$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] The strain-smoothed 4-node quadrilateral finite element

Computer methods in applied mechanics and engineering, v.373, 2021년, pp.113481 -   

Lee, Chaemin (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ,  Kim, San (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ,  Lee, Phill-Seung (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)

Abstract AI-Helper 아이콘AI-Helper

Abstract Recently, the strain-smoothed element (SSE) method has been developed for 3-node triangular and 4-node tetrahedral solid elements. The method was also applied for enhancing the membrane performance of a 3-node triangular shell element (MITC3+ element). Using the SSE method, convergence beh...

Keyword

참고문헌 (62)

  1. Bathe 2016 Finite Element Procedures 

  2. Hughes 2000 The Finite Element Method: Linear Static and Dynamic Finite Element Analysis 

  3. Cook 2007 Concepts and Applications of Finite Element Analysis 

  4. Internat. J. Numer. Methods Engrg. Babu?ka 40 727 1997 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N The partition of unity method 

  5. Internat. J. Numer. Methods Engrg. Fries 84 253 2010 10.1002/nme.2914 The extended/generalized finite element method: An overview of the method and its applications 

  6. Internat. J. Numer. Methods Engrg. Belytschko 45 601 1999 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S Elastic crack growth in finite elements with minimal remeshing 

  7. Internat. J. Numer. Methods Engrg. Moes 46 131 1999 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J A finite element method for crack growth without remeshing 

  8. Internat. J. Numer. Methods Engrg. Daux 48 1741 2000 10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L Arbitrary branched and intersecting cracks with the extended finite element method 

  9. Comput. Struct. Ham 94-95 1 2012 10.1016/j.compstruc.2012.01.001 A finite element method enriched for wave propagation problems 

  10. Comput. Struct. Kim 116 35 2013 10.1016/j.compstruc.2012.10.001 The finite element method enriched by interpolation covers 

  11. Comput. Struct. Jeon 134 128 2014 10.1016/j.compstruc.2013.12.003 The MITC3 shell finite element enriched by interpolation covers 

  12. Comput. Methods Appl. Mech. Engrg. Jun 337 458 2018 10.1016/j.cma.2018.04.007 The MITC3+ shell element enriched in membrane displacements by interpolation covers 

  13. Comput. Struct. Kim 202 25 2018 10.1016/j.compstruc.2018.03.001 A new enriched 4-node 2D solid finite element free from the linear dependence problem 

  14. Comput. Struct. Kim 216 40 2019 10.1016/j.compstruc.2018.12.002 New enriched 3D solid finite elements: 8-node hexahedral, 6-node prismatic, and 5-node pyramidal elements 

  15. Internat. J. Numer. Methods Engrg. Chen 53 2587 2001 10.1002/nme.338 A stabilized conforming nodal integration for Galerkin mesh-free methods 

  16. Commun. Numer. Methods. Eng. Bonet 17 551 2001 10.1002/cnm.429 An averaged nodal deformation gradient linear tetrahedral element for large strain explicit dynamic applications 

  17. Comput. Mech. Liu 39 859 2007 10.1007/s00466-006-0075-4 A smoothed finite element method for mechanics problems 

  18. Comput. Methods Appl. Mech. Engrg. Nguyen-Thanh 198 165 2008 10.1016/j.cma.2008.05.029 A smoothed finite element method for shell analysis 

  19. Comput. Struct. Bordas 88 1419 2010 10.1016/j.compstruc.2008.07.006 Strain smoothing in FEM and XFEM 

  20. Comput. Methods Appl. Mech. Engrg. Sohn 254 42 2013 10.1016/j.cma.2012.10.014 A finite element scheme with the aid of a new carving technique combined with smoothed integration 

  21. Comput. Methods Appl. Mech. Engrg. Phung-Van 270 15 2014 10.1016/j.cma.2013.11.019 Geometrically nonlinear analysis of functionally graded plates using a cell-based smoothed three-node plate element (CS-MIN3) based on the C0-HSDT 

  22. Comput. Methods Appl. Mech. Engrg. Jin 304 217 2016 10.1016/j.cma.2016.02.019 Node-to-node scheme for three-dimensional contact mechanics using polyhedral type variable-node elements 

  23. Comput. Methods Appl. Mech. Engrg. Hamrani 315 671 2017 10.1016/j.cma.2016.11.017 CS-IGA: A new cell-based smoothed isogeometric analysis for 2D computational mechanics problems 

  24. Comput. Struct. Liu 87 14 2009 10.1016/j.compstruc.2008.09.003 A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems 

  25. Comput. Methods Appl. Mech. Engrg. Nguyen-Thoi 199 3005 2010 10.1016/j.cma.2010.06.017 A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes 

  26. Comput. Methods Appl. Mech. Engrg. Wang 297 348 2015 10.1016/j.cma.2015.09.005 A stable node-based smoothed finite element method for acoustic problems 

  27. J. Sound Vib. Liu 320 1100 2009 10.1016/j.jsv.2008.08.027 An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids 

  28. Comput. Methods Appl. Mech. Engrg. He 199 20 2009 10.1016/j.cma.2009.09.014 An edge-based smoothed finite element method (ES-FEM) for analyzing three-dimensional acoustic problems 

  29. Internat. J. Numer. Methods Engrg. Nguyen-Thoi 78 324 2009 10.1002/nme.2491 A face-based smoothed finite element method (FS-FEM) for 3D linear and geometrically non-linear solid mechanics problems using 4-node tetrahedral elements 

