$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Dysregulation of Rho GTPases in Human Cancers 원문보기

Cancers, v.12 no.5, 2020년, pp.1179 -   

Jung, Haiyoung (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea) ,  Yoon, Suk Ran (haiyoung@kribb.re.kr (H.J.)) ,  Lim, Jeewon (sryoon@kribb.re.kr (S.R.Y.)) ,  Cho, Hee Jun (ljw8796@kribb.re.kr (J.L.)) ,  Lee, Hee Gu (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea)

Abstract AI-Helper 아이콘AI-Helper

Rho GTPases play central roles in numerous cellular processes, including cell motility, cell polarity, and cell cycle progression, by regulating actin cytoskeletal dynamics and cell adhesion. Dysregulation of Rho GTPase signaling is observed in a broad range of human cancers, and is associated with ...

Keyword

참고문헌 (153)

  1. 1. Hodge R.G. Ridley A.J. Regulating Rho GTPases and their regulators Nat. Rev. Mol. Cell. Biol. 2016 17 496 510 10.1038/nrm.2016.67 27301673 

  2. 2. Schmidt A. Hall A. Guanine nucleotide exchange factors for Rho GTPases: Turning on the switch Genes Dev. 2002 16 1587 1609 10.1101/gad.1003302 12101119 

  3. 3. Moon S.Y. Zheng Y. Rho GTPase-activation proteins in cell regulation Trends Cell Biol. 2003 13 13 22 10.1016/S0962-8924(02)00004-1 12480336 

  4. 4. Cho H.J. Kim J. Baek K.E. Kim B. Lee H.G. Regulation of Rho GTPases by RhoGDIs in Human Cancers Cells 2019 8 1037 10.3390/cells8091037 31492019 

  5. 5. Etienne-Manneville S. Hall A. RhoGTPases in cell biology Nature 2002 420 629 635 10.1038/nature01148 12478284 

  6. 6. Svensmark J.H. Brakebusch C. Rho GTPases in cancer: Friend or foe? Oncogene 2019 38 7447 7456 10.1038/s41388-019-0963-7 31427738 

  7. 7. Haga R.B. Ridley A.J. Rho GTPases: Regulation and roles in cancer cell biology Small GTPases 2016 7 207 221 10.1080/21541248.2016.1232583 27628050 

  8. 8. Heasman S.J. Ridley A.J. Mammalian Rho GTPases: New insights into their functions from in vivo studies Nat. Rev. Mol. Cell Biol. 2008 9 690 701 10.1038/nrm2476 18719708 

  9. 9. Rossman K.L. Der C.J. Sondek J. GEF means go: Turning on RHO GTPases with guanine nucleotide-exchange factors Nat. Rev. Mol. Cell Biol. 2005 6 167 180 10.1038/nrm1587 15688002 

  10. 10. Dransart E. Olofsson B. Cherfils J. RhoGDIs revisited: Novel roles in Rho regulation Traffic 2005 6 957 966 10.1111/j.1600-0854.2005.00335.x 16190977 

  11. 11. Golding A.E. Visco I. Bieling P. Bement W.M. Extraction of active RhoGTPases by RhoGDI regulates spatiotemporal patterning of RhoGTPases eLife 2019 8 e50471 10.7554/eLife.50471 31647414 

  12. 12. Boulter E. Garcia-Mata R. Guilluy C. Dubash A. Rossi G. Brennwald P.J. Burridge K. Regulation of RhoGTPase crosstalk, degradation and activity by RhoGDI1 Nat. Cell Biol. 2010 12 477 483 10.1038/ncb2049 20400958 

  13. 13. Cho H.J. Baek K.E. Yoo J. RhoGDI2 as a therapeutic target in cancer Expert Opin. Ther. Targets 2010 14 67 75 10.1517/14728220903449251 20001211 

  14. 14. Mouly L. Gilhodes J. Lemarie A. Cohen-Jonathan Moyal E. Toulas C. Favre G. Sordet O. Monferran S. The RND1 Small GTPase: Main Functions and Emerging Role in Oncogenesis Int. J. Mol. Sci. 2019 20 3612 10.3390/ijms20153612 31344837 

  15. 15. Ji W. Rivero F. Atypical Rho GTPases of the RhoBTB Subfamily: Roles in Vesicle Trafficking and Tumorigenesis Cells 2016 5 28 10.3390/cells5020028 27314390 

  16. 16. Aspenstrom P. Ruusala A. Pacholsky D. Taking Rho GTPases to the next level: The cellular functions of atypical Rho GTPases Exp. Cell. Res. 2007 313 3673 3679 10.1016/j.yexcr.2007.07.022 17850788 

  17. 17. Hodge R.G. Ridley A.J. Regulation and functions of RhoU and RhoV Small GTPases 2020 11 8 15 10.1080/21541248.2017.1362495 29189096 

  18. 18. Gad A.K. Aspenstrom P. Rif proteins take to the RhoD: Rho GTPases at the crossroads of actin dynamics and membrane trafficking Cell Signal 2010 22 183 189 10.1016/j.cellsig.2009.10.001 19818399 

  19. 19. Chardin P. Function and regulation of Rnd proteins Nat. Rev. Mol. Cell Biol. 2006 7 54 62 10.1038/nrm1788 16493413 

  20. 20. Aspenstrom P. Activated Rho GTPases in Cancer-The Beginning of a New Paradigm Int. J. Mol. Sci. 2018 19 3949 10.3390/ijms19123949 

  21. 21. Lang P. Gesbert F. Delespine-Carmagnat M. Stancou R. Pouchelet M. Bertoglio J. Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes EMBO J. 1996 15 510 519 10.1002/j.1460-2075.1996.tb00383.x 8599934 

  22. 22. Tkachenko E. Sabouri-Ghomi M. Pertz O. Kim C. Gutierrez E. Machacek M. Groisman A. Danuser G. Ginsberg M.H. Protein kinase A governs a RhoA-RhoGDI protrusion-retraction pacemaker in migrating cells Nat. Cell Biol. 2011 13 660 667 10.1038/ncb2231 21572420 

