최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Computer methods in applied mechanics and engineering, v.373, 2021년, pp.113481 -
Lee, Chaemin (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) , Kim, San (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) , Lee, Phill-Seung (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
Abstract Recently, the strain-smoothed element (SSE) method has been developed for 3-node triangular and 4-node tetrahedral solid elements. The method was also applied for enhancing the membrane performance of a 3-node triangular shell element (MITC3+ element). Using the SSE method, convergence beh...
Bathe 2016 Finite Element Procedures
Hughes 2000 The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
Cook 2007 Concepts and Applications of Finite Element Analysis
Internat. J. Numer. Methods Engrg. Babu?ka 40 727 1997 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N The partition of unity method
Internat. J. Numer. Methods Engrg. Fries 84 253 2010 10.1002/nme.2914 The extended/generalized finite element method: An overview of the method and its applications
Internat. J. Numer. Methods Engrg. Belytschko 45 601 1999 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S Elastic crack growth in finite elements with minimal remeshing
Internat. J. Numer. Methods Engrg. Moes 46 131 1999 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J A finite element method for crack growth without remeshing
Internat. J. Numer. Methods Engrg. Daux 48 1741 2000 10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L Arbitrary branched and intersecting cracks with the extended finite element method
Comput. Struct. Ham 94-95 1 2012 10.1016/j.compstruc.2012.01.001 A finite element method enriched for wave propagation problems
Comput. Struct. Kim 116 35 2013 10.1016/j.compstruc.2012.10.001 The finite element method enriched by interpolation covers
Comput. Struct. Jeon 134 128 2014 10.1016/j.compstruc.2013.12.003 The MITC3 shell finite element enriched by interpolation covers
Comput. Methods Appl. Mech. Engrg. Jun 337 458 2018 10.1016/j.cma.2018.04.007 The MITC3+ shell element enriched in membrane displacements by interpolation covers
Comput. Struct. Kim 202 25 2018 10.1016/j.compstruc.2018.03.001 A new enriched 4-node 2D solid finite element free from the linear dependence problem
Comput. Struct. Kim 216 40 2019 10.1016/j.compstruc.2018.12.002 New enriched 3D solid finite elements: 8-node hexahedral, 6-node prismatic, and 5-node pyramidal elements
Internat. J. Numer. Methods Engrg. Chen 53 2587 2001 10.1002/nme.338 A stabilized conforming nodal integration for Galerkin mesh-free methods
Commun. Numer. Methods. Eng. Bonet 17 551 2001 10.1002/cnm.429 An averaged nodal deformation gradient linear tetrahedral element for large strain explicit dynamic applications
Comput. Mech. Liu 39 859 2007 10.1007/s00466-006-0075-4 A smoothed finite element method for mechanics problems
Comput. Methods Appl. Mech. Engrg. Nguyen-Thanh 198 165 2008 10.1016/j.cma.2008.05.029 A smoothed finite element method for shell analysis
Comput. Struct. Bordas 88 1419 2010 10.1016/j.compstruc.2008.07.006 Strain smoothing in FEM and XFEM
Comput. Methods Appl. Mech. Engrg. Sohn 254 42 2013 10.1016/j.cma.2012.10.014 A finite element scheme with the aid of a new carving technique combined with smoothed integration
Comput. Methods Appl. Mech. Engrg. Phung-Van 270 15 2014 10.1016/j.cma.2013.11.019 Geometrically nonlinear analysis of functionally graded plates using a cell-based smoothed three-node plate element (CS-MIN3) based on the C0-HSDT
Comput. Methods Appl. Mech. Engrg. Jin 304 217 2016 10.1016/j.cma.2016.02.019 Node-to-node scheme for three-dimensional contact mechanics using polyhedral type variable-node elements
Comput. Methods Appl. Mech. Engrg. Hamrani 315 671 2017 10.1016/j.cma.2016.11.017 CS-IGA: A new cell-based smoothed isogeometric analysis for 2D computational mechanics problems
Comput. Struct. Liu 87 14 2009 10.1016/j.compstruc.2008.09.003 A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems
Comput. Methods Appl. Mech. Engrg. Nguyen-Thoi 199 3005 2010 10.1016/j.cma.2010.06.017 A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes
Comput. Methods Appl. Mech. Engrg. Wang 297 348 2015 10.1016/j.cma.2015.09.005 A stable node-based smoothed finite element method for acoustic problems
J. Sound Vib. Liu 320 1100 2009 10.1016/j.jsv.2008.08.027 An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids
Comput. Methods Appl. Mech. Engrg. He 199 20 2009 10.1016/j.cma.2009.09.014 An edge-based smoothed finite element method (ES-FEM) for analyzing three-dimensional acoustic problems
