$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Comparative study of hydrogen embrittlement resistance between additively and conventionally manufactured 304L austenitic stainless steels

Materials science & engineering. properties, microstructure and processing. A, Structural materials, v.803, 2021년, pp.140499 -   

Lee, Dong-Hyun (Department of Materials Science and Engineering, Chungnam National University) ,  Sun, Binhan (Department for Microstructure Physics and Alloy Design, Max-Planck-Institut fü) ,  Lee, Subin (r Eisenforschung GmbH) ,  Ponge, Dirk (Department for Microstructure Physics and Alloy Design, Max-Planck-Institut fü) ,  Jägle, Eric A. (r Eisenforschung GmbH) ,  Raabe, Dierk (Department for Microstructure Physics and Alloy Design, Max-Planck-Institut fü)

Abstract AI-Helper 아이콘AI-Helper

Abstract Hydrogen embrittlement in 304L austenitic stainless steel fabricated by laser powder-bed-fusion (LPBF) was investigated and compared to conventionally produced 304L samples with two different processing histories; casting plus annealing (CA) and CA plus thermomechanical treatment (CA-TMT)....

Keyword

참고문헌 (79)

  1. Corrosion Sci. Louthan 15 565 1975 10.1016/0010-938X(75)90022-0 Hydrogen transport in austenitic stainless steel 

  2. Acta Metall. Perng 37 3393 1989 10.1016/0001-6160(89)90211-3 Influence of plastic deformation on hydrogen diffusion and permeation in stainless steels 

  3. Int. J. Hydrogen Energy Marchi 32 100 2007 10.1016/j.ijhydene.2006.05.008 Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures 

  4. Metall. Trans. Hirth 11 861 1980 10.1007/BF02654700 Effects of hydrogen on the properties of iron and steel 

  5. Mater. Sci. Eng. Birnbaum 176 191 1994 10.1016/0921-5093(94)90975-X Hydrogen-enhanced localized plasticity-a mechanism for hydrogen-related fracture 

  6. Acta Mater. Barnoush 58 5274 2010 10.1016/j.actamat.2010.05.057 Recent developments in the study of hydrogen embrittlement: hydrogen effect on dislocation nucleation 

  7. Metall. Mater. Trans. Robertson 46 2323 2015 10.1007/s11661-015-2836-1 Hydrogen embrittlement understood 

  8. Scripta Mater. Zhao 135 54 2017 10.1016/j.scriptamat.2017.03.029 Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement 

  9. Acta Mater. Han 46 4559 1998 10.1016/S1359-6454(98)00136-0 Effect of strain-induced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures 

  10. Int. J. Hydrogen Energy Michler 33 2111 2008 10.1016/j.ijhydene.2008.02.021 Hydrogen environment embrittlement of austenitic stainless steels at low temperatures 

  11. Int. J. Hydrogen Energy San Marchi 35 9736 2010 10.1016/j.ijhydene.2010.06.018 On the physical differences between tensile testing of type 304 and 316 austenitic stainless steels with internal hydrogen and in external hydrogen 

  12. Scripta Mater. Mine 113 176 2016 10.1016/j.scriptamat.2015.11.013 Mechanical characterisation of hydrogen-induced quasi-cleavage in a metastable austenitic steel using micro-tensile testing 

  13. Int. J. Hydrogen Energy Zhang 38 8208 2013 10.1016/j.ijhydene.2013.01.198 Effect of strain-induced martensite on hydrogen embrittlement of austenitic stainless steels investigated by combined tension and hydrogen release methods 

  14. Metall. Trans. Brooks 14 75 1983 10.1007/BF02643740 Effect of weld composition and microstructure on hydrogen assisted fracture of austenitic stainless steels 

  15. Corrosion Sci. Buckley 34 93 1993 10.1016/0010-938X(93)90261-E The effect of pre-straining and δ-ferrite on the embrittlement of 304L stainless steel by hydrogen 

  16. Int. J. Hydrogen Energy Wang 39 13909 2014 10.1016/j.ijhydene.2014.04.122 Hydrogen embrittlement of catholically hydrogen-precharged 304L austenitic stainless steel: effect of plastic pre-strain 

  17. Int. J. Hydrogen Energy Mine 42 15415 2017 10.1016/j.ijhydene.2017.04.249 Effect of ultrafine grain refinement on hydrogen embrittlement of metastable austenitic stainless steel 

  18. Int. J. Hydrogen Energy Egels 43 5206 2018 10.1016/j.ijhydene.2018.01.062 Impact of chemical inhomogeneities on local material properties and hydrogen environment embrittlement in AISI 304L steels 

  19. J. Mater. Sci. Technol. Fan 35 2213 2019 10.1016/j.jmst.2019.03.043 Effect of grain refinement on the hydrogen embrittlement of 304 austenitic stainless steel 

  20. Int. J. Hydrogen Energy Mine 34 1097 2009 10.1016/j.ijhydene.2008.11.018 Hydrogen transport in solution-treated and pre-strained austenitic stainless steels and its role in hydrogen-enhanced fatigue crack growth 