  23. 23. Sauzeau V. Le Jeune H. Cario-Toumaniantz C. Smolenski A. Lohmann S.M. Bertoglio J. Chardin P. Pacaud P. Loirand G. Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca 2+ sensitization of contraction in vascular smooth muscle J. Biol. Chem. 2000 275 21722 21729 10.1074/jbc.M000753200 10783386 

  24. 24. Rolli-Derkinderen M. Sauzeau V. Boyer L. Lemichez E. Baron C. Henrion D. Loirand G. Pacaud P. Phosphorylation of serine 188 protects RhoA from ubiquitin/proteasome-mediated degradation in vascular smooth muscle cells Circ. Res. 2005 96 1152 1160 10.1161/01.RES.0000170084.88780.ea 15890975 

  25. 25. Liu J. Li S. Chen S. Chen S. Geng Q. Xu D. c-Met-dependent phosphorylation of RhoA plays a key role in gastric cancer tumorigenesis J. Pathol. 2019 249 126 136 10.1002/path.5287 31056743 

  26. 26. Tong J. Li L. Ballermann B. Wang Z. Phosphorylation of Rac1 T108 by extracellular signal-regulated kinase in response to epidermal growth factor: A novel mechanism to regulate Rac1 function Mol. Cell Biol. 2013 33 4538 4551 10.1128/MCB.00822-13 24043306 

  27. 27. Chang F. Lemmon C. Lietha D. Eck M. Romer L. Tyrosine phosphorylation of Rac1: A role in regulation of cell spreading PLoS ONE 2011 6 e28587 10.1371/journal.pone.0028587 22163037 

  28. 28. Kwon T. Kwon D.Y. Chun J. Kim J.H. Kang S.S. Akt protein kinase inhibits Rac1-GTP binding through phosphorylation at serine 71 of Rac1 J. Biol. Chem. 2000 275 423 428 10.1074/jbc.275.1.423 10617634 

  29. 29. Tu S. Wu W.J. Wang J. Cerione R.A. Epidermal Growth Factor-dependent Regulation of Cdc42 Is Mediated by the Src Tyrosine Kinase J. Biol. Chem. 2003 278 49293 49300 10.1074/jbc.M307021200 14506284 

  30. 30. Forget M.A. Desrosiers R.R. Gingras D. Beliveau R. Phosphorylation states of Cdc42 and RhoA regulate their interactions with Rho GDP dissociation inhibitor and their extraction from biological membranes Biochem. J. 2002 361 243 254 10.1042/bj3610243 11772396 

  31. 31. Ozdamar B. Bose R. Barrios-Rodiles M. Wang H.R. Zhang Y. Wrana J.L. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity Science 2005 307 1603 1609 10.1126/science.1105718 15761148 

  32. 32. Wei J. Mialki R.K. Dong S. Khoo A. Mallampalli R.K. Zhao Y. Zhao J. A new mechanism of RhoA ubiquitination and degradation: Roles of SCF(FBXL19) E3 ligase and Erk2 Biochim. Biophys. Acta 2013 1833 2757 2764 10.1016/j.bbamcr.2013.07.005 23871831 

  33. 33. Chen Y. Yang Z. Meng M. Zhao Y. Dong N. Yan H. Liu L. Ding M. Peng H.B. Shao F. Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement Mol. Cell 2009 35 841 855 10.1016/j.molcel.2009.09.004 19782033 

  34. 34. Oberoi T.K. Dogan T. Hocking J.C. Scholz R.P. Mooz J. Anderson C.L. Karreman C. Meyer zu Heringdorf D. Schmidt G. Ruonala M. IAPs regulate the plasticity of cell migration by directly targeting Rac1 for degradation EMBO J. 2012 31 14 28 10.1038/emboj.2011.423 22117219 

  35. 35. Torrino S. Visvikis O. Doye A. Boyer L. Stefani C. Munro P. Bertoglio J. Gacon G. Mettouchi A. Lemichez E. The E3 ubiquitin-ligase HACE1 catalyzes the ubiquitylation of active Rac1 Dev. Cell 2011 21 959 965 10.1016/j.devcel.2011.08.015 22036506 

  36. 36. Zhao J. Mialki R.K. Wei J. Coon T.A. Zou C. Chen B.B. Mallampalli R.K. Zhao Y. SCF E3 ligase F-box protein complex SCF(FBXL19) regulates cell migration by mediating Rac1 ubiquitination and degradation FASEB J. 2013 27 2611 2619 10.1096/fj.12-223099 23512198 

  37. 37. Lerm M. Schmidt G. Goehring U.M. Schirmer J. Aktories K. Identification of the region of rho involved in substrate recognition by Escherichia coli cytotoxic necrotizing factor 1 (CNF1) J. Biol. Chem. 1999 274 28999 29004 10.1074/jbc.274.41.28999 10506148 

  38. 38. Yarbrough M.L. Li Y. Kinch L.N. Grishin N.V. Ball H.L. Orth K. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling Science 2009 323 269 272 10.1126/science.1166382 19039103 

  39. 39. Castillo-Lluva S. Tatham M.H. Jones R.C. Jaffray E.G. Edmondson R.D. Hay R.T. Malliri A. SUMOylation of the GTPase Rac1 is required for optimal cell migration Nat. Cell Biol. 2010 12 1078 1085 10.1038/ncb2112 20935639 

  40. 40. Yue X. Zhang C. Zhao Y. Liu J. Lin A.W. Tan V.M. Drake J.M. Liu L. Boateng M.N. Li J. Gain-of-function mutant p53 activates small GTPase Rac1 through SUMOylation to promote tumor progression Genes Dev. 2017 31 1641 1654 10.1101/gad.301564.117 28947497 

