최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Materials science & engineering. properties, microstructure and processing. A, Structural materials, v.803, 2021년, pp.140499 -
Lee, Dong-Hyun (Department of Materials Science and Engineering, Chungnam National University) , Sun, Binhan (Department for Microstructure Physics and Alloy Design, Max-Planck-Institut fü) , Lee, Subin (r Eisenforschung GmbH) , Ponge, Dirk (Department for Microstructure Physics and Alloy Design, Max-Planck-Institut fü) , Jägle, Eric A. (r Eisenforschung GmbH) , Raabe, Dierk (Department for Microstructure Physics and Alloy Design, Max-Planck-Institut fü)
Abstract Hydrogen embrittlement in 304L austenitic stainless steel fabricated by laser powder-bed-fusion (LPBF) was investigated and compared to conventionally produced 304L samples with two different processing histories; casting plus annealing (CA) and CA plus thermomechanical treatment (CA-TMT)....
Corrosion Sci. Louthan 15 565 1975 10.1016/0010-938X(75)90022-0 Hydrogen transport in austenitic stainless steel
Acta Metall. Perng 37 3393 1989 10.1016/0001-6160(89)90211-3 Influence of plastic deformation on hydrogen diffusion and permeation in stainless steels
Int. J. Hydrogen Energy Marchi 32 100 2007 10.1016/j.ijhydene.2006.05.008 Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures
Metall. Trans. Hirth 11 861 1980 10.1007/BF02654700 Effects of hydrogen on the properties of iron and steel
Mater. Sci. Eng. Birnbaum 176 191 1994 10.1016/0921-5093(94)90975-X Hydrogen-enhanced localized plasticity-a mechanism for hydrogen-related fracture
Acta Mater. Barnoush 58 5274 2010 10.1016/j.actamat.2010.05.057 Recent developments in the study of hydrogen embrittlement: hydrogen effect on dislocation nucleation
Metall. Mater. Trans. Robertson 46 2323 2015 10.1007/s11661-015-2836-1 Hydrogen embrittlement understood
Scripta Mater. Zhao 135 54 2017 10.1016/j.scriptamat.2017.03.029 Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement
Acta Mater. Han 46 4559 1998 10.1016/S1359-6454(98)00136-0 Effect of strain-induced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures
Int. J. Hydrogen Energy Michler 33 2111 2008 10.1016/j.ijhydene.2008.02.021 Hydrogen environment embrittlement of austenitic stainless steels at low temperatures
Int. J. Hydrogen Energy San Marchi 35 9736 2010 10.1016/j.ijhydene.2010.06.018 On the physical differences between tensile testing of type 304 and 316 austenitic stainless steels with internal hydrogen and in external hydrogen
Scripta Mater. Mine 113 176 2016 10.1016/j.scriptamat.2015.11.013 Mechanical characterisation of hydrogen-induced quasi-cleavage in a metastable austenitic steel using micro-tensile testing
Int. J. Hydrogen Energy Zhang 38 8208 2013 10.1016/j.ijhydene.2013.01.198 Effect of strain-induced martensite on hydrogen embrittlement of austenitic stainless steels investigated by combined tension and hydrogen release methods
Metall. Trans. Brooks 14 75 1983 10.1007/BF02643740 Effect of weld composition and microstructure on hydrogen assisted fracture of austenitic stainless steels
Corrosion Sci. Buckley 34 93 1993 10.1016/0010-938X(93)90261-E The effect of pre-straining and δ-ferrite on the embrittlement of 304L stainless steel by hydrogen
Int. J. Hydrogen Energy Wang 39 13909 2014 10.1016/j.ijhydene.2014.04.122 Hydrogen embrittlement of catholically hydrogen-precharged 304L austenitic stainless steel: effect of plastic pre-strain
Int. J. Hydrogen Energy Mine 42 15415 2017 10.1016/j.ijhydene.2017.04.249 Effect of ultrafine grain refinement on hydrogen embrittlement of metastable austenitic stainless steel
Int. J. Hydrogen Energy Egels 43 5206 2018 10.1016/j.ijhydene.2018.01.062 Impact of chemical inhomogeneities on local material properties and hydrogen environment embrittlement in AISI 304L steels
J. Mater. Sci. Technol. Fan 35 2213 2019 10.1016/j.jmst.2019.03.043 Effect of grain refinement on the hydrogen embrittlement of 304 austenitic stainless steel
Int. J. Hydrogen Energy Mine 34 1097 2009 10.1016/j.ijhydene.2008.11.018 Hydrogen transport in solution-treated and pre-strained austenitic stainless steels and its role in hydrogen-enhanced fatigue crack growth