Internat. J. Numer. Methods Engrg. Nguyen-Thoi 78 324 2009 10.1002/nme.2491 A face-based smoothed finite element method (FS-FEM) for 3D linear and geometrically non-linear solid mechanics problems using 4-node tetrahedral elements
Comput. Methods Appl. Mech. Engrg. Nguyen-Thoi 198 3479 2009 10.1016/j.cma.2009.07.001 A face-based smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh
Int. J. Numer. Methods Biomed. Eng. Nguyen-Thoi 27 1446 2011 10.1002/cnm.1291 An n-sided polygonal edge-based smoothed finite element method (nES-FEM) for solid mechanics
Comput. Methods Appl. Mech. Engrg. Chen 209-212 250 2012 10.1016/j.cma.2011.08.013 Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth
Comput. Methods Appl. Mech. Engrg. Nguyen-Xuan 253 252 2013 10.1016/j.cma.2012.07.017 An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order
Finite Elem. Anal. Des. Shin 86 71 2014 10.1016/j.finel.2014.04.002 Development of a strain-smoothed three-node triangular flat shell element with drilling degrees of freedom
Internat. J. Numer. Methods Engrg. Lee 110 1069 2017 10.1002/nme.5449 Polyhedral elements by means of node/edge-based smoothed finite element method
Comput. Mech. Lee 60 659 2017 10.1007/s00466-017-1433-0 Polyhedral elements using an edge-based smoothed finite element method for nonlinear elastic deformations of compressible and nearly incompressible materials
Comput. Struct. Payen 112-113 311 2012 10.1016/j.compstruc.2012.07.006 A stress improvement procedure
Comput. Methods Appl. Mech. Engrg. Lee 341 939 2018 10.1016/j.cma.2018.07.022 A new strain smoothing method for triangular and tetrahedral finite elements
Comput. Struct. Lee 223 2019 10.1016/j.compstruc.2019.07.005 The strain-smoothed MITC3+ shell finite element
Comput. Struct. Lee 138 12 2014 10.1016/j.compstruc.2014.02.005 The MITC3+ shell element and its performance
Comput. Struct. Ko 182 404 2017 10.1016/j.compstruc.2016.11.004 A new MITC4+ shell element
Internat. J. Numer. Methods Engrg. Onate 59 1473 2004 10.1002/nme.922 Finite calculus formulation for incompressible solids using linear triangles and tetrahedra
Internat. J. Numer. Methods Engrg. Onate 87 171 2011 10.1002/nme.3021 Consistent pressure Laplacian stabilization for incompressible continua via higher-order finite calculus
Numer. Math. Lamichhane 104 151 2006 10.1007/s00211-006-0014-5 Convergence in the incompressible limit of finite element approximations based on the Hu-Washizu formulation
Internat. J. Numer. Methods Engrg. Krysl 102 437 2015 10.1002/nme.4721 Mean-strain eight-node hexahedron with stabilization by energy sampling
Finite Elem. Anal. Des. Krysl 108 41 2016 10.1016/j.finel.2015.09.008 Mean-strain 8-node hexahedron with optimized energy-sampling stabilization
Comput. Struct. Ko 192 34 2017 10.1016/j.compstruc.2017.07.003 A new 4-node MITC element for analysis of two-dimensional solids and its formulation in a shell element
Comput. Struct. Jeon 146 91 2015 10.1016/j.compstruc.2014.09.004 The MITC3+ shell element in geometric nonlinear analysis
Comput. Struct. Ko 185 1 2017 10.1016/j.compstruc.2017.01.015 The MITC4+ shell element in geometric nonlinear analysis
Comput. Methods Appl. Mech. Engrg. Yoon 281 106 2014 10.1016/j.cma.2014.07.023 Nonlinear performance of continuum mechanics based beam elements focusing on large twisting behaviors
Wilson 1973 Numerical and Computer Methods in Structural Mechanics Incompatible displacement models
Finite Elem. Anal. Des. Wilson 7 229 1990 10.1016/0168-874X(90)90034-C Use of incompatible displacement modes for the calculation of element stiffnesses or stresses
Commun. Appl. Numer. Methods Ibrahimbegovic 7 187 1991 10.1002/cnm.1630070303 A modified method of incompatible modes
Ibrahimbegovic 2009 Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods
Intel Math Kernel Library, http://software.intel.com/en-us/intel-mkl.
Timoshenko 1970 Theory of Elasticity
Comput. Struct. Hiller 81 639 2003 10.1016/S0045-7949(03)00010-5 Measuring convergence of mixed finite element discretizations: An application to shell structures
Comput. Struct. Bathe 89 285 2011 10.1016/j.compstruc.2010.09.007 Measuring the convergence behavior of shell analysis schemes
Comput. Math. Appl. Li 77 441 2019 10.1016/j.camwa.2018.09.047 An element-free smoothed radial point interpolation method (EFS-RPIM) for 2D and 3D solid mechanics problems
Chapelle 2010 The Finite Element Analysis of Shells-Fundamentals
Internat. J. Numer. Methods Engrg. Bucalem 36 3729 1993 10.1002/nme.1620362109 Higher-order MITC general shell elements
R.W. Clough, C.A. Felippa, A refined quadrilateral element for analysis of plate bending, in: Proceedings of Second Conference on Matrix Methods in Structural Mechanics, AFFDL-TR-68-150, 1969, pp. 399-440.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.