  41. 41. Katayama M. Kawata M. Yoshida Y. Horiuchi H. Yamamoto T. Matsuura Y. Takai Y. The posttranslationally modified C-terminal structure of bovine aortic smooth muscle rhoA p21 J. Biol. Chem. 1991 266 12639 12645 1905729 

  42. 42. Adamson P. Marshall C.J. Hall A. Tilbrook P.A. Post-translational modifications of p21rho proteins J. Biol. Chem. 1992 267 20033 20038 1400319 

  43. 43. Keep N.H. Barnes M. Barsukov I. Badii R. Lian L.Y. Segal A.W. Moody P.C. Roberts G.C. A modulator of rho family G proteins, rhoGDI, binds these G proteins via an immunoglobulin-like domain and a flexible N-terminal arm Structure 1997 5 623 633 10.1016/S0969-2126(97)00218-9 9195882 

  44. 44. Gosser Y.Q. Nomanbhoy T.K. Aghazadeh B. Manor D. Combs C. Cerione R.A. Rosen M.K. C-terminal binding domain of Rho GDP-dissociation inhibitor directs N-terminal inhibitory peptide to GTPases Nature 1997 387 814 819 10.1038/42961 9194563 

  45. 45. Linder M.E. Deschenes R. Palmitoylation: Policing protein stability and traffic Nat. Rev. Mol. Cell Biol. 2007 8 74 84 10.1038/nrm2084 17183362 

  46. 46. Berzat A.C. Buss J.E. Chenette E.J. Weinbaum C.A. Shutes A. Der C.J. Minden A. Cox A.D. Transforming activity of the Rho family GTPase, Wrch-1, a Wnt-regulated Cdc42 homolog, is dependent on a novel carboxyl-terminal palmitoylation motif J. Biol. Chem. 2005 280 33055 33065 10.1074/jbc.M507362200 16046391 

  47. 47. Chenette E.J. Mitin N.Y. Der C.J. Multiple sequence elements facilitate Chp Rho GTPase subcellular location, membrane association, and transforming activity Mol. Biol. Cell 2006 17 3108 3121 10.1091/mbc.e05-09-0896 16641371 

  48. 48. Alan J.K. Berzat A.C. Dewar B.J. Graves L.M. Cox A.D. Regulation of the Rho family small GTPase Wrch-1/RhoU by C-terminal tyrosine phosphorylation requires Src Mol. Cell Biol. 2010 30 4324 4338 10.1128/MCB.01646-09 20547754 

  49. 49. Riento K. Totty N. Villalonga P. Garg R. Guasch R. Ridley A.J. RhoE function is regulated by ROCK I-mediated phosphorylation EMBO J. 2005 24 1170 1180 10.1038/sj.emboj.7600612 15775972 

  50. 50. Madigan J.P. Bodemann B.O. Brady D.C. Dewar B.J. Keller P.J. Leitges M. Philips M.R. Ridley A.J. Der C.J. Cox A.D. Regulation of Rnd3 localization and function by protein kinase C alpha-mediated phosphorylation Biochem. J. 2009 424 153 161 10.1042/BJ20082377 19723022 

  51. 51. Riou P. Kjær S. Garg R. Purkiss A. George R. Cain R.J. Bineva G. Reymond N. McColl B. Thompson A.J. 14-3-3 proteins interact with a hybrid prenyl-phosphorylation motif to inhibit G proteins Cell 2013 153 640 653 10.1016/j.cell.2013.03.044 23622247 

  52. 52. De la Vega M. Burrows J.F. Johnston J.A. Ubiquitination: Added complexity in Ras and Rho family GTPase function Small GTPases 2011 2 192 201 10.4161/sgtp.2.4.16707 22145091 

  53. 53. Olson M.F. Rho GTPases, their post-translational modifications, disease-associated mutations and pharmacological inhibitors Small GTPases 2018 9 203 215 10.1080/21541248.2016.1218407 27548350 

  54. 54. Nethe M. Hordijk P.L. The role of ubiquitylation and degradation in RhoGTPase signalling J. Cell Sci. 2010 123 4011 4018 10.1242/jcs.078360 21084561 

  55. 55. Wang H.R. Zhang Y. Ozdamar B. Ogunjimi A.A. Alexandrova E. Thomsen G.H. Wrana J.L. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation Science 2003 302 1775 1779 10.1126/science.1090772 14657501 

  56. 56. Berthold J. Schenkova K. Ramos S. Miura Y. Furukawa M. Aspenstrom P. Rivero F. Characterization of RhoBTB-dependent Cul3 ubiquitin ligase complexes―evidence for an autoregulatory mechanism Exp. Cell Res. 2008 314 3453 3465 10.1016/j.yexcr.2008.09.005 18835386 

  57. 57. Senadheera D. Haataja L. Groffen J. Heisterkamp N. The small GTPase Rac interacts with ubiquitination complex proteins Cullin-1 and CDC23 Int. J. Mol. Med. 2001 8 127 133 10.3892/ijmm.8.2.127 11445862 

  58. 58. Kovacic H.N. Irani K. Goldschmidt-Clermont P.J. Redox regulation of human Rac1 stability by the proteasome in human aortic endothelial cells J. Biol. Chem. 2001 276 45856 45861 10.1074/jbc.M107925200 11585836 

  59. 59. Wilkins A. Ping Q. Carpenter C.L. RhoBTB2 is a substrate of the mammalian Cul3 ubiquitin ligase complex Genes Dev. 2004 18 856 861 10.1101/gad.1177904 15107402 

  60. 60. Han Z.J. Feng Y.H. Gu B.H. Li Y.M. Chen H. The post-translational modification, SUMOylation, and cancer Int. J. Oncol. 2018 52 1081 1094 10.3892/ijo.2018.4280 29484374 

  61. 61. Deng S. Huang C. E3 ubiquitin ligases in regulating stress fiber, lamellipodium, and focal adhesion dynamics Cell Adh Migr. 2014 8 49 54 10.4161/cam.27480 24589622 

