$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Bicarbonate permeation through anion channels: its role in health and disease

Pflügers archiv : European journal of physiology, v.472 no.8, 2020년, pp.1003 - 1018  

Shin, Dong Hoon ,  Kim, Minjae ,  Kim, Yonjung ,  Jun, Ikhyun ,  Jung, Jinsei ,  Nam, Joo Hyun ,  Cheng, Mary Hongying ,  Lee, Min Goo

초록이 없습니다.

참고문헌 (119)

  1. Phys Chem Chem Phys M Aguilella-Arzo 11 2 358 2009 10.1039/b812775a Aguilella-Arzo M, Andrio A, Aguilella VM, Alcaraz A (2009) Dielectric saturation of water in a membrane protein channel. Phys Chem Chem Phys 11(2):358-365. https://doi.org/10.1039/b812775a 

  2. IUBMB Life K Alka 66 9 596 2014 10.1002/iub.1315 Alka K, Casey JR (2014) Bicarbonate transport in health and disease. IUBMB Life 66(9):596-615. https://doi.org/10.1002/iub.1315 

  3. J Clin Invest D Alvaro 100 6 1349 1997 10.1172/JCI119655 Alvaro D, Alpini G, Jezequel AM, Bassotti C, Francia C, Fraioli F, Romeo R, Marucci L, Le Sage G, Glaser SS, Benedetti A (1997) Role and mechanisms of action of acetylcholine in the regulation of rat cholangiocyte secretory functions. J Clin Invest 100(6):1349-1362. https://doi.org/10.1172/JCI119655 

  4. J Physiol J Arreola 484 Pt 3 677 1995 10.1113/jphysiol.1995.sp020695 Arreola J, Melvin JE, Begenisich T (1995) Volume-activated chloride channels in rat parotid acinar cells. J Physiol 484(Pt 3):677-687. https://doi.org/10.1113/jphysiol.1995.sp020695 

  5. Physiol Rev Y Ben-Ari 87 4 1215 2007 10.1152/physrev.00017.2006 Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R (2007) GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 87(4):1215-1284. https://doi.org/10.1152/physrev.00017.2006 

  6. J Physiol J Bormann 385 243 1987 10.1113/jphysiol.1987.sp016493 Bormann J, Hamill OP, Sakmann B (1987) Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurons. J Physiol 385:243-286. https://doi.org/10.1113/jphysiol.1987.sp016493 

  7. Z Phys M Born 1 45 1920 10.1007/BF01881023 Born M (1920) Volumen un hydrationwärme der ionen. Z Phys 1:45-48 

  8. Nature JD Brunner 516 7530 207 2014 10.1038/nature13984 Brunner JD, Lim NK, Schenck S, Duerst A, Dutzler R (2014) X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 516(7530):207-212. https://doi.org/10.1038/nature13984 

  9. Science A Caputo 322 5901 590 2008 10.1126/science.1163518 Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322(5901):590-594. https://doi.org/10.1126/science.1163518 

  10. Gastroenterology M Catalan 126 4 1104 2004 10.1053/j.gastro.2004.01.010 Catalan M, Niemeyer MI, Cid LP, Sepulveda FV (2004) Basolateral ClC-2 chloride channels in surface colon epithelium: regulation by a direct effect of intracellular chloride. Gastroenterology 126(4):1104-1114. https://doi.org/10.1053/j.gastro.2004.01.010 

  11. Mol Cell Endocrinol HC Chan 250 1-2 106 2006 10.1016/j.mce.2005.12.032 Chan HC, Shi QX, Zhou CX, Wang XF, Xu WM, Chen WY, Chen AJ, Ni Y, Yuan YY (2006) Critical role of CFTR in uterine bicarbonate secretion and the fertilizing capacity of sperm. Mol Cell Endocrinol 250(1-2):106-113. https://doi.org/10.1016/j.mce.2005.12.032 

  12. Physiol Rev TY Chen 88 2 351 2008 10.1152/physrev.00058.2006 Chen TY, Hwang TC (2008) CLC-0 and CFTR: chloride channels evolved from transporters. Physiol Rev 88(2):351-387. https://doi.org/10.1152/physrev.00058.2006 

  13. Trends Pharmacol Sci H Chen 35 9 461 2014 10.1016/j.tips.2014.06.002 Chen H, Chatelain FC, Lesage F (2014) Altered and dynamic ion selectivity of K+ channels in cell development and excitability. Trends Pharmacol Sci 35(9):461-469. https://doi.org/10.1016/j.tips.2014.06.002 

  14. Nat Neurosci MK Chung 11 5 555 2008 10.1038/nn.2102 Chung MK, Guler AD, Caterina MJ (2008) TRPV1 shows dynamic ionic selectivity during agonist stimulation. Nat Neurosci 11(5):555-564. https://doi.org/10.1038/nn.2102 

