/2/025608 Can an LED-laser hybrid light help to decrease hydrogen peroxide concentration while maintaining effectiveness in teeth bleaching? 

  161. 10.1088/1054-660X/26/1/015602 H.B. Dias, E.T. Carrera, J.F. Bortolatto, M.F.d. Andrade, A.N.d.S. Rastelli, LED and low level laser therapy association in tooth bleaching using a novel low concentration H2O2/N-doped TiO2 bleaching agent, Laser Phys. (26) (2016) 015602. 

  162. ACS Biomater. Sci. Eng. Zhang 4 3072 2018 10.1021/acsbiomaterials.8b00548 Blue-Light -Activated Nano-TiO2@PDA for Highly Effective and Nondestructive Tooth Whitening 

  163. Odontology Dionysopoulos 105 320 2017 10.1007/s10266-016-0273-2 Effect of Er, Cr:YSGG laser irradiation on bovine enamel surface during in-office tooth bleaching ex vivo 

  164. Laser Phys. Lett. Bortolatto 10 1 2013 10.1088/1612-2011/10/8/085601 Effects of LED-laser hybrid light on bleaching effectiveness and tooth sensitivity: a randomized clinical study 

  165. Photomed. Laser Surg. Wetter 22 489 2004 10.1089/pho.2004.22.489 Bleaching efficacy of whitening agents activated by xenon lamp and 960-nm diode radiation 

  166. J. Photochem. Photobiol. B, Biol. Yoshida 129 1 2013 10.1016/j.jphotobiol.2013.09.003 M.C.-i. Lee, Reactive oxygen species production in mitochondria of human gingival fibroblast induced by blue light irradiation 

  167. J. Biol. Chem. Godley 280 21061 2005 10.1074/jbc.M502194200 Blue light induces mitochondrial DNA damage and free radical production in epithelial cells 

  168. Eye Youssef 25 1 2011 10.1038/eye.2010.149 Retinal light toxicity 

  169. Int. J. Ophthalmol. Shang 10 191 2017 Light-emitting-diode induced retinal damage and its wavelength dependency in vivo 

  170. Free Radic. Res. Nakanishi-Ueda 47 774 2013 10.3109/10715762.2013.829570 Blue LED light exposure develops intracellular reactive oxygen species, lipid peroxidation, and subsequent cellular injuries in cultured bovine retinal pigment epithelial cells 

  171. J. Biol. Chem. Rózanowska 270 18825 1995 10.1074/jbc.270.32.18825 Blue light-induced reactivity of retinal age pigment 

  172. Acta Ophthalmol. Scand. Algvere 84 4 2006 10.1111/j.1600-0420.2005.00627.x Age-related maculopathy andthe impact of blue light hazard 

  173. Cell Death Differ. Donovan 9 1220 2002 10.1038/sj.cdd.4401105 Caspase-independent photoreceptor apoptosis in vivo and differential expression of apoptotic protease activating factor-1 and caspase-3 during retinal development 

  174. Prog. Retin. Eye Res. Wenzel 24 275 2005 10.1016/j.preteyeres.2004.08.002 Molecular mechanisms of light-induced photoreceptor apoptosis andneuroprotection for retinal degeneration 

  175. Photodermatol. Photoimmunol. Photomed. Runger 24 2 2008 10.1111/j.1600-0781.2008.00319.x Mechanisms of mutation formation with long-wave ultraviolet light (UVA) 

  176. J. Invest. Dermatol. Kappes 126 667 2006 10.1038/sj.jid.5700093 Short- and Long-Wave UV Light (UVB and UVA)Induce Similar Mutations in Human Skin Cells 

  177. J. Photochem. Photobiol. B, Biol. Opländer 103 118 2011 10.1016/j.jphotobiol.2011.02.018 Effects of blue light irradiation on human dermal fibroblasts 

  178. J. Invest. Dermatol. Liebmann 130 259 2009 10.1038/jid.2009.194 Blue-Light Irradiation Regulates Proliferation and Differentiation in Human Skin Cells 

  179. J. Am. Dent. Assoc. Wiggins 135 1471 2004 10.14219/jada.archive.2004.0059 Curing performance ofa new-generationlight-emitting diodedental curing unit 

  180. Biomaterials Lefeuvre 26 5130 2005 10.1016/j.biomaterials.2005.01.014 TEGDMA induces mitochondrial damage and oxidative stress inhuman gingival fibroblasts 

  181. 10.1016/j.biomaterials.2005.10.022 G. Spagnuolo, V. DAntò, C. Cosentino, G. Schmalz, H. Schweikl, SandroRengo, Effect of N-acetyl-l-cysteine on ROS production and cell death caused by HEMA in human primary gingival fibroblasts, Biomaterials 27 (2006) 1803-1809. 