  62. 62. Gomez del Pulgar T. Benitah S.A. Valeron P.F. Espina C. Lacal J.C. Rho GTPase expression in tumourigenesis: Evidence for a significant link Bioessays 2005 27 602 613 10.1002/bies.20238 15892119 

  63. 63. Fritz G. Just I. Kaina B. Rho GTPases are over-expressed in human tumors Int. J. Cancer 1999 81 682 687 10.1002/(SICI)1097-0215(19990531)81:5<682::AID-IJC2>3.0.CO;2-B 10328216 

  64. 64. Pille J.-Y. Denoyelle C. Varet J. Bertrand J.-R. Soria J. Opolon P. Lu H. Pritchard L.-L. Vannier J.-P. Malvy C. Anti-RhoA and Anti-RhoC siRNAs inhibit the proliferation and invasiveness of MDA-MB-231 breast cancer cells in vitro and in vivo Mol. Ther. 2005 11 267 274 10.1016/j.ymthe.2004.08.029 15668138 

  65. 65. Liu N. Bi F. Pan Y. Sun L. Xue Y. Shi Y. Yao X. Zheng Y. Fan D. Reversal of the malignant phenotype of gastric cancer cells by inhibition of RhoA expression and activity Clin. Cancer Res. 2004 10 6239 6247 10.1158/1078-0432.CCR-04-0242 15448013 

  66. 66. Zhang S. Tang Q. Xu F. Xue Y. Zhen Z. Deng Y. Liu M. Chen J. Liu S. Qiu M. RhoA regulates G1-S progression of gastric cancer cells by modulation of multiple INK4 family tumor suppressors Mol. Cancer Res. 2009 7 570 580 10.1158/1541-7786.MCR-08-0248 19372585 

  67. 67. Ju J.A. Gilkes D.M. RhoB: Team Oncogene or Team Tumor Suppressor? Genes 2018 9 67 10.3390/genes9020067 

  68. 68. Zhou J. Zhu Y. Zhang G. Liu N. Sun L. Liu M. Qiu M. Luo D. Tang Q. Liao Z. A distinct role of RhoB in gastric cancer suppression Int. J. Cancer 2011 128 1057 1068 10.1002/ijc.25445 20473933 

  69. 69. Mazieres J. Antonia T. Daste G. Muro-Cacho C. Berchery D. Tillement V. Pradines A. Sebti S. Favre G. Loss of RhoB expression in human lung cancer progression Clin. Cancer Res. 2004 10 2742 2750 10.1158/1078-0432.CCR-03-0149 15102679 

  70. 70. Fritz G. Brachetti C. Bahlmann F. Schmidt M. Kaina B. Rho GTPases in human breast tumours: Expression and mutation analyses and correlation with clinical parameters Br. J. Cancer 2002 87 635 644 10.1038/sj.bjc.6600510 12237774 

  71. 71. Lin Y. Zheng Y. Approaches of targeting Rho GTPases in cancer drug discovery Expert Opin. Drug Discov. 2015 10 991 1010 10.1517/17460441.2015.1058775 26087073 

  72. 72. Ji J. Feng X. Shi M. Cai Q. Yu Y. Zhu Z. Zhang J. Rac1 is correlated with aggressiveness and a potential therapeutic target for gastric cancer Int. J. Oncol. 2015 46 1343 1353 10.3892/ijo.2015.2836 25585795 

  73. 73. Yoon C. Cho S.J. Chang K.K. Park D.J. Ryeom S.W. Yoon S.S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma Mol. Cancer Res. 2017 15 1106 1116 10.1158/1541-7786.MCR-17-0053 28461325 

  74. 74. Cho H.J. Kim J.T. Lee S.J. Hwang Y.S. Park S.Y. Kim B.Y. Yoo J. Hong K.S. Min J.K. Lee C.H. Protein phosphatase 1B dephosphorylates Rho guanine nucleotide dissociation inhibitor 1 and suppresses cancer cell migration and invasion Cancer Lett. 2018 417 141 151 10.1016/j.canlet.2018.01.002 29307615 

  75. 75. Heid I. Lubeseder-Martellato C. Sipos B. Mazur P.K. Lesina M. Schmid R.M. Siveke J.T. Early requirement of Rac1 in a mouse model of pancreatic cancer Gastroenterology 2011 141 719 730 10.1053/j.gastro.2011.04.043 21684285 

  76. 76. Fiegen D. Haeusler L.-C. Blumenstein L. Herbrand U. Dvorsky R. Vetter I.R. Ahmadian M.R. Alternative splicing of Rac1 generates Rac1b, a self-activating GTPase J. Biol. Chem. 2004 279 4743 4749 10.1074/jbc.M310281200 14625275 

  77. 77. Melzer C. Hass R. Lehnert H. Ungefroren H. RAC1B: A Rho GTPase with Versatile Functions in Malignant Transformation and Tumor Progression Cells 2019 8 21 10.3390/cells8010021 

  78. 78. Maldonado M.D.M. Dharmawardhane S. Targeting Rac and Cdc42 GTPases in Cancer Cancer Res. 2018 78 3101 3111 10.1158/0008-5472.CAN-18-0619 29858187 

  79. 79. Gomez Del Pulgar T. Valdes-Mora F. Bandres E. Perez-Palacios R. Espina C. Cejas P. Garcia-Cabezas M.A. Nistal M. Casado E. Gonzalez-Baron M. Cdc42 is highly expressed in colorectal adenocarcinoma and downregulates ID4 through an epigenetic mechanism Int. J. Oncol. 2008 33 185 193 10.3892/ijo.33.1.185 18575765 

  80. 80. Van Henge J. D’Hooge P. Hooghe B. Wu X. Libbrecht L. De Vos R. Quondamatteo F. Klempt M. Brakebusch C. van Roy F. Continuous cell injury promotes hepatic tumorigenesis in cdc42-deficient mouse liver Gastroenterology 2008 134 781 792 10.1053/j.gastro.2008.01.002 18325391 