  15. Gastroenterology JA Cohn 105 6 1857 1993 10.1016/0016-5085(93)91085-v Cohn JA, Strong TV, Picciotto MR, Nairn AC, Collins FS, Fitz JG (1993) Localization of the cystic fibrosis transmembrane conductance regulator in human bile duct epithelial cells. Gastroenterology 105(6):1857-1864. https://doi.org/10.1016/0016-5085(93)91085-v 

  16. 10.1152/ajpgi.1998.274.6.G1053 Curtis CM, Martin LC, Higgins CF, Colledge WH, Hickman ME, Evans MJ, MacVinish LJ, Cuthbert AW (1998) Restoration by intratracheal gene transfer of bicarbonate secretion in cystic fibrosis mouse gallbladder. Am J Physiol 274(6):G1053-G1060. https://doi.org/10.1152/ajpgi.1998.274.6.G1053 

  17. Physiol Rev DC Dawson 79 1 Suppl S47 1999 10.1152/physrev.1999.79.1.S47 Dawson DC, Smith SS, Mansoura MK (1999) CFTR: mechanism of anion conduction. Physiol Rev 79(1 Suppl):S47-S75. https://doi.org/10.1152/physrev.1999.79.1.S47 

  18. J Gen Physiol DC Devor 113 5 743 1999 10.1085/jgp.113.5.743 Devor DC, Singh AK, Lambert LC, DeLuca A, Frizzell RA, Bridges RJ (1999) Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells. J Gen Physiol 113(5):743-760. https://doi.org/10.1085/jgp.113.5.743 

  19. Biochem Soc Trans M Di Fulvio 47 6 1843 2019 10.1042/BST20190513 Di Fulvio M, Aguilar-Bryan L (2019) Chloride transporters and channels in beta-cell physiology: revisiting a 40-year-old model. Biochem Soc Trans 47(6):1843-1855. https://doi.org/10.1042/BST20190513 

  20. Scand J Gastroenterol S Domschke 12 1 59 1977 10.1080/00365521.1977.12031112 Domschke S, Domschke W, Rosch W, Konturek SJ, Sprugel W, Mitznegg P, Wunsch E, Demling L (1977) Inhibition by somatostatin of secretin-stimulated pancreatic secretion in man: a study with pure pancreatic juice. Scand J Gastroenterol 12(1):59-63 

  21. Adv Physiol Educ GR Dubyak 28 1-4 143 2004 10.1152/advan.00046.2004 Dubyak GR (2004) Ion homeostasis, channels, and transporters: an update on cellular mechanisms. Adv Physiol Educ 28(1-4):143-154. https://doi.org/10.1152/advan.00046.2004 

  22. Annu Rev Physiol C Duran 72 95 2010 10.1146/annurev-physiol-021909-135811 Duran C, Thompson CH, Xiao Q, Hartzell HC (2010) Chloride channels: often enigmatic, rarely predictable. Annu Rev Physiol 72:95-121. https://doi.org/10.1146/annurev-physiol-021909-135811 

  23. J R Soc Med PR Durie 82 Suppl 16 2 1989 Durie PR, Forstner GG (1989) Pathophysiology of the exocrine pancreas in cystic fibrosis. J R Soc Med 82(Suppl 16):2-10 

  24. J Biol Chem AK Dutta 286 1 766 2011 10.1074/jbc.M110.164970 Dutta AK, Khimji AK, Kresge C, Bugde A, Dougherty M, Esser V, Ueno Y, Glaser SS, Alpini G, Rockey DC, Feranchak AP (2011) Identification and functional characterization of TMEM16A, a Ca2+-activated Cl- channel activated by extracellular nucleotides, in biliary epithelium. J Biol Chem 286(1):766-776. https://doi.org/10.1074/jbc.M110.164970 

  25. Nature R Dutzler 415 6869 287 2002 10.1038/415287a Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415(6869):287-294. https://doi.org/10.1038/415287a 

  26. Semin Radiat Oncol A Eisbruch 13 3 226 2003 10.1016/S1053-4296(03)00033-X Eisbruch A, Rhodus N, Rosenthal D, Murphy B, Rasch C, Sonis S, Scarantino C, Brizel D (2003) How should we measure and report radiotherapy-induced xerostomia? Semin Radiat Oncol 13(3):226-234. https://doi.org/10.1016/S1053-4296(03)00033-X 

  27. Kidney Int C Fahlke 57 3 780 2000 10.1046/j.1523-1755.2000.00915.x Fahlke C (2000) Molecular mechanisms of ion conduction in ClC-type chloride channels: lessons from disease-causing mutations. Kidney Int 57(3):780-786. https://doi.org/10.1046/j.1523-1755.2000.00915.x 

