• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

논문 상세정보


Abstract The two-axis crosstalk of a gimbal-less Micro-Electro-Mechanical-system (MEMS) scanner was analyzed to estimate the mechanical crosstalk due to imperfect decoupling of hinged linkages and/or fabrication error. Two types of geometrical crosstalk, caused by rotational alignment angle and fan-shaped distortion, were theoretically derived, and total crosstalk was measured at two rotational alignment angles of the MEMS scanner. The mechanical crosstalk in a quasi-static mode was estimated as 0.9% by comparing the theoretical results with experimental ones based on the least squared error. The proposed method was validated for one-axis driving over a wide range of optical scan angle and extended for two-axis driving to examine the feasibility and limitation of the proposed method. The maximum discrepancy of crosstalk between theoretical calculations and experimental results was 0.72% for one-axis driving and 2.22% for two-axis driving, respectively. This method can be used to mitigate the crosstalk of MEMS scanners for enhanced performance. Highlights Crosstalk was classified as geometrical and mechanical crosstalk. Fan-shaped distortion changes both the frequency and phase of the crosstalk. Rotational alignment angle was found to be crucial in the crosstalk analysis. The mechanical crosstalk specific to scanner was estimated by least squared error.


참고문헌 (27)

  1. 1. Laser Radar Technol. Appl. XXII. Milanovi 10191 101910N 2017 10.1117/12.2264069 Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in LiDAR applications 
  2. 2. Opt. Lett. Zhao 42 2302 2017 10.1364/OL.42.002302 Dual-axis optical coherence tomography for deep tissue imaging 
  3. 3. IEEE Photonics Technol. Lett. Moon 28 557 2016 10.1109/LPT.2015.2513483 Two-axis electrostatic gimbaled mirror scanner with self-aligned tilted stationary combs 
  4. 4. J. Micromech. Microeng. Jun 24 2014 10.1088/0960-1317/24/9/095008 A gimbal-less two-axis electrostatic scanner with tilted stationary vertical combs and serially connected springs via a microassembly process 
  5. 5. Opt. Scanning Urey 2002 4773 27 2002 Torsional MEMS scanner design for high-resolution scanning display systems 
  6. 6. J. Microelectromech. Syst. Holmstrom 23 259 2014 10.1109/JMEMS.2013.2295470 MEMS laser scanners: a review 
  7. 7. Opt. Lett. Park 39 6675 2014 10.1364/OL.39.006675 Micromachined tethered silicon oscillator for an endomicroscopic Lissajous fiber scanner 
  8. 8. R.B. Sprague, J. Yan, J.B. Tauscher, W.O. Davis, J.R. Lewis, D.R. Brown, T.W. Montague, C.W. Brown, MEMS scanner driven by two or more signal lines, 2008. 
  9. 9. Meas. J. Int. Meas. Confed. umer 45 459 2012 10.1016/j.measurement.2011.10.027 An advanced nonlinear model of a low-g MEMS accelerometer for a computer pen 
  10. 10. M. Usui, S. Uchiyama, E. Hashimoto, K. Hadama, Y. Ishii, N. Matsuura, T. Sakata, N. Shimoyama, Y. Sato, H. Ishii, T. Matsuura, F. Shimokawa, Y. Uenishi, Electrically separated two-axis MEMS mirror array module for wavelength selective switches, in: 2009 IEEE/LEOS Int. Conf. Opt. MEMS Nanophotonics, OPTMEMS 2009, 2009, pp. 158-159. 10.1109/OMEMS.2009.5338611. 
  11. 11. Opt. Express. Cho 23 16792 2015 10.1364/OE.23.016792 Electromagnetic biaxial microscanner with mechanical amplification at resonance 
  12. 12. J. Microelectromech. Syst. Baran 21 1303 2012 10.1109/JMEMS.2012.2209405 Resonant PZT MEMS scanner for high-resolution displays 
  13. 13. MOEMS Miniaturized Syst. XIII. Hofmann 8977 89770A 2014 Wafer-level vacuum-packaged two-axis MEMS scanning mirror for pico-projector application 
  14. 14. IEEE Photonics Technol. Lett. Park 30 443 2018 10.1109/LPT.2018.2797269 Via-less two-axis electromagnetic micro scanner based on dual radial magnetic fields 
  15. 15. Sensors Actuators, A Phys. Naono 233 147 2015 10.1016/j.sna.2015.06.029 Non-resonant 2-D piezoelectric MEMS optical scanner actuated by Nb doped PZT thin film 
  16. 16. Meas. J. Int. Meas. Confed. MacAulay 94 942 2016 10.1016/j.measurement.2016.03.042 Study of manufacturing and measurement reproducibility on a laser textured structured surface 
  17. 17. Micromachines. Kim 10 2019 10.3390/mi10040217 Input shaping based on an experimental transfer function for an electrostatic microscanner in a quasistatic mode 
  18. 18. V. Milanovic, Linearized gimbal-less two-axis MEMS mirrors, in: 2009, pp. 4-6. 
  19. 19. Proc. IEEE Int. Conf. Electron. Circuits, Syst. Milanovi 1 281 2002 10.1109/ICECS.2002.1045389 Multilevel beam SOI-MEMS fabrication and applications 
  20. 20. https://www.mirrorcletech.com/wp/products/mems-mirrors/dual/bonded/a8l2-2/. 
  21. 21. Micro Nano Syst. Lett. Kim 6 4 2018 10.1186/s40486-018-0073-2 Intensity-based laser distance measurement system using 2D electromagnetic scanning micromirror 
  22. 22. Biomed. Opt. Express. Wang 4 2066 2013 10.1364/BOE.4.002066 Correction of image distortions in endoscopic optical coherence tomography based on two-axis scanning MEMS mirrors 
  23. 23. Micromachines. Park 9 2018 10.3390/mi9050219 Gimbal-less two-axis electromagnetic microscanner with twist mechanism 
  24. 24. https://www.on-trak.com/psm.html. 
  25. 25. https://www.thorlabs.com/thorproduct.cfm?partnumber=K6XS. 
  26. 26. Meas. J. Int. Meas. Confed. Janeiro 124 479 2018 10.1016/j.measurement.2018.04.071 Threshold estimation for least-squares fitting in impedance spectroscopy 
  27. 27. Meas. J. Int. Meas. Confed. Zhu 146 380 2019 10.1016/j.measurement.2019.06.040 Fast and on-site calibration of the three-axis wheel force sensor using an embedded triaxial accelerometer 


원문 PDF 다운로드

  • 원문 PDF 정보가 존재하지 않습니다.

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

DOI 인용 스타일

"" 핵심어 질의응답