  30. Comput. Methods Appl. Mech. Engrg. Nguyen-Thoi 198 3479 2009 10.1016/j.cma.2009.07.001 A face-based smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh 

  31. Int. J. Numer. Methods Biomed. Eng. Nguyen-Thoi 27 1446 2011 10.1002/cnm.1291 An n-sided polygonal edge-based smoothed finite element method (nES-FEM) for solid mechanics 

  32. Comput. Methods Appl. Mech. Engrg. Chen 209-212 250 2012 10.1016/j.cma.2011.08.013 Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth 

  33. Comput. Methods Appl. Mech. Engrg. Nguyen-Xuan 253 252 2013 10.1016/j.cma.2012.07.017 An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order 

  34. Finite Elem. Anal. Des. Shin 86 71 2014 10.1016/j.finel.2014.04.002 Development of a strain-smoothed three-node triangular flat shell element with drilling degrees of freedom 

  35. Internat. J. Numer. Methods Engrg. Lee 110 1069 2017 10.1002/nme.5449 Polyhedral elements by means of node/edge-based smoothed finite element method 

  36. Comput. Mech. Lee 60 659 2017 10.1007/s00466-017-1433-0 Polyhedral elements using an edge-based smoothed finite element method for nonlinear elastic deformations of compressible and nearly incompressible materials 

  37. Comput. Struct. Payen 112-113 311 2012 10.1016/j.compstruc.2012.07.006 A stress improvement procedure 

  38. Comput. Methods Appl. Mech. Engrg. Lee 341 939 2018 10.1016/j.cma.2018.07.022 A new strain smoothing method for triangular and tetrahedral finite elements 

  39. Comput. Struct. Lee 223 2019 10.1016/j.compstruc.2019.07.005 The strain-smoothed MITC3+ shell finite element 

  40. Comput. Struct. Lee 138 12 2014 10.1016/j.compstruc.2014.02.005 The MITC3+ shell element and its performance 

  41. Comput. Struct. Ko 182 404 2017 10.1016/j.compstruc.2016.11.004 A new MITC4+ shell element 

  42. Internat. J. Numer. Methods Engrg. Onate 59 1473 2004 10.1002/nme.922 Finite calculus formulation for incompressible solids using linear triangles and tetrahedra 

  43. Internat. J. Numer. Methods Engrg. Onate 87 171 2011 10.1002/nme.3021 Consistent pressure Laplacian stabilization for incompressible continua via higher-order finite calculus 

  44. Numer. Math. Lamichhane 104 151 2006 10.1007/s00211-006-0014-5 Convergence in the incompressible limit of finite element approximations based on the Hu-Washizu formulation 

  45. Internat. J. Numer. Methods Engrg. Krysl 102 437 2015 10.1002/nme.4721 Mean-strain eight-node hexahedron with stabilization by energy sampling 

  46. Finite Elem. Anal. Des. Krysl 108 41 2016 10.1016/j.finel.2015.09.008 Mean-strain 8-node hexahedron with optimized energy-sampling stabilization 

  47. Comput. Struct. Ko 192 34 2017 10.1016/j.compstruc.2017.07.003 A new 4-node MITC element for analysis of two-dimensional solids and its formulation in a shell element 

  48. Comput. Struct. Jeon 146 91 2015 10.1016/j.compstruc.2014.09.004 The MITC3+ shell element in geometric nonlinear analysis 

  49. Comput. Struct. Ko 185 1 2017 10.1016/j.compstruc.2017.01.015 The MITC4+ shell element in geometric nonlinear analysis 

  50. Comput. Methods Appl. Mech. Engrg. Yoon 281 106 2014 10.1016/j.cma.2014.07.023 Nonlinear performance of continuum mechanics based beam elements focusing on large twisting behaviors 

  51. Wilson 1973 Numerical and Computer Methods in Structural Mechanics Incompatible displacement models 

  52. Finite Elem. Anal. Des. Wilson 7 229 1990 10.1016/0168-874X(90)90034-C Use of incompatible displacement modes for the calculation of element stiffnesses or stresses 

  53. Commun. Appl. Numer. Methods Ibrahimbegovic 7 187 1991 10.1002/cnm.1630070303 A modified method of incompatible modes 

  54. Ibrahimbegovic 2009 Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods 

  55. Intel Math Kernel Library, http://software.intel.com/en-us/intel-mkl. 

  56. Timoshenko 1970 Theory of Elasticity 

  57. Comput. Struct. Hiller 81 639 2003 10.1016/S0045-7949(03)00010-5 Measuring convergence of mixed finite element discretizations: An application to shell structures 

  58. Comput. Struct. Bathe 89 285 2011 10.1016/j.compstruc.2010.09.007 Measuring the convergence behavior of shell analysis schemes 

  59. Comput. Math. Appl. Li 77 441 2019 10.1016/j.camwa.2018.09.047 An element-free smoothed radial point interpolation method (EFS-RPIM) for 2D and 3D solid mechanics problems 

  60. Chapelle 2010 The Finite Element Analysis of Shells-Fundamentals 

  61. Internat. J. Numer. Methods Engrg. Bucalem 36 3729 1993 10.1002/nme.1620362109 Higher-order MITC general shell elements 

  62. R.W. Clough, C.A. Felippa, A refined quadrilateral element for analysis of plate bending, in: Proceedings of Second Conference on Matrix Methods in Structural Mechanics, AFFDL-TR-68-150, 1969, pp. 399-440. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로