$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Atomically Alloyed Fe-Co Catalyst Derived from a N-Coordinated Co Single-Atom Structure for CO2 Hydrogenation

ACS catalysis, v.11 no.4, 2021년, pp.2267 - 2278  

Hwang, Sun-Mi (Fine Dust Research Department , Korea Institute of Energy Research (KIER) , 152 Gajeongro , Yeseong-gu, Daejeon 34129 , Republic of Korea) ,  Han, Seung Ju (C1 Gas and Carbon Convergent Research Center , Korea Research Institute of Chemical Technology (KRICT) , 141 Gajeongro , Yuseong-gu, Daejeon 34114 , Republic of Korea) ,  Park, Hae-Gu (C1 Gas and Carbon Convergent Research Center , Korea Research Institute of Chemical Technology (KRICT) , 141 Gajeongro , Yuseong-gu, Daejeon 34114 , Republic of Korea) ,  Lee, Hojeong (School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea) ,  An, Kwangjin (School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea) ,  Jun, Ki-Won ,  Kim, Seok Ki

Abstract AI-Helper 아이콘AI-Helper

We report a stable and efficient Fe-Co catalyst derived from N-coordinated Co single-atom carbon (FeK/Co-NC) for CO2 conversion to long-chain hydrocarbons with a C5+ selectivity of up to 42.4% at a conversion of 51.7% at 300 °C and 2.5 MPa. Its performance remained stable over a time-on-stream o...

Keyword

참고문헌 (54)

  1. Shafer, Wilson D., Jacobs, Gary, Graham, Uschi M., Hamdeh, Hussein H., Davis, Burtron H.. Increased CO2 hydrogenation to liquid products using promoted iron catalysts. Journal of catalysis, vol.369, 239-248.

  2. Ahmad, Kaisar, Upadhyayula, Sreedevi. Greenhouse gas CO2 hydrogenation to fuels: A thermodynamic analysis. Environmental progress & sustainable energy, vol.38, no.1, 98-111.

  3. 10.1016/j.jcou.2020.02. 

  4. Samanta, A., Landau, M. V., Vidruk-Nehemya, R., Herskowitz, M.. CO2 hydrogenation to higher hydrocarbons on K/Fe-Al-O spinel catalysts promoted with Si, Ti, Zr, Hf, Mn and Ce. Catalysis science & technology, vol.7, no.18, 4048-4063.

  5. Sai Prasad, P. S., Bae, Jong Wook, Jun, Ki-Won, Lee, Kyu-Wan. Fischer-Tropsch Synthesis by Carbon Dioxide Hydrogenation on Fe-Based Catalysts. Catalysis surveys from Asia, vol.12, no.3, 170-183.

  6. Fischer, N., Henkel, R., Hettel, B., Iglesias, M., Schaub, G., Claeys, M.. Hydrocarbons via CO2 Hydrogenation Over Iron Catalysts: The Effect of Potassium on Structure and Performance. Catalysis letters, vol.146, no.2, 509-517.

  7. 10.1016/s0926-860x(02)00278- 

  8. Visconti, C.G., Martinelli, M., Falbo, L., Infantes-Molina, A., Lietti, L., Forzatti, P., Iaquaniello, G., Palo, E., Picutti, B., Brignoli, F.. CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst. Applied catalysis. B, Environmental, vol.200, 530-542.

  9. Ramirez, Adrian, Ould‐Chikh, Samy, Gevers, Lieven, Chowdhury, Abhishek Dutta, Abou‐Hamad, Edy, Aguilar‐Tapia, Antonio, Hazemann, Jean‐Louis, Wehbe, Nimer, Al Abdulghani, Abdullah J., Kozlov, Sergey M., Cavallo, Luigi, Gascon, Jorge. Tandem Conversion of CO2 to Valuable Hydrocarbons in Highly Concentrated Potassium Iron Catalysts. ChemCatChem, vol.11, no.12, 2879-2886.

  10. Satthawong, Ratchprapa, Koizumi, Naoto, Song, Chunshan, Prasassarakich, Pattarapan. Comparative Study on CO2 Hydrogenation to Higher Hydrocarbons over Fe-Based Bimetallic Catalysts. Topics in catalysis, vol.57, no.6, 588-594.

