$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A diffusion model for backfill grout behind shield tunnel lining

International journal for numerical and analytical methods in geomechanics, v.45 no.4, 2021년, pp.457 - 477  

Liu, Xiao‐Xue (Department of Civil Engineering, School of Naval Architecture, Ocean, and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China) ,  Shen, Shui‐Long (MOE Key Laboratory of Intelligent Manufacturing Technology, Department of Civil and Environmental Engineering, College of Engineering, Shantou University, 243 Daxue Road, Shantou, Guangdong, 515063, China) ,  Xu, Ye‐Shuang (Department of Civil Engineering, School of Naval Architecture, Ocean, and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China) ,  Zhou, Annan (Civil and Infrastructure Engineering Discipline, School of Engineering, Royal Melbourne Institute of Technology (RMIT), Victoria, Australia)

Abstract AI-Helper 아이콘AI-Helper

AbstractThis paper presents an analytical model to investigate backfill grout diffusion behind tunnel segmental lining, in which the backfill grout is taken as a Bingham fluid. The analytical model of grout diffusion is derived based on force–equilibrium principle, Darcy's law, and the law of ...

주제어

참고문헌 (46)

  1. Bernat S , Cambou B , Dubois P . Assessing a soft soil tunnelling numerical model using field data . Geotechnique . 1999 ; 49 ( 4 ): 427 ‐ 452 . 

  2. Kasper T , Meschke G . A 3D finite element simulation model for TBM tunnelling in soft ground . Int J Numer Anal Methods Geomech . 2004 ; 28 : 1441 ‐ 1460 . 

  3. Kasper T , Meschke G . A numerical study of the effect of soil and grout material properties and cover depth in shield tunnelling . Comput Geotech . 2006 ; 33 ( 2006 ): 234 ‐ 247 . 

  4. Elbaz K , Shen SL , Sun WJ , Yin ZY , Zhou A . Prediction model of shield performance during tunneling via incorporating improved Particle Swarm Optimization into ANFIS . IEEE Access . 2020 ; 8 ( 1 ): 39659 ‐ 39671 . https://doi.org/10.1109/ACCESS.2020.2974058. 

  5. Elbaz K , Shen SL , Zhou A , Yin ZY , Lyu HM . Prediction of disc cutter life during shield tunneling with AI via incorporation of genetic algorithm into GMDH‐type neural network . Engineering . 2020 . https://doi.org/10.1016/j.eng.2020.02.016. In press. 

  6. Liu XX , Shen SL , Xu YS , Yin ZY . Analytical approach for time‐dependent groundwater inflow into shield tunnel face in confined aquifer . Int J Numer Anal Methods Geomech . 2018 ; 42 ( 4 ): 655 ‐ 673 . https://doi.org/10.1002/nag.2760. 

  7. Liu XX , Shen SL , Zhou AN , Xu YS . Evaluation of foam conditioning effect on groundwater inflow at tunnel cutting face . Int J Numer Anal Methods Geomech . 2019 ; 43 ( 2 ): 463 ‐ 481 . https://doi.org/10.1002/nag.2871. 

  8. Lee KM , Rowe RK . An analysis of three‐dimensional ground movements: the Thunder Bay tunnel . Can Geotech J. 1991 ; 28 ( 1 ): 25 ‐ 41 . 

  9. Yu C , Zhou A , Chen J , Arulrajah A , Horpibulsuk S . Analysis of a tunnel failure caused by leakage of the shield tail seal system . ScienceDirect . 2020 ; 5 ( 2 ): 105 ‐ 114 . https://doi.org/10.1016/j.undsp.2018.11.003. 

  10. Lee KM , Rowe RK , Lo KY . Subsidence owing to tunnelling. I. Estimating the gap parameter . Can Geotech J. 1992 ; 29 ( 6 ): 929 ‐ 940 . 

  11. Han L , Ye GL , Li YH , Xia XH , Wang JH . In situ monitoring of frost heave pressure during cross passage construction using ground freezing method . Can Geotech J. 2016 ; 53 ( 3 ): 530 ‐ 539 . 

  12. Han L , Ye GL , Chen JJ , Xia XH , Wang JH . Pressures on the lining of a large shield tunnel with a small overburden: a case study . Tunn Undergr?Space?Technol. 2017 ; 64 : 1 ‐ 9 . 

  13. Shah R , Lavasan AA , Peila D , Todaro C , Luciani A , Schanz T . Numerical study on backfilling the tail void using a two‐component grout . J Mater Civ Eng. 2018 ; 30 ( 3 ): 04018003 . 