  81. 81. Croise P. Houy S. Gand M. Lanoix J. Calco V. Toth P. Brunaud L. Lomazzi S. Paramithiotis E. Chelsky D. Cdc42 and Rac1 activity is reduced in human pheochromocytoma and correlates with FARP1 and ARHGEF1 expression Endocr. Relat. Cancer 2016 23 281 293 10.1530/ERC-15-0502 26911374 

  82. 82. Beder L.B. Gunduz M. Ouchida M. Gunduz E. Sakai A. Fukushima K. Nagatsuka H. Ito S. Honjo N. Nishizaki K. Identification of a candidate tumor suppressor gene RHOBTB1 located at a novel allelic loss region 10q21 in head and neck cancer J. Cancer Res. Clin. Oncol. 2006 132 19 27 10.1007/s00432-005-0033-0 16170569 

  83. 83. Tang W. Wang C. Fu F. Chen Q. RhoBTB2 gene in breast cancer is silenced by promoter methylation Int. J. Mol. Med. 2014 33 722 728 10.3892/ijmm.2013.1593 24356943 

  84. 84. Grise F. Sena S. Bidaud-Meynard A. Baud J. Hiriart J.B. Makki K. Dugot-Senant N. Staedel C. Bioulac-Sage P. Zucman-Rossi J. Rnd3/RhoE Is down-regulated in hepatocellular carcinoma and controls cellular invasion Hepatology 2012 55 1766 1775 10.1002/hep.25568 22234932 

  85. 85. Zhou J. Li K. Gu Y. Feng B. Ren G. Zhang L. Wang Y. Nie Y. Fan D. Transcriptional up-regulation of RhoE by hypoxia-inducible factor (HIF)-1 promotes epithelial to mesenchymal transition of gastric cancer cells during hypoxia Biochem. Biophys. Res. Commun. 2011 415 348 354 10.1016/j.bbrc.2011.10.065 22037464 

  86. 86. Li K. Lu Y. Liang J. Luo G. Ren G. Wang X. Fan D. RhoE enhances multidrug resistance of gastric cancer cells by suppressing Bax Biochem. Biophys. Res. Commun. 2009 379 212 216 10.1016/j.bbrc.2008.12.044 19101510 

  87. 87. Cook D.R. Rossman K.L. Der C.J. Rho guanine nucleotide exchange factors: Regulators of Rho GTPase activity in development and disease Oncogene 2014 33 4021 4035 10.1038/onc.2013.362 24037532 

  88. 88. Hirata D. Yamabuki T. Miki D. Ito T. Tsuchiya E. Fujita M. Hosokawa M. Chayama K. Nakamura Y. Daigo Y. Involvement of epithelial cell transforming sequence-2 oncoantigen in lung and esophageal cancer progression Clin. Cancer Res. 2009 15 256 266 10.1158/1078-0432.CCR-08-1672 19118053 

  89. 89. Huff L.P. Decristo M.J. Trembath D. Kuan P.F. Yim M. Liu J. Cook D.R. Miller C.R. Der C.J. Cox A.D. The Role of Ect2 Nuclear RhoGEF Activity in Ovarian Cancer Cell Transformation Genes Cancer 2013 4 460 475 10.1177/1947601913514851 24386507 

  90. 90. Chen J. Xia H. Zhang X. Karthik S. Pratap S.V. Ooi L.L. Hong W. Hui K.M. ECT2 regulates the Rho/ERK signalling axis to promote early recurrence in human hepatocellular carcinoma J. Hepatol. 2015 62 1287 1295 10.1016/j.jhep.2015.01.014 25617497 

  91. 91. Boissier P. Huynh-Do U. The guanine nucleotide exchange factor Tiam1: A Janus-faced molecule in cellular signaling Cell Signal. 2014 26 483 491 10.1016/j.cellsig.2013.11.034 24308970 

  92. 92. Minard M.E. Kim L.S. Price J.E. Gallick G.E. The role of the guanine nucleotide exchange factor Tiam1 in cellular migration, invasion, adhesion and tumor progression Breast Cancer Res. Treat. 2004 84 21 32 10.1023/B:BREA.0000018421.31632.e6 14999151 

  93. 93. Bourguignon L.Y. Zhu H. Shao L. Chen Y.W. Ankyrin-Tiam1 interaction promotes Rac1 signaling and metastatic breast tumor cell invasion and migration J. Cell Biol. 2000 150 177 191 10.1083/jcb.150.1.177 10893266 

  94. 94. Xue W. Krasnitz A. Lucito R. Sordella R. Vanaelst L. Cordon-Cardo C. Singer S. Kuehnel F. Wigler M. Powers S. DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma Genes Dev. 2008 22 1439 1444 10.1101/gad.1672608 18519636 

  95. 95. Seng T.J. Low J.S. Li H. Cui Y. Goh H.K. Wong M.L. Srivastava G. Sidransky D. Califano J. Steenbergen R.D. The major 8p22 tumor suppressor DLC1 is frequently silenced by methylation in both endemic and sporadic nasopharyngeal, esophageal, and cervical carcinomas, and inhibits tumor cell colony formation Oncogene 2007 26 934 944 10.1038/sj.onc.1209839 16862168 

  96. 96. Zhang Y. Li G. A tumor suppressor DLC1: The functions and signal pathways J. Cell Physiol. 2020 235 4999 5007 10.1002/jcp.29402 31773748 

  97. 97. Wolf R.M. Draghi N. Liang X. Dai C. Uhrbom L. Eklof C. Westermark B. Holland E.C. Resh M.D. p190RhoGAP can act to inhibit PDGF-induced gliomas in mice: A putative tumor suppressor encoded on human chromosome 19q13.3 Genes Dev. 2003 17 476 487 10.1101/gad.1040003 12600941 

  98. 98. Luo N. Guo J. Chen L. Yang W. Qu X. Cheng Z. ARHGAP10, downregulated in ovarian cancer, suppresses tumorigenicity of ovarian cancer cells Cell Death Dis. 2016 7 e2157 10.1038/cddis.2015.401 27010858 