  11. Díez-Ramírez, J., Sánchez, P., Kyriakou, V., Zafeiratos, S., Marnellos, G.E., Konsolakis, M., Dorado, F.. Effect of support nature on the cobalt-catalyzed CO2 hydrogenation. Journal of CO2 utilization, vol.21, 562-571.

  12. Satthawong, R., Koizumi, N., Song, C., Prasassarakich, P.. Light olefin synthesis from CO2 hydrogenation over K-promoted Fe-Co bimetallic catalysts. Catalysis today, vol.251, 34-40.

  13. Numpilai, Thanapa, Witoon, Thongthai, Chanlek, Narong, Limphirat, Wanwisa, Bonura, Giuseppe, Chareonpanich, Metta, Limtrakul, Jumras. Structure–activity relationships of Fe-Co/K-Al2O3 catalysts calcined at different temperatures for CO2 hydrogenation to light olefins. Applied catalysis. A, General, vol.547, 219-229.

  14. Gnanamani, Muthu Kumaran, Jacobs, Gary, Hamdeh, Hussein H., Shafer, Wilson D., Liu, Fang, Hopps, Shelley D., Thomas, Gerald A., Davis, Burtron H.. Hydrogenation of Carbon Dioxide over Co–Fe Bimetallic Catalysts. ACS catalysis, vol.6, no.2, 913-927.

  15. Gnanamani, Muthu Kumaran, Hamdeh, Hussein H., Jacobs, Gary, Shafer, Wilson D., Hopps, Shelley D., Thomas, Gerald A., Davis, Burtron H.. Hydrogenation of Carbon Dioxide over K‐Promoted FeCo Bimetallic Catalysts Prepared from Mixed Metal Oxalates. ChemCatChem, vol.9, no.7, 1303-1312.

  16. Kim, Kwang Young, Lee, Hojeong, Noh, Woo Yeong, Shin, Jungho, Han, Seung Ju, Kim, Seok Ki, An, Kwangjin, Lee, Jae Sung. Cobalt Ferrite Nanoparticles to Form a Catalytic Co-Fe Alloy Carbide Phase for Selective CO2 Hydrogenation to Light Olefins. ACS catalysis, vol.10, 8660-8671.

  17. Yuan, Fei, Zhang, Guanghui, Zhu, Jie, Ding, Fanshu, Zhang, Anfeng, Song, Chunshan, Guo, Xinwen. Boosting light olefin selectivity in CO2 hydrogenation by adding Co to Fe catalysts within close proximity. Catalysis today, vol.371, 142-149.

  18. Ismail, Ahmed S. M., Casavola, Marianna, Liu, Boyang, Gloter, Alexandre, van Deelen, Tom W., Versluijs, Marjan, Meeldijk, Johannes D., Stéphan, Odile, de Jong, Krijn P., de Groot, Frank M. F.. Atomic-Scale Investigation of the Structural and Electronic Properties of Cobalt-Iron Bimetallic Fischer-Tropsch Catalysts. ACS catalysis, vol.9, no.9, 7998-8011.

  19. Chen, Yuanjun, Ji, Shufang, Chen, Peng, Qing, Wang, Dingsheng, Li, Yadong. Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule, vol.2, no.7, 1242-1264.

  20. Wang, Xiao Xia, Cullen, David A., Pan, Yung‐Tin, Hwang, Sooyeon, Wang, Maoyu, Feng, Zhenxing, Wang, Jingyun, Engelhard, Mark H., Zhang, Hanguang, He, Yanghua, Shao, Yuyan, Su, Dong, More, Karren L., Spendelow, Jacob S., Wu, Gang. Nitrogen‐Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells. Advanced materials, vol.30, no.11, 1706758-.

  21. Li, Mingming, Xu, Fan, Li, Haoran, Wang, Yong. Nitrogen-doped porous carbon materials: promising catalysts or catalyst supports for heterogeneous hydrogenation and oxidation. Catalysis science & technology, vol.6, no.11, 3670-3693.

  22. Kangvansura, Praewpilin, Chew, Ly May, Kongmark, Chanapa, Santawaja, Phatchada, Ruland, Holger, Xia, Wei, Schulz, Hans, Worayingyong, Attera, Muhler, Martin. Effects of Potassium and Manganese Promoters on Nitrogen-Doped Carbon Nanotube-Supported Iron Catalysts for CO2 Hydrogenation. Engineering, vol.3, no.3, 385-392.