  28. Proc Biol Sci K Fatima-Shad 253 1336 69 1993 10.1098/rspb.1993.0083 Fatima-Shad K, Barry PH (1993) Anion permeation in GABA- and glycine-gated channels of mammalian cultured hippocampal neurons. Proc Biol Sci 253(1336):69-75. https://doi.org/10.1098/rspb.1993.0083 

  29. J Clin Invest JG Fitz 91 1 319 1993 10.1172/JCI116188 Fitz JG, Basavappa S, McGill J, Melhus O, Cohn JA (1993) Regulation of membrane chloride currents in rat bile duct epithelial cells. J Clin Invest 91(1):319-328. https://doi.org/10.1172/JCI116188 

  30. Biophys J H Gaitan-Penas 111 7 1429 2016 10.1016/j.bpj.2016.08.030 Gaitan-Penas H, Gradogna A, Laparra-Cuervo L, Solsona C, Fernandez-Duenas V, Barrallo-Gimeno A, Ciruela F, Lakadamyali M, Pusch M, Estevez R (2016) Investigation of LRRC8-mediated volume-regulated anion currents in Xenopus oocytes. Biophys J 111(7):1429-1443. https://doi.org/10.1016/j.bpj.2016.08.030 

  31. J Biol Chem JP Garnett 286 47 41069 2011 10.1074/jbc.M111.266734 Garnett JP, Hickman E, Burrows R, Hegyi P, Tiszlavicz L, Cuthbert AW, Fong P, Gray MA (2011) Novel role for pendrin in orchestrating bicarbonate secretion in cystic fibrosis transmembrane conductance regulator (CFTR)-expressing airway serous cells. J Biol Chem 286(47):41069-41082. https://doi.org/10.1074/jbc.M111.266734 

  32. Cell HY Gee 146 5 746 2011 10.1016/j.cell.2011.07.021 Gee HY, Noh SH, Tang BL, Kim KH, Lee MG (2011) Rescue of DeltaF508-CFTR trafficking via a GRASP-dependent unconventional secretion pathway. Cell 146(5):746-760. https://doi.org/10.1016/j.cell.2011.07.021 

  33. Cell HY Gee 146 5 746 2011 10.1016/j.cell.2011.07.021 Gee HY, Noh SH, Tang BL, Kim KH, Lee MG (2011) Rescue of ΔF508-CFTR trafficking via a GRASP-dependent unconventional secretion pathway. Cell 146(5):746-760. https://doi.org/10.1016/j.cell.2011.07.021 

  34. Clin J Am Soc Nephrol FJ Gennari 3 6 1861 2008 10.2215/CJN.02450508 Gennari FJ, Weise WJ (2008) Acid-base disturbances in gastrointestinal disease. Clin J Am Soc Nephrol 3(6):1861-1868. https://doi.org/10.2215/CJN.02450508 

  35. 10.1152/ajpgi.1997.273.2.G258 Grubb BR, Gabriel SE (1997) Intestinal physiology and pathology in gene-targeted mouse models of cystic fibrosis. Am J Physiol 273(2 Pt 1):G258-G266. https://doi.org/10.1152/ajpgi.1997.273.2.G258 

  36. Diabetes SC Gunawardana 51 1 105 2002 10.2337/diabetes.51.1.105 Gunawardana SC, Sharp GW (2002) Intracellular pH plays a critical role in glucose-induced time-dependent potentiation of insulin release in rat islets. Diabetes 51(1):105-113. https://doi.org/10.2337/diabetes.51.1.105 

  37. J Biol Chem YF Han 291 39 20345 2016 10.1074/jbc.M116.750224 Han YF, Shewan AM, Thorn P (2016) HCO3− transport through Anoctamin/Transmembrane protein ANO1/TMEM16A in pancreatic Acinar cells regulates luminal pH. J Biol Chem 291(39):20345-20352. https://doi.org/10.1074/jbc.M116.750224 

  38. Proc Natl Acad Sci U S A Y Hatefi 62 4 1129 1969 10.1073/pnas.62.4.1129 Hatefi Y, Hanstein WG (1969) Solubilization of particulate proteins and nonelectrolytes by chaotropic agents. Proc Natl Acad Sci U S A 62(4):1129-1136 

  39. Gastroenterology K Hirata 121 2 396 2001 10.1053/gast.2001.26280 Hirata K, Nathanson MH (2001) Bile duct epithelia regulate biliary bicarbonate excretion in normal rat liver. Gastroenterology 121(2):396-406. https://doi.org/10.1053/gast.2001.26280 