  21. J. Less Common. Met. Olson 28 107 1972 10.1016/0022-5088(72)90173-7 A mechanism for the strain-induced nucleation of martensitic transformation 

  22. Mater. Sci. Technol. Spencer 25 7 2009 10.1179/174328408X293603 The strain induced martensite transformation in austenitic stainless steels: Part 1 - influence of temperature and strain history 

  23. Acta Mater. Masumura 84 330 2015 10.1016/j.actamat.2014.10.041 The difference in thermal and mechanical stabilities of austenite between carbon- and nitrogen-added metastable austenitic stainless steels 

  24. J. Alloys Compd. Tian 766 131 2018 10.1016/j.jallcom.2018.06.326 Comparing the deformation-induced martensitic transformation with the athermal martensitic transformation in Fe-Cr-Ni alloys 

  25. Acta Mater. Herzog 117 371 2016 10.1016/j.actamat.2016.07.019 Additive manufacturing of metals 

  26. Scripta Mater. Jared 135 141 2017 10.1016/j.scriptamat.2017.02.029 Additive manufacturing: toward holistic design 

  27. Prog. Mater. Sci. DebRoy 92 112 2018 10.1016/j.pmatsci.2017.10.001 Additive manufacturing of metallic components - process, structure and properties 

  28. J. Mater. Res. Jägle 29 2072 2014 10.1557/jmr.2014.204 Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting 

  29. Prog. Mater. Sci. Olakanmi 74 401 2015 10.1016/j.pmatsci.2015.03.002 A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties 

  30. Acta Mater. Kürnsteiner 129 52 2017 10.1016/j.actamat.2017.02.069 Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition 

  31. Nat. Mater. Wang 17 63 2018 10.1038/nmat5021 Additively manufactured hierarchical stainless steels with high strength and ductility 

  32. Mater. Today Liu 21 354 2018 10.1016/j.mattod.2017.11.004 Dislocation network in additive manufactured steel breaks strength-ductility trade-off 

  33. J. Alloys Compd. Saeidi 633 463 2015 10.1016/j.jallcom.2015.01.249 Transformation of austenite to duplex austenite-ferrite assembly in annealed stainless steel 316L consolidated by laser melting 

  34. Scripta Mater. Baek 130 87 2017 10.1016/j.scriptamat.2016.11.020 Hydrogen embrittlement of 3-D printing manufactured austenitic stainless steel part for hydrogen service 

  35. Tetsu-To-Hagane Nohara 63 772 1977 10.2355/tetsutohagane1955.63.5_772 Composition and grain size dependencies of strain-induced martensitic transformation in metastable Austenitic stainless steels 

  36. Int. J. Hydrogen Energy Izawa 44 25064 2019 10.1016/j.ijhydene.2019.07.179 Relationship between hydrogen embrittlement and Md30 temperature: prediction of low-nickel austenitic stainless steel’s resistance 

  37. J. Alloys Compd. Prashanth 707 27 2017 10.1016/j.jallcom.2016.12.209 Formation of metastable cellular microstructures in selective laser melted alloys 

  38. Kou 2003 Welding Metallurgy 

  39. Mater. Sci. Eng. Carlton 651 406 2016 10.1016/j.msea.2015.10.073 Damage evolution and failure mechanisms in additively manufactured stainless steel 

  40. Acta Mater. Wang 110 226 2016 10.1016/j.actamat.2016.03.019 Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing 

  41. Metall. Trans. Choo 13 135 1982 10.1007/BF02642424 Thermal analysis of trapped hydrogen in pure iron 

  42. ISIJ Int. So 49 1952 2009 10.2355/isijinternational.49.1952 Hydrogen delayed fracture properties and internal hydrogen behavior of a Fe-18Mn-1.5Al-0.6C TWIP steel 

  43. Acta Mater. Ryu 60 4085 2012 10.1016/j.actamat.2012.04.010 Effect of deformation on hydrogen trapping and effusion in TRIP-assisted steel 

  44. Mater. Sci. Eng. Shen 552 514 2012 10.1016/j.msea.2012.05.080 Twinning and martensite in a 304 austenitic stainless steel 

  45. Mater. Des. Ahmedabadi 109 466 2016 10.1016/j.matdes.2016.07.106 Modelling kinetics of strain-induced martensite transformation during plastic deformation of austenitic stainless steel 

  46. Mater. Sci. Eng. Michler 725 447 2018 10.1016/j.msea.2018.04.011 Local strains in 1.4301 austenitic stainless steel with internal hydrogen 

  47. Acta Mater. Borgenstam 45 2079 1997 10.1016/S1359-6454(96)00308-4 Driving force for f.c.c. → b.c.c. martensites in Fe-X alloys 

  48. J. Mater. Sci. Technol. Casati 32 738 2016 10.1016/j.jmst.2016.06.016 Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting 

  49. Powder Technol. Sun 342 371 2019 10.1016/j.powtec.2018.09.090 Selective laser melting of titanium parts: influence of laser process parameters on macro- and microstructures and tensile property 