  99. 99. Teng J.P. Yang Z.Y. Zhu Y.M. Ni D. Zhu Z.J. Li X.Q. The roles of ARHGAP10 in the proliferation, migration and invasion of lung cancer cells Oncol. Lett. 2017 14 4613 4618 10.3892/ol.2017.6729 28943961 

  100. 100. Gong H. Chen X. Jin Y. Lu J. Cai Y. Wei O. Zhao J. Zhang W. Wen X. Wang Y. Expression of ARHGAP10 correlates with prognosis of prostate cancer Int. J. Clin. Exp. Pathol. 2019 12 3839 3846 31933772 

  101. 101. Li Y. Zeng B. Li Y. Zhang C. Ren G. Downregulated expression of ARHGAP10 correlates with advanced stage and high Ki-67 index in breast cancer PeerJ 2019 7 e7431 10.7717/peerj.7431 31396458 

  102. 102. Dong G. Wang B. An Y. Li J. Wang X. Jia J. Yang Q. SIRT1 suppresses the migration and invasion of gastric cancer by regulating ARHGAP5 expression Cell Death Dis. 2018 9 977 10.1038/s41419-018-1033-8 30250020 

  103. 103. Johnstone C.N. Castellvi-Bel S. Chang L.M. Bessa X. Nakagawa H. Harada H. Sung R.K. Pique J.M. Castells A. Rustgi A.K. ARHGAP8 is a novel member of the RHOGAP family related to ARHGAP1/CDC42GAP/p50RHOGAP: Mutation and expression analyses in colorectal and breast cancers Gene 2004 336 59 71 10.1016/j.gene.2004.01.025 15225876 

  104. 104. Hu Q. Lin X. Ding L. Zeng Y. Pang D. Ouyang N. Xiang Y. Yao H. ARHGAP42 promotes cell migration and invasion involving PI3K/Akt signaling pathway in nasopharyngeal carcinoma Cancer Med. 2018 7 3862 3874 10.1002/cam4.1552 29936709 

  105. 105. Wang H. Wang B. Liao Q. An H. Li W. Jin X. Cui S. Zhao L. Overexpression of RhoGDI, a novel predictor of distant metastasis, promotes cell proliferation and migration in hepatocellular carcinoma FEBS Lett. 2014 588 503 508 10.1016/j.febslet.2013.12.016 24374343 

  106. 106. Song Q. Xu Y. Yang C. Chen Z. Jia C. Chen J. Zhang Y. Lai P. Fan X. Zhou X. miR-483-5p promotes invasion and metastasis of lung adenocarcinoma by targeting RhoGDI1 and ALCAM Cancer Res. 2014 74 3031 3042 10.1158/0008-5472.CAN-13-2193 24710410 

  107. 107. Harding M.A. Theodorescu D. RhoGDI signaling provides targets for cancer therapy Eur. J. Cancer 2010 46 1252 1259 10.1016/j.ejca.2010.02.025 20347589 

  108. 108. Jiang W.G. Watkins G. Lane J. Cunnick G.H. Douglas-Jones A. Mokbel K. Mansel R.E. Prognostic value of rho GTPases and rho guanine nucleotide dissociation inhibitors in human breast cancers Clin. Cancer Res. 2003 9 6432 6440 14695145 

  109. 109. Gildea J.J. Seraj M.J. Oxford G. Harding M.A. Hampton G.M. Moskaluk C.A. Frierson H.F. Conaway M.R. Theodorescu D. RhoGDI2 is an invasion and metastasis suppressor gene in human cancer Cancer Res. 2002 62 6418 6423 12438227 

  110. 110. Cho H.J. Baek K.E. Park S.M. Kim I.K. Choi Y.L. Cho H.J. Nam I.K. Hwang E.M. Park J.Y. Han J.Y. RhoGDI2 expression is associated with tumor growth and malignant progression of gastric cancer Clin. Cancer Res. 2009 15 2612 2619 10.1158/1078-0432.CCR-08-2192 19351766 

  111. 111. Tapper J. Kettunen E. El-Rifai W. Seppala M. Andersson L.C. Knuutila S. Changes in gene expression during progression of ovarian carcinoma Cancer Genet. Cytogenet. 2001 128 1 6 10.1016/S0165-4608(01)00386-7 11454421 

  112. 112. Hodis E. Watson I.R. Kryukov G.V. Arold S.T. Imielinski M. Theurillat J.P. Nickerson E. Auclair D. Li L. Place C. A landscape of driver mutations in melanoma Cell 2012 150 251 263 10.1016/j.cell.2012.06.024 22817889 

  113. 113. Krauthammer M. Kong Y. Ha B.H. Evans P. Bacchiocchi A. McCusker J.P. Cheng E. Davis M.J. Goh G. Choi M. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma Nat. Genet. 2012 44 1006 1014 10.1038/ng.2359 22842228 

  114. 114. Davis M.J. Ha B.H. Holman E.C. Halaban R. Schlessinger J. Boggon T.J. RAC1P29S is a spontaneously activating cancer-associated GTPase Proc. Natl. Acad. Sci. USA 2013 110 912 917 10.1073/pnas.1220895110 23284172 

  115. 115. Kawazu M. Ueno T. Kontani K. Ogita Y. Ando M. Fukumura K. Yamato A. Soda M. Takeuchi K. Miki Y. Transforming mutations of RAC guanosine triphosphatases in human cancers Proc. Natl. Acad. Sci. USA 2013 110 3029 3034 10.1073/pnas.1216141110 23382236 

  116. 116. Bagrodia A. Lee B.H. Lee W. Cha E.K. Sfakianos J.P. Iyer G. Pietzak E.J. Gao S.P. Zabor E.C. Ostrovnaya I. Genetic Determinants of Cisplatin Resistance in Patients With Advanced Germ Cell Tumors J. Clin. Oncol. 2016 34 4000 4007 10.1200/JCO.2016.68.7798 27646943 