  14. Liao SM , Wei SF , Shen SL . Structural responses of existing metro stations to adjacent deep excavations in Suzhou, China . J Perform Constr Facil. 2016 ; 30 ( 4 ): 04015089 . https://doi.org/10.1061/(ASCE)CF.1943-5509.0000845. 

  15. Shen SL , Cui QL , Ho EC , Xu YS . Ground response to multiple parallel microtunneling operations in cemented silty clay and sand . J Geotech Geoenviron Eng . 2016 ; 142 : 04016001 ( 5 ). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001441. 

  16. Shirlaw JN , Richards DP , Ramond P , Longchamp P . Recent Experience in Automatic Tail Void Grouting with Soft Ground Tunnel Boring Machines . Oxford, UK: Elsevier ; 2004 . 

  17. Wu HN , Shen SL , Chen RP , Zhou A . Three‐dimensional numerical modelling on localised leakage in segmental lining of shield tunnels . Comput Geotech . 2020 ; 122 ( 2020 ): 103549 . https://doi.org/10.1016/j.compgeo.2020.103549. 

  18. Zhang K , Lyu HM , Shen SL , Zhou A , Yin ZY . Evolutionary hybrid neural network approach to predict shield tunneling‐induced ground settlements . Tunn Undergr Space Technol. 2020 ; 106 ( 2020 ): 103594 . https://doi.org/10.1016/j.tust.2020.103594. 

  19. Shen SL , Wu YX , Misra A . Calculation of head difference at two sides of a cut‐off barrier during excavation dewatering . Comput Geotech . 2017 ; 91 ( 2017 ): 192 ‐ 202 . https://doi.org/10.1016/j.compgeo.2017.07.014. 

  20. Oh JY , Ziegler M . Investigation on influence of tail void grouting on the surface settlements during shield tunneling using a stress‐pore pressure coupled analysis . KSCE J Civ Eng . 2014 ; 18 ( 3 ): 803 ‐ 811 . 

  21. Ye F , Yang T , Mao JH , Qin XZ , Zhao RL . Half‐spherical surface diffusion model of shield tunnel back‐fill grouting based on infiltration effect . Tunn Undergr?Space Technol . 2019 ; 83 ( 2019 ): 274 ‐ 281 . 

  22. Ren DJ , Shen SL , Zhou AN , Chai JC . Prediction of lateral continuous wear of cutter ring in soft ground with quartz sand . Comput Geotech . 2018a ; 103 : 86 ‐ 92 . https://doi.org/10.1016/j.compgeo.2018.07.015. 

  23. Ren DJ , Shen SL , Arulrajah A , Wu HN . Evaluation of ground loss ratio with moving trajectories induced in double‐O‐tube (DOT) tunnelling . Can Geotech J. 2018b ; 55 ( 6 ): 894 ‐ 902 . https://doi.org/10.1139/cgj-2017-0355. 

  24. Wu YX , Shen JS , Cheng WC , Hino T . Semi‐analytical solution to pumping test data with barrier, wellbore storage, and partial penetration effects . Eng Geol . 2017 ; 226 : 44 ‐ 51 . https://doi.org/10.1016/j.enggeo.2017.05.011. 

  25. Wang ZN , Shen SL , Zhou A , Xu YS . Experimental evaluation of aging characteristics of EPDM as a sealant for undersea shield tunnels . J Mater Civ Eng ASCE . 2020 ; 32 ( 7 ): 04020182 . https://doi.org/10.1061/(ASCE)MT.1943-5533.0003242. 

  26. Wu HN , Shen SL , Liao SM , Yin ZY . Longitudinal structural modelling of shield tunnels considering shearing dislocation between segmental rings . Tunn Undergr?Space?Technol. 2015 ; 50 ( 2015 ): 317 ‐ 323 . https://doi.org/10.1016/j.tust.2015.08.001. 

  27. Wu HN , Shen SL , Yang J , Zhou AN . Soil‐tunnel interaction modelling for shield tunnels considering shearing dislocation in longitudinal joints . Tunn Undergr?Space?Technol. 2018 ; 78 ( 2018 ): 168 ‐ 177 . https://doi.org/10.1016/j.tust.2018.04.009. 

  28. Wu YX , Shen SL , Lyu HM , Zhou AN . Analyses of leakage effect of waterproof curtain during excavation dewatering . J Hydrol . 2020 ; 583 ( 2020 ): 124582 . https://doi.org/10.1016/j.jhydrol.2020.124582. 