  23. Ravel, B., Newville, M.. ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. Journal of synchrotron radiation, vol.12, no.4, 537-541.

  24. Kresse, G., Hafner, J.. Ab initiomolecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Physical review. B, Condensed matter, vol.49, no.20, 14251-14269.

  25. Kresse, G., Furthmüller, J.. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science, vol.6, no.1, 15-50.

  26. Dion, M., Rydberg, H., Schröder, E., Langreth, D. C., Lundqvist, B. I.. Van der Waals Density Functional for General Geometries. Physical review letters, vol.92, no.24, 246401-.

  27. Klimeš, Jiří, Bowler, David R., Michaelides, Angelos. Van der Waals density functionals applied to solids. Physical review. B, Condensed matter and materials physics, vol.83, no.19, 195131-.

  28. Lee, Kyuho, Murray, Éamonn D., Kong, Lingzhu, Lundqvist, Bengt I., Langreth, David C.. Higher-accuracy van der Waals density functional. Physical review. B, Condensed matter and materials physics, vol.82, no.8, 081101-.

  29. Román-Pérez, Guillermo, Soler, José M.. Efficient Implementation of a van der Waals Density Functional: Application to Double-Wall Carbon Nanotubes. Physical review letters, vol.103, no.9, 096102-.

  30. Ma, X., Genest, A., Spanu, L., Rosch, N.. Structures and vibrational frequencies of CO adsorbed on transition metals from calculations using the vdW-DF2 functional. Computational & theoretical chemistry, vol.1069, 147-154.

  31. Troppenz, Maria, Rigamonti, Santiago, Draxl, Claudia. Predicting Ground-State Configurations and Electronic Properties of the Thermoelectric Clathrates Ba8AlxSi46–x and Sr8AlxSi46–x. Chemistry of materials : a publication of the American Chemical Society, vol.29, no.6, 2414-2424.

  32. Guo, L., Obot, I.B., Zheng, X., Shen, X., Qiang, Y., Kaya, S., Kaya, C.. Theoretical insight into an empirical rule about organic corrosion inhibitors containing nitrogen, oxygen, and sulfur atoms. Applied surface science, vol.406, 301-306.

  33. Luo, Wenjia, Asthagiri, Aravind. Density Functional Theory Study of Methanol Steam Reforming on Co(0001) and Co(111) Surfaces. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.118, no.28, 15274-15285.

  34. Sorescu, Dan C.. Plane-Wave Density Functional Theory Investigations of the Adsorption and Activation of CO on Fe5C2Surfaces. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.113, no.21, 9256-9274.

  35. Yang, Tao, Wen, Xiao-Dong, Huo, Chun-Fang, Li, Yong-Wang, Wang, Jianguo, Jiao, Haijun. Structure and energetics of hydrogen adsorption on Fe3O4(111). Journal of molecular catalysis. A, Chemical, vol.302, no.1, 129-136.

  36. Yu, X., Huo, C.F., Li, Y.W., Wang, J., Jiao, H.. Fe3O4 surface electronic structures and stability from GGA+U. Surface science, vol.606, no.9, 872-879.

  37. Han, Seung Ju, Hwang, Sun-Mi, Park, Hae-Gu, Zhang, Chundong, Jun, Ki-Won, Kim, Seok Ki. Identification of active sites for CO2hydrogenation in Fe catalysts by first-principles microkinetic modelling. Journal of materials chemistry. A, Materials for energy and sustainability, vol.8, no.26, 13014-13023.

  38. Christensen, Rune, Hansen, Heine A., Vegge, Tejs. Identifying systematic DFT errors in catalytic reactions. Catalysis science & technology, vol.5, no.11, 4946-4949.

  39. Studt, Felix, Behrens, Malte, Kunkes, Edward L., Thomas, Nygil, Zander, Stefan, Tarasov, Andrey, Schumann, Julia, Frei, Elias, Varley, Joel B., Abild‐Pedersen, Frank, Nørskov, Jens K., Schlögl, Robert. The Mechanism of CO and CO2 Hydrogenation to Methanol over Cu‐Based Catalysts. ChemCatChem, vol.7, no.7, 1105-1111.

  40. Henkelman, Graeme, Uberuaga, Blas P., Jónsson, Hannes. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of chemical physics, vol.113, no.22, 9901-9904.