  182. Photomed. Laser Surg. Zalevsky 29 10 655 2011 10.1089/pho.2010.2939 Coherence and speckle in photomedicine and photobiology 

  183. Photomed. Laser Surg. Smith 23 1 78 2005 10.1089/pho.2005.23.78 Laser (and LED) therapy is phototherapy 

  184. J. Biomed. Opt. Zein 23 12 2018 10.1117/1.JBO.23.12.120901 Review of light parameters and photobiomodulation efficacy: dive into complexity 

  185. Adv. Mater. Technol. Jeon 3 1700391 2018 10.1002/admt.201700391 A wearable photobiomodulation patch using a flexible red-wavelength OLED and its in vitro differential cell proliferation effects 

  186. SID Symp. Dig. Tech. Pap. Jeon 49 279 2018 10.1002/sdtp.12526 Wearable photobiomodulation patch using attachable flexible organic light-emitting diodes for human keratinocyte cells 

  187. J. Soc. Inf. Disp. Chen 26 296 2018 10.1002/jsid.650 Flexible quantum dot light-emitting devices for targeted photomedical applications 

  188. Nat. Photonics White 7 811 2013 10.1038/nphoton.2013.188 Ultrathin, highly flexible and stretchable PLEDs 

  189. Sci. Adv. Yokota 2 2016 10.1126/sciadv.1501856 Ultraflexible organic photonic skin 

  190. J. Soc. Inf. Disp. Chen 25 177 2017 10.1002/jsid.543 Quantum dot light emitting devices for photomedical applications 

  191. Nat. Nanotechnol. Son 9 397 2014 10.1038/nnano.2014.38 Multifunctional wearable devices for diagnosis and therapy of movement disorders 

  192. Adv. Mater. Zeng 26 5310 2014 10.1002/adma.201400633 Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications 

  193. Materials Gong 12 3311 2019 10.3390/ma12203311 Wearable fiber optic technology based on smart textile: A review 

  194. Adv. Mater. Xu 30 1800156 2018 10.1002/adma.201800156 Recent advances in biointegrated optoelectronic devices 

  195. Nat. Commun. Yin 7 11573 2016 10.1038/ncomms11573 Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process 

  196. Nat. Energy Jinno 2 780 2017 10.1038/s41560-017-0001-3 Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications 

  197. Light Sci. Appl. Jeon 8 114 2019 10.1038/s41377-019-0221-3 Sandwich-structure transferable free-form OLEDs for wearable and disposable skin wound photomedicine 

  198. Proc. SPIE Hamblin 9309 2015 Low level laser (light) therapy and photobiomodulation: The path forward 

  199. G.W. Cacciola, E.J.M. Paulussen, J. Meeusen, G.W.M. Kok, G.M. Calon, G. Zhuo, L.V. Pieterson, C. Mutter, Flexible light therapy device, a plaster and a bandage United States 2013. 

  200. Sci. Rep. Choi 7 6424 2017 10.1038/s41598-017-06733-8 Highly flexible and efcient fabricbased organic light-emitting devices for clothing-shaped wearable displays 

  201. Biomed. Opt. Express Shen 4 2925 2013 10.1364/BOE.4.002925 Luminous fabric devices for wearable low-level light therapy 

  202. Nat. Med. Evans 15 713 2009 10.1038/nm0709-713a High-tech bandages lighten the load of light therapy 

  203. Adv. Electron. Mater. Kim 2 1600220 2016 10.1002/aelm.201600220 Reliable actual fabric-based organic light-emitting diodes: Toward a wearable display 

  204. Mol. Cryst. Liq. Cryst. Min 563 159 2012 10.1080/15421406.2012.689153 An OLED Using Cellulose Paper as a Flexible Substrate 

  205. Adv. Mater. Jin 28 5169 2016 10.1002/adma.201600336 Chitin nanofi ber transparent paper for flexible green electronics 

  206. 10.1109/ICCD.2016.7753345 A. Azim, S. Fischmeister, Efficient mode changes in multi-mode systems, International Conference on Computer Design, IEEE, Scottsdale, AZ, USA, 2016, pp. 592-599. 

  207. Lasers Med. Sci. Brancaleon 17 173 2002 10.1007/s101030200027 Laser and non-laser light sources for photodynamic therapy 

  208. Kaohsiung J. Med. Sci. Wu 24 4 180 2008 10.1016/S1607-551X(08)70115-3 Low-energy helium-neon laser therapy induces repigmentation and improves the abnormalities of cutaneous microcirculation in segmental-type vitiligo lesions 

  209. J. Dermatol. Treat. Morton 16 219 2005 10.1080/09546630500283664 An open study to determine the efficacy of blue light in the treatment of mild to moderate acne 

  210. Lasers Surg. Med. Weiss 37 2 2005 10.1002/lsm.20199 Our approach to non-ablative treatment of photoaging 

  211. Mitochondrion Eells 4 559 2004 10.1016/j.mito.2004.07.033 Mitochondrial signal transduction in accelerated wound and retinalhealing by near-infrared light therapy 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로