J. Less Common. Met. Olson 28 107 1972 10.1016/0022-5088(72)90173-7 A mechanism for the strain-induced nucleation of martensitic transformation
Mater. Sci. Technol. Spencer 25 7 2009 10.1179/174328408X293603 The strain induced martensite transformation in austenitic stainless steels: Part 1 - influence of temperature and strain history
Acta Mater. Masumura 84 330 2015 10.1016/j.actamat.2014.10.041 The difference in thermal and mechanical stabilities of austenite between carbon- and nitrogen-added metastable austenitic stainless steels
J. Alloys Compd. Tian 766 131 2018 10.1016/j.jallcom.2018.06.326 Comparing the deformation-induced martensitic transformation with the athermal martensitic transformation in Fe-Cr-Ni alloys
Acta Mater. Herzog 117 371 2016 10.1016/j.actamat.2016.07.019 Additive manufacturing of metals
Scripta Mater. Jared 135 141 2017 10.1016/j.scriptamat.2017.02.029 Additive manufacturing: toward holistic design
Prog. Mater. Sci. DebRoy 92 112 2018 10.1016/j.pmatsci.2017.10.001 Additive manufacturing of metallic components - process, structure and properties
J. Mater. Res. Jägle 29 2072 2014 10.1557/jmr.2014.204 Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting
Prog. Mater. Sci. Olakanmi 74 401 2015 10.1016/j.pmatsci.2015.03.002 A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties
Acta Mater. Kürnsteiner 129 52 2017 10.1016/j.actamat.2017.02.069 Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition
Nat. Mater. Wang 17 63 2018 10.1038/nmat5021 Additively manufactured hierarchical stainless steels with high strength and ductility
Mater. Today Liu 21 354 2018 10.1016/j.mattod.2017.11.004 Dislocation network in additive manufactured steel breaks strength-ductility trade-off
J. Alloys Compd. Saeidi 633 463 2015 10.1016/j.jallcom.2015.01.249 Transformation of austenite to duplex austenite-ferrite assembly in annealed stainless steel 316L consolidated by laser melting
Scripta Mater. Baek 130 87 2017 10.1016/j.scriptamat.2016.11.020 Hydrogen embrittlement of 3-D printing manufactured austenitic stainless steel part for hydrogen service
Tetsu-To-Hagane Nohara 63 772 1977 10.2355/tetsutohagane1955.63.5_772 Composition and grain size dependencies of strain-induced martensitic transformation in metastable Austenitic stainless steels
Int. J. Hydrogen Energy Izawa 44 25064 2019 10.1016/j.ijhydene.2019.07.179 Relationship between hydrogen embrittlement and Md30 temperature: prediction of low-nickel austenitic stainless steel’s resistance
J. Alloys Compd. Prashanth 707 27 2017 10.1016/j.jallcom.2016.12.209 Formation of metastable cellular microstructures in selective laser melted alloys
Kou 2003 Welding Metallurgy
Mater. Sci. Eng. Carlton 651 406 2016 10.1016/j.msea.2015.10.073 Damage evolution and failure mechanisms in additively manufactured stainless steel
Acta Mater. Wang 110 226 2016 10.1016/j.actamat.2016.03.019 Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing
Metall. Trans. Choo 13 135 1982 10.1007/BF02642424 Thermal analysis of trapped hydrogen in pure iron
ISIJ Int. So 49 1952 2009 10.2355/isijinternational.49.1952 Hydrogen delayed fracture properties and internal hydrogen behavior of a Fe-18Mn-1.5Al-0.6C TWIP steel
Acta Mater. Ryu 60 4085 2012 10.1016/j.actamat.2012.04.010 Effect of deformation on hydrogen trapping and effusion in TRIP-assisted steel
Mater. Sci. Eng. Shen 552 514 2012 10.1016/j.msea.2012.05.080 Twinning and martensite in a 304 austenitic stainless steel
Mater. Des. Ahmedabadi 109 466 2016 10.1016/j.matdes.2016.07.106 Modelling kinetics of strain-induced martensite transformation during plastic deformation of austenitic stainless steel
Mater. Sci. Eng. Michler 725 447 2018 10.1016/j.msea.2018.04.011 Local strains in 1.4301 austenitic stainless steel with internal hydrogen
Acta Mater. Borgenstam 45 2079 1997 10.1016/S1359-6454(96)00308-4 Driving force for f.c.c. → b.c.c. martensites in Fe-X alloys
J. Mater. Sci. Technol. Casati 32 738 2016 10.1016/j.jmst.2016.06.016 Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting
Powder Technol. Sun 342 371 2019 10.1016/j.powtec.2018.09.090 Selective laser melting of titanium parts: influence of laser process parameters on macro- and microstructures and tensile property