  50. Metall. Trans. Brooks 1981 10.1007/BF02655194 Hydrogen induced ductility losses in austenitic stainless steel welds 

  51. Metall. Trans. Tyson 15 1475 1984 10.1007/BF02648577 Embrittlement of types 316l and 347 weld overlay by post-weld heat treatment and hydrogen 

  52. Metall. Trans. Phys. Metall. Mater. Sci. Vitek 1983 10.1007/BF02645553 Microstructural modification OF austenitic stainless steels BY rapid solidification 

  53. Acta Mater. Zhang 56 3414 2008 10.1016/j.actamat.2008.03.022 Effect of nickel equivalent on hydrogen gas embrittlement of austenitic stainless steels based on type 316 at low temperatures 

  54. Scripta Mater. Rho 39 1407 1998 10.1016/S1359-6462(98)00327-3 The fatigue crack initiation at the interface between matrix and δ-ferrite in 304L stainless steel 

  55. Int. J. Fatig. Rho 22 683 2000 10.1016/S0142-1123(00)00043-8 The effect of δ-ferrite on fatigue cracks in 304L steels 

  56. Porter 2009 Phase Transformations in Metals and Alloys 

  57. Metall. Mater. Trans. Kim 47 222 2016 10.1007/s11661-015-3198-4 Effect of strain-induced martensite on tensile properties and hydrogen embrittlement of 304 stainless steel 

  58. Int. J. Hydrogen Energy Kanezaki 33 2604 2008 10.1016/j.ijhydene.2008.02.067 Effects of hydrogen on fatigue crack growth behavior of austenitic stainless steels 

  59. Acta Mater. Mine 57 2993 2009 10.1016/j.actamat.2009.03.006 Effect of hydrogen on martensite formation in austenitic stainless steels in high-pressure torsion 

  60. Metall. Mater. Trans. Murakami 39 1327 2008 10.1007/s11661-008-9506-5 Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels 

  61. Acta Mater. Sun 183 313 2020 10.1016/j.actamat.2019.11.029 Dependence of hydrogen embrittlement mechanisms on microstructure-driven hydrogen distribution in medium Mn steels 

  62. Acta Metall. Oriani 22 1065 1974 10.1016/0001-6160(74)90061-3 Equilibrium aspects of hydrogen-induced cracking of steels 

  63. Int. J. Hydrogen Energy Wang 41 6053 2016 10.1016/j.ijhydene.2016.03.003 FE analysis of hydrogen diffusion around a crack tip in an austenitic stainless steel 

  64. ISIJ Int. Nagumo 41 590 2001 10.2355/isijinternational.41.590 Advances in physical metallurgy and processing of steels. Function of hydrogen in embrittlement of high-strength steels 

  65. Int. J. Hydrogen Energy Ahn 32 3734 2007 10.1016/j.ijhydene.2006.08.047 On hydrogen-induced plastic flow localization during void growth and coalescence 

  66. ISIJ Int. Shibata 52 208 2012 10.2355/isijinternational.52.208 Microstructural and crystallographic features of hydrogen-related crack propagation in low carbon martensitic steel 

  67. Acta Mater. Koyama 70 174 2014 10.1016/j.actamat.2014.01.048 Hydrogen-assisted decohesion and localized plasticity in dual-phase steel 

  68. Metall. Mater. Trans. Matsunaga 42 2696 2011 10.1007/s11661-011-0661-8 Visualization of hydrogen diffusion in a hydrogen-enhanced fatigue crack growth in type 304 stainless steel 

  69. Metall. Trans. Gerberich 6 1485 1975 10.1007/BF02641960 A short-time diffusion correlation for hydrogen-induced crack growth kinetics 

  70. J. Mech. Phys. Solid. Sofronis 37 317 1989 10.1016/0022-5096(89)90002-1 Numerical analysis of hydrogen transport near a blunting crack tip 

  71. Eng. Fract. Mech. Yokobori 55 47 1996 10.1016/0013-7944(96)00002-1 Numerical analysis on hydrogen diffusion and concentration in solid with emission around the crack tip 

  72. Corrosion Qiao 52 275 1996 10.5006/1.3293639 Critical hydrogen concentration for hydrogen-induced cracking of type 321 stainless steel 

  73. Corrosion Sci. Wang 48 2189 2006 10.1016/j.corsci.2005.07.010 Determination of the critical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation 

  74. Crank 1975 The Mathematics of Diffusion 

  75. Acta Metall. Tsong-Pyng 34 1771 1986 10.1016/0001-6160(86)90123-9 Effects of deformation on hydrogen permeation in austenitic stainless steels 

  76. Metall. Trans. Tien 7 821 1976 10.1007/BF02644079 Hydrogen transport by dislocations 

  77. J. Mech. Phys. Solid. Dadfarnia 78 511 2015 10.1016/j.jmps.2015.03.002 Modeling hydrogen transport by dislocations 

  78. Metall. Mater. Trans. Shamsujjoha 49 3011 2018 10.1007/s11661-018-4607-2 High strength and ductility of additively manufactured 316L stainless steel explained 

  79. Reed-Hill 1994 Physical Metallurgy Principles 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로