  117. 117. Palomero T. Couronne L. Khiabanian H. Kim M.-Y. Ambesi-Impiombato A. Perez-Garcia A. Carpenter Z. Abate F. Allegretta M. Haydu J.E. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas Nat. Genet. 2014 46 166 170 10.1038/ng.2873 24413734 

  118. 118. Yoo H.Y. Sung M.K. Lee S.H. Kim S. Lee H. Park S. Kim S.C. Lee B. Rho K. Lee J.-E. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma Nat. Genet. 2014 46 371 375 10.1038/ng.2916 24584070 

  119. 119. Sakata-Yanagimoto M. Enami T. Yoshida K. Shiraishi Y. Ishii R. Miyake Y. Muto H. Tsuyama N. Sato-Otsubo A. Okuno Y. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma Nat. Genet. 2014 46 171 175 10.1038/ng.2872 24413737 

  120. 120. Porter A.P. Papaioannou A. Malliri A. Deregulation of Rho GTPases in cancer Small GTPases 2016 7 123 138 10.1080/21541248.2016.1173767 27104658 

  121. 121. Kakiuchi M. Nishizawa T. Ueda H. Gotoh K. Tanaka A. Hayashi A. Yamamoto S. Tatsuno K. Katoh H. Watanabe Y. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma Nat. Genet. 2014 46 583 587 10.1038/ng.2984 24816255 

  122. 122. Stevers M. Rabban J.T. Garg K. Van Ziffl J. Onodera C. Grenert J.P. Yeh I. Bastian B.C. Zaloudek C. Solomon D.A. Well-differentiated papillary mesothelioma of the peritoneum is genetically defined by mutually exclusive mutations in TRAF7 and CDC42 Mod. Pathol. 2019 32 88 99 10.1038/s41379-018-0127-2 30171198 

  123. 123. Mazieres J. Pradines A. Favre G. Perspectives on farnesyl transferase inhibitors in cancer therapy Cancer Lett. 2004 206 159 167 10.1016/j.canlet.2003.08.033 15013521 

  124. 124. Chan K.K. Oza A.M. Siu L.L. The statins as anticancer agents Clin. Cancer Res. 2003 9 10 19 12538446 

  125. 125. Gazzerro P. Proto M.C. Gangemi G. Malfitano A.M. Ciaglia E. Pisanti S. Santoro A. Laezza C. Bifulco M. Pharmacological actions of statins: A critical appraisal in the management of cancer Pharmacol. Rev. 2012 64 102 146 10.1124/pr.111.004994 22106090 

  126. 126. Berndt N. Hamilton A.D. Sebti S.M. Targeting protein prenylation for cancer therapy Nat. Rev. Cancer 2011 11 775 791 10.1038/nrc3151 22020205 

  127. 127. Karasic T.B. Chiorean E.G. Sebti S.M. O’Dwyer P.J. A Phase I Study of GGTI-2418 (Geranylgeranyl Transferase I Inhibitor) in Patients with Advanced Solid Tumors Target Oncol. 2019 14 613 618 10.1007/s11523-019-00661-5 31372813 

  128. 128. Haluska P. Dy G.K. Adjei A.A. Farnesyl transferase inhibitors as anticancer agents Eur. J. Cancer 2002 38 1685 1700 10.1016/S0959-8049(02)00166-1 12175684 

  129. 129. Shang X. Marchioni F. Sipes N. Evelyn C.R. Jerabek-Willemsen M. Duhr S. Seibel W. Wortman M. Zheng Y. Rational design of small molecule inhibitors targeting RhoA subfamily Rho GTPases Chem. Biol. 2012 19 699 710 10.1016/j.chembiol.2012.05.009 22726684 

  130. 130. Evelyn C.R. Ferng T. Rojas R.J. Larsen M.J. Sondek J. Neubig R.R. High-throughput screening for small-molecule inhibitors of LARG-stimulated RhoA nucleotide binding via a novel fluorescence polarization assay J. Biomol. Screen. 2009 14 161 172 10.1177/1087057108328761 19196702 

  131. 131. Shang X. Marchioni F. Evelyn C.R. Sipes N. Zhou X. Seibel W. Wortman M. Zheng Y. Small-molecule inhibitors targeting G-protein-coupled Rho guanine nucleotide exchange factors Proc. Natl. Acad. Sci. USA 2013 110 3155 3160 10.1073/pnas.1212324110 23382194 

  132. 132. Gao Y. Dickerson J.B. Guo F. Zheng J. Zheng Y. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor Proc. Natl. Acad. Sci. USA 2004 101 7618 7623 10.1073/pnas.0307512101 15128949 

  133. 133. Montalvo-Ortiz B.L. Castillo-Pichardo L. Hernandez E. Humphries-Bickley T. De la Mota-Peynado A. Cubano L.A. Vlaar C.P. Dharmawardhane S. Characterization of EHop-016, novel small molecule inhibitor of Rac GTPase J. Biol. Chem. 2012 287 13228 13238 10.1074/jbc.M111.334524 22383527 

  134. 134. Florian M.C. Dorr K. Niebel A. Daria D. Schrezenmeier H. Rojewski M. Filippi M.D. Hasenberg A. Gunzer M. Scharffetter-Kochanek K. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation Cell Stem Cell 2012 10 520 530 10.1016/j.stem.2012.04.007 22560076 

  135. 135. Sakamori R. Yu S. Zhang X. Hoffman A. Sun J. Das S. Vedula P. Li G. Fu J. Walker F. CDC42 inhibition suppresses progression of incipient intestinal tumors Cancer Res. 2014 74 5480 5492 10.1158/0008-5472.CAN-14-0267 25113996 

  136. 136. Friesland A. Zhao Y. Chen Y.H. Wang L. Zhou H. Lu Q. Small molecule targeting Cdc42-intersectin interaction disrupts Golgi organization and suppresses cell motility Proc. Natl. Acad. Sci. USA 2013 110 1261 1266 10.1073/pnas.1116051110 23284167 