  40. 10.1152/ajpgi.1997.272.4.G872 Hogan DL, Crombie DL, Isenberg JI, Svendsen P, Schaffalitzky de Muckadell OB, Ainsworth MA (1997) CFTR mediates cAMP- and Ca2+-activated duodenal epithelial HCO3- secretion. Am J Physiol 272(4 Pt 1):G872-G878. https://doi.org/10.1152/ajpgi.1997.272.4.G872 

  41. Hepatology S Hohenester 55 1 173 2012 10.1002/hep.24691 Hohenester S, Wenniger LM, Paulusma CC, van Vliet SJ, Jefferson DM, Elferink RP, Beuers U (2012) A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology 55(1):173-183. https://doi.org/10.1002/hep.24691 

  42. Front Cell Neurosci CA Hubner 7 177 2013 10.3389/fncel.2013.00177 Hubner CA, Holthoff K (2013) Anion transport and GABA signaling. Front Cell Neurosci 7:177. https://doi.org/10.3389/fncel.2013.00177 

  43. Cold Spring Harb Perspect Med TC Hwang 3 1 a009498 2013 10.1101/cshperspect.a009498 Hwang TC, Kirk KL (2013) The CFTR ion channel: gating, regulation, and anion permeation. Cold Spring Harb Perspect Med 3(1):a009498. https://doi.org/10.1101/cshperspect.a009498 

  44. J Physiol H Ishiguro 495 Pt 1 169 1996 10.1113/jphysiol.1996.sp021582 Ishiguro H, Steward MC, Lindsay AR, Case RM (1996) Accumulation of intracellular HCO3- by Na+-HCO3- cotransport in interlobular ducts from guinea-pig pancreas. J Physiol 495(Pt 1):169-178 

  45. J Physiol H Ishiguro 495 Pt 1 179 1996 10.1113/jphysiol.1996.sp021583 Ishiguro H, Steward MC, Wilson RW, Case RM (1996) Bicarbonate secretion in interlobular ducts from guinea-pig pancreas. J Physiol 495(Pt 1):179-191 

  46. Nagoya J Med Sci H Ishiguro 74 1-2 1 2012 Ishiguro H, Yamamoto A, Nakakuki M, Yi L, Ishiguro M, Yamaguchi M, Kondo S, Mochimaru Y (2012) Physiology and pathophysiology of bicarbonate secretion by pancreatic duct epithelium. Nagoya J Med Sci 74(1-2):1-18 

  47. Nat Rev Mol Cell Biol TJ Jentsch 17 5 293 2016 10.1038/nrm.2016.29 Jentsch TJ (2016) VRACs and other ion channels and transporters in the regulation of cell volume and beyond. Nat Rev Mol Cell Biol 17(5):293-307. https://doi.org/10.1038/nrm.2016.29 

  48. Physiol Rev TJ Jentsch 98 3 1493 2018 10.1152/physrev.00047.2017 Jentsch TJ, Pusch M (2018) CLC chloride channels and transporters: structure, function, physiology, and disease. Physiol Rev 98(3):1493-1590. https://doi.org/10.1152/physrev.00047.2017 

  49. Nature TJ Jentsch 348 6301 510 1990 10.1038/348510a0 Jentsch TJ, Steinmeyer K, Schwarz G (1990) Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348(6301):510-514. https://doi.org/10.1038/348510a0 

  50. Physiol Rev TJ Jentsch 82 2 503 2002 10.1152/physrev.00029.2001 Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82(2):503-568. https://doi.org/10.1152/physrev.00029.2001 

  51. J Biol Chem NS Joo 281 11 7392 2006 10.1074/jbc.M512766200 Joo NS, Irokawa T, Robbins RC, Wine JJ (2006) Hyposecretion, not hyperabsorption, is the basic defect of cystic fibrosis airway glands. J Biol Chem 281(11):7392-7398. https://doi.org/10.1074/jbc.M512766200 

  52. J Physiol I Jun 594 11 2929 2016 10.1113/JP271311 Jun I, Cheng MH, Sim E, Jung J, Suh BL, Kim Y, Son H, Park K, Kim CH, Yoon JH, Whitcomb DC, Bahar I, Lee MG (2016) Pore dilatation increases the bicarbonate permeability of CFTR, ANO1 and glycine receptor anion channels. J Physiol 594(11):2929-2955. https://doi.org/10.1113/JP271311 

  53. Cell Calcium J Jung 55 6 376 2014 10.1016/j.ceca.2014.02.002 Jung J, Lee MG (2014) Role of calcium signaling in epithelial bicarbonate secretion. Cell Calcium 55(6):376-384. https://doi.org/10.1016/j.ceca.2014.02.002 

  54. J Gen Physiol J Jung 145 1 75 2015 10.1085/jgp.201411283 Jung J, Lee MG (2015) Does calmodulin regulate the bicarbonate permeability of ANO1/TMEM16