Metall. Trans. Brooks 1981 10.1007/BF02655194 Hydrogen induced ductility losses in austenitic stainless steel welds
Metall. Trans. Tyson 15 1475 1984 10.1007/BF02648577 Embrittlement of types 316l and 347 weld overlay by post-weld heat treatment and hydrogen
Metall. Trans. Phys. Metall. Mater. Sci. Vitek 1983 10.1007/BF02645553 Microstructural modification OF austenitic stainless steels BY rapid solidification
Acta Mater. Zhang 56 3414 2008 10.1016/j.actamat.2008.03.022 Effect of nickel equivalent on hydrogen gas embrittlement of austenitic stainless steels based on type 316 at low temperatures
Scripta Mater. Rho 39 1407 1998 10.1016/S1359-6462(98)00327-3 The fatigue crack initiation at the interface between matrix and δ-ferrite in 304L stainless steel
Int. J. Fatig. Rho 22 683 2000 10.1016/S0142-1123(00)00043-8 The effect of δ-ferrite on fatigue cracks in 304L steels
Porter 2009 Phase Transformations in Metals and Alloys
Metall. Mater. Trans. Kim 47 222 2016 10.1007/s11661-015-3198-4 Effect of strain-induced martensite on tensile properties and hydrogen embrittlement of 304 stainless steel
Int. J. Hydrogen Energy Kanezaki 33 2604 2008 10.1016/j.ijhydene.2008.02.067 Effects of hydrogen on fatigue crack growth behavior of austenitic stainless steels
Acta Mater. Mine 57 2993 2009 10.1016/j.actamat.2009.03.006 Effect of hydrogen on martensite formation in austenitic stainless steels in high-pressure torsion
Metall. Mater. Trans. Murakami 39 1327 2008 10.1007/s11661-008-9506-5 Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels
Acta Mater. Sun 183 313 2020 10.1016/j.actamat.2019.11.029 Dependence of hydrogen embrittlement mechanisms on microstructure-driven hydrogen distribution in medium Mn steels
Acta Metall. Oriani 22 1065 1974 10.1016/0001-6160(74)90061-3 Equilibrium aspects of hydrogen-induced cracking of steels
Int. J. Hydrogen Energy Wang 41 6053 2016 10.1016/j.ijhydene.2016.03.003 FE analysis of hydrogen diffusion around a crack tip in an austenitic stainless steel
ISIJ Int. Nagumo 41 590 2001 10.2355/isijinternational.41.590 Advances in physical metallurgy and processing of steels. Function of hydrogen in embrittlement of high-strength steels
Int. J. Hydrogen Energy Ahn 32 3734 2007 10.1016/j.ijhydene.2006.08.047 On hydrogen-induced plastic flow localization during void growth and coalescence
ISIJ Int. Shibata 52 208 2012 10.2355/isijinternational.52.208 Microstructural and crystallographic features of hydrogen-related crack propagation in low carbon martensitic steel
Acta Mater. Koyama 70 174 2014 10.1016/j.actamat.2014.01.048 Hydrogen-assisted decohesion and localized plasticity in dual-phase steel
Metall. Mater. Trans. Matsunaga 42 2696 2011 10.1007/s11661-011-0661-8 Visualization of hydrogen diffusion in a hydrogen-enhanced fatigue crack growth in type 304 stainless steel
Metall. Trans. Gerberich 6 1485 1975 10.1007/BF02641960 A short-time diffusion correlation for hydrogen-induced crack growth kinetics
J. Mech. Phys. Solid. Sofronis 37 317 1989 10.1016/0022-5096(89)90002-1 Numerical analysis of hydrogen transport near a blunting crack tip
Eng. Fract. Mech. Yokobori 55 47 1996 10.1016/0013-7944(96)00002-1 Numerical analysis on hydrogen diffusion and concentration in solid with emission around the crack tip
Corrosion Qiao 52 275 1996 10.5006/1.3293639 Critical hydrogen concentration for hydrogen-induced cracking of type 321 stainless steel
Corrosion Sci. Wang 48 2189 2006 10.1016/j.corsci.2005.07.010 Determination of the critical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation
Crank 1975 The Mathematics of Diffusion
Acta Metall. Tsong-Pyng 34 1771 1986 10.1016/0001-6160(86)90123-9 Effects of deformation on hydrogen permeation in austenitic stainless steels
Metall. Trans. Tien 7 821 1976 10.1007/BF02644079 Hydrogen transport by dislocations
J. Mech. Phys. Solid. Dadfarnia 78 511 2015 10.1016/j.jmps.2015.03.002 Modeling hydrogen transport by dislocations
Metall. Mater. Trans. Shamsujjoha 49 3011 2018 10.1007/s11661-018-4607-2 High strength and ductility of additively manufactured 316L stainless steel explained
Reed-Hill 1994 Physical Metallurgy Principles
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.