  137. 137. Aguilar B.J. Zhao Y. Zhou H. Huo S. Chen Y.H. Lu Q. Inhibition of Cdc42-intersectin interaction by small molecule ZCL367 impedes cancer cell cycle progression, proliferation, migration, and tumor growth Cancer Biol. Ther. 2019 20 740 749 10.1080/15384047.2018.1564559 30849276 

  138. 138. Kale V.P. Hengst J.A. Desai D.H. Amin S.G. Yun J.K. The regulatory roles of ROCK and MRCK kinases in the plasticity of cancer cell migration Cancer Lett. 2015 361 185 196 10.1016/j.canlet.2015.03.017 25796438 

  139. 139. Rath N. Olson M.F. Rho-associated kinases in tumorigenesis: Re-considering ROCK inhibition for cancer therapy EMBO Rep. 2012 13 900 908 10.1038/embor.2012.127 22964758 

  140. 140. Uehata M. Ishizaki T. Satoh H. Ono T. Kawahara T. Morishita T. Tamakawa H. Yamagami K. Inui J. Maekawa M. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension Nature 1997 389 990 994 10.1038/40187 9353125 

  141. 141. Nagumo H. Sasaki Y. Ono Y. Okamoto H. Seto M. Takuwa Y. Rho kinase inhibitor HA-1077 prevents Rho-mediated myosin phosphatase inhibition in smooth muscle cells Am. J. Physiol. Cell Physiol. 2000 278 C57 C65 10.1152/ajpcell.2000.278.1.C57 10644512 

  142. 142. Routhier A. Astuccio M. Lahey D. Monfredo N. Johnson A. Callahan W. Partington A. Fellows K. Ouellette L. Zhidro S. Pharmacological inhibition of Rho-kinase signaling with Y-27632 blocks melanoma tumor growth Oncol. Rep. 2010 23 861 867 20127030 

  143. 143. Ying H. Biroc S.L. Li W.W. Alicke B. Xuan J.A. Pagila R. Ohashi Y. Okada T. Kamata Y. Dinter H. The Rho kinase inhibitor fasudil inhibits tumor progression in human and rat tumor models Mol. Cancer Ther. 2006 5 2158 2164 10.1158/1535-7163.MCT-05-0440 16985048 

  144. 144. Patel R.A. Forinash K.D. Pireddu R. Sun Y. Sun N. Martin M.P. Schonbrunn E. Lawrence N.J. Sebti S.M. RKI-1447 is a potent inhibitor of the Rho-associated ROCK kinases with anti-invasive and antitumor activities in breast cancer Cancer Res. 2012 72 5025 5034 10.1158/0008-5472.CAN-12-0954 22846914 

  145. 145. Nakajima M. Hayashi K. Egi Y. Katayama K. Amano Y. Uehata M. Ohtsuki M. Fujii A. Oshita K. Kataoka H. Effect of Wf-536, a novel ROCK inhibitor, against metastasis of B16 melanoma Cancer Chemother. Pharmacol. 2003 52 319 324 10.1007/s00280-003-0641-9 12783205 

  146. 146. Yap T.A. Walton M.I. Grimshaw K.M. Te Poele R.H. Eve P.D. Valenti M.R. de Haven Brandon A.K. Martins V. Zetterlund A. Heaton S.P. AT13148 is a novel, oral multi-AGC kinase inhibitor with potent pharmacodynamic and antitumor activity Clin. Cancer Res. 2012 18 3912 3923 10.1158/1078-0432.CCR-11-3313 22781553 

  147. 147. Licciulli S. Maksimoska J. Zhou C. Troutman S. Kota S. Liu Q. Duron S. Campbell D. Chernoff J. Field J. FRAX597, a small molecule inhibitor of the p21-activated kinases, inhibits tumorigenesis of neurofibromatosis type 2 (NF2)-associated Schwannomas J. Biol. Chem. 2013 288 29105 29114 10.1074/jbc.M113.510933 23960073 

  148. 148. Deacon S.W. Beeser A. Fukui J.A. Rennefahrt U.E. Myers C. Chernoff J. Peterson J.R. An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase Chem. Biol. 2008 15 322 331 10.1016/j.chembiol.2008.03.005 18420139 

  149. 149. Wong L.L. Lam I.P. Wong T.Y. Lai W.L. Liu H.F. Yeung L.L. Ching Y.P. IPA-3 inhibits the growth of liver cancer cells by suppressing PAK1 and NF-κB activation PLoS ONE 2013 8 e68843 10.1371/journal.pone.0068843 23894351 

  150. 150. Wang Y. Gratzke C. Tamalunas A. Wiemer N. Ciotkowska A. Rutz B. Waidelich R. Strittmatter F. Liu C. Stief C.G. P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate PLoS ONE 2016 11 e0153312 10.1371/journal.pone.0153312 27071060 

  151. 151. Kaneko M. Saito Y. Saito H. Matsumoto T. Matsuda Y. Vaught J.L. Dionne C.A. Angeles T.S. Glicksman M.A. Neff N.T. Neurotrophic 3,9-bis[(alkylthio)methyl]-and-bis(alkoxymethyl)-K-252a derivatives J. Med. Chem. 1997 40 1863 1869 10.1021/jm970031d 9191963 

  152. 152. Porchia L.M. Guerra M. Wang Y.C. Zhang Y. Espinosa A.V. Shinohara M. Kulp S.K. Kirschner L.S. Saji M. Chen C.S. 2-amino-N-{4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phenyl} acetamide (OSU-03012), a celecoxib derivative, directly targets p21-activated kinase Mol. Pharmacol. 2007 72 1124 1131 10.1124/mol.107.037556 17673571 

  153. 153. Murray B.W. Guo C. Piraino J. Westwick J.K. Zhang C. Lamerdin J. Dagostino E. Knighton D. Loi C.M. Zager M. Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth Proc. Natl. Acad. Sci. USA 2010 107 9446 9451 10.1073/pnas.0911863107 20439741 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로