  29. Li SC , Zheng Z , Liu RT , Feng X , Sun ZZ , Zhang LZ . Analysis of diffusion of grout in porous media considering infiltration effects . Chin J Rock Mech Eng . 2015 ; 34 ( 12 ): 2401 ‐ 2409 (in Chinese). 

  30. Ye GL , Hashimoto T , Shen SL , Zhu HH , Bai TH . Lessons learnt from unusual ground settlement during Double‐O‐Tube tunneling in soft ground . Tunn Undergr?Space Technol. 2015 ; 49 ( 2015 ): 79 ‐ 91 . https://doi.org/10.1016/j.tust.2015.04.008. 

  31. Zhang FS , Xie XY , Huang HW . Application of ground penetrating radar in grouting evaluation for shield tunnel construction . Tunn Undergr?Space Technol. 2010 ; 25 ( 2010 ): 99 ‐ 107 . 

  32. Xie XY , Liu YJ , Huang HW , Du J , Zhang FS . Evaluation of grout behind the lining of shield tunnels using ground‐penetrating radar in the Shanghai Metro Line, China . J Geophys Eng . 2007 ; 4 ( 2007 ): 253 ‐ 261 . 

  33. Liang Y , Zhang J , Lai ZS , Huang QY , Huang LC . Temporal and spatial distribution of the grout pressure and its effects on lining segments during synchronous grouting in shield tunnelling . Eur J Environ Civil Eng . 2020 ; 24 ( 1 ): 79 ‐ 96 . 

  34. Min FL , Song HB , Zhang N . Experimental study on fluid properties of slurry and its influence on slurry infiltration in sand stratum . Appl Clay Sci . 2018 ; 161 : 64 ‐ 69 . 

  35. Bezuijen A , Talmon AM , Kalberg FJ , Plugge R . Field measurement of grout pressures during tunnelling of the Sophia rail tunnel . Soils Foundat . 2004 ; 44 ( 1 ): 39 ‐ 48 . 

  36. Talmon AM , Huisman M . Fall velocity of particles in shear flow of drilling fluids . Tunn Undergr?Space Technol. 2005 ; 20 : 193 ‐ 201 . 

  37. Ding WQ , Duan C , Zhu YH , Zhao TC , Huang DZ , Li PN . The behaviour of synchronous grouting in a quasi‐rectangular shield tunnel based on a large visualized model test . Tunn Undergr?Space Technol. 2019 ; 83 ( 2019 ): 409 ‐ 424 . https://doi.org/10.1016/j.tust.2018.10.006. 

  38. Bear J . Hydraulics of Groundwater . New York : McGraw‐Hill ; 1979 . 

  39. Tan Y , Wei B , Lu Y , Yang B . Is basal reinforcement essential for long and narrow subway excavation bottoming out in Shanghai soft clay . J Geotech Geoenviron Eng . 2019 ; 145 ( 5 ): 05019002 . 

  40. Tan Y , Jiang W , Luo W , Lu Y , Xu C . Longitudinal sliding event during excavation of Feng‐Qi Station of Hangzhou Metro Line 1: postfailure investigation . J Perform Constr Facil . 2018 ; 32 ( 4 ): 04018039 . 

  41. Dai Z , Bai Y , Peng FL , Liao SM . Study on mechanism of simultaneous backfilling grouting for shield tunneling in soft soil . GeoShanghai International Conference, Deep and Underground Excavations . 2010 : 182 ‐ 190 . 

  42. Mesri G , Terzaghi K , Peck RB . Soil Mechanics in Engineering Practice . 3rd ed. New York City : Wiley ; 1996 . 

  43. Yin ZY , Jin YF , Shen SL , Huang HW . An efficient optimization method for identifying parameters of soft structured clay by an enhanced genetic algorithm and elastic viscoplastic model . Acta Geotech . 2017 ; 12 ( 4 ): 849 ‐ 867 . https://doi.org/10.1007/s11440-016-0486-0. 

  44. Yin ZY , Wu ZY , Hicher PY . Modeling monotonic and cyclic behavior of granular materials by exponential constitutive function . J Eng Mech ASCE . 2018 ; 144 ( 4 ): 04018014 . 

  45. Lin CH , Lee VW , Trifunac MD . The reflection of plane waves in a poroelastic half‐space saturated with inviscid fluid . Soil Dyn Earthq Eng . 2005 ; 25 ( 2005 ): 205 ‐ 223 . 

  46. Ruan WJ . Research on diffusion of grouting and basic properties of grouts . Chinese J Geotech Eng . 2005 ; 27 ( 1 ): 69 ‐ 73 . (in Chinese). 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로