  41. Sheppard, Daniel, Terrell, Rye, Henkelman, Graeme. Optimization methods for finding minimum energy paths. The Journal of chemical physics, vol.128, no.13, 134106-.

  42. Jiang, Feng, Liu, Bing, Geng, Shunshun, Xu, Yuebing, Liu, Xiaohao. Hydrogenation of CO2 into hydrocarbons: enhanced catalytic activity over Fe-based Fischer-Tropsch catalysts. Catalysis science & technology, vol.8, no.16, 4097-4107.

  43. Rubio-Zuazo, Juan, Chainani, Ashish, Taguchi, Munetaka, Malterre, Daniel, Serrano, Aida, Castro, German R.. Electronic structure of FeO, γ−Fe2O3 , and Fe3O4 epitaxial films using high-energy spectroscopies. Physical review. B, vol.97, no.23, 235148-.

  44. Kumar, Kavita, Dubau, Laetitia, Mermoux, Michel, Li, Jingkun, Zitolo, Andrea, Nelayah, Jaysen, Jaouen, Frédéric, Maillard, Frédéric. On the Influence of Oxygen on the Degradation of Fe‐N‐C Catalysts. Angewandte Chemie, vol.132, no.8, 3261-3269.

  45. Brik, Mikhail G., Suchocki, Andrzej, Kamińska, Agata. Lattice Parameters and Stability of the Spinel Compounds in Relation to the Ionic Radii and Electronegativities of Constituting Chemical Elements. Inorganic chemistry, vol.53, no.10, 5088-5099.

  46. Arévalo-Cid, P., Isasi, J., Martín-Hernández, F.. Comparative study of core-shell nanostructures based on amino-functionalized Fe3O4@SiO2 and CoFe2O4@SiO2 nanocomposites. Journal of alloys and compounds, vol.766, 609-618.

  47. Zhao, Yige, Wu, Yijun, Liu, Jingjun, Wang, Feng. Dependent Relationship between Quantitative Lattice Contraction and Enhanced Oxygen Reduction Activity over Pt–Cu Alloy Catalysts. ACS applied materials & interfaces, vol.9, no.41, 35740-35748.

  48. Zhu, L., Yao, K. L., Liu, Z. L.. First-principles study of the polar (111) surface ofFe3O4. Physical review. B, Condensed matter and materials physics, vol.74, no.3, 035409-.

  49. Verma, K., Kumar, A., Varshney, D.. Dielectric relaxation behavior of AxCo1-xFe2O4 (A=Zn, Mg) mixed ferrites. Journal of alloys and compounds, vol.526, 91-97.

  50. Landau, M. V., Meiri, N., Utsis, N., Vidruk Nehemya, R., Herskowitz, M.. Conversion of CO2, CO, and H2 in CO2 Hydrogenation to Fungible Liquid Fuels on Fe-Based Catalysts. Industrial & engineering chemistry research, vol.56, no.45, 13334-13355.

  51. Nie, Xiaowa, Wang, Haozhi, Janik, Michael J., Chen, Yonggang, Guo, Xinwen, Song, Chunshan. Mechanistic Insight into C–C Coupling over Fe–Cu Bimetallic Catalysts in CO2 Hydrogenation. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.121, no.24, 13164-13174.

  52. Liu, Junhui, Zhang, Guanghui, Jiang, Xiao, Wang, Junhu, Song, Chunshan, Guo, Xinwen. Insight into the role of Fe5C2 in CO2 catalytic hydrogenation to hydrocarbons. Catalysis today, vol.371, 162-170.

  53. Yang, Ce, Zhao, Huabo, Hou, Yanglong, Ma, Ding. Fe5C2 Nanoparticles: A Facile Bromide-Induced Synthesis and as an Active Phase for Fischer–Tropsch Synthesis. Journal of the American Chemical Society, vol.134, no.38, 15814-15821.

  54. Gong, Huiyong, He, Yurong, Yin, Junqing, Liu, Suyao, Qing, Ming, Peng, Qing, Huo, Chun-Fang, Wang, Hong, Yang, Yong, Wen, Xiao-Dong. Electronic effects of transition metal dopants on Fe(100) and Fe5C2(100) surfaces for CO activation. Catalysis science & technology, vol.10, no.7, 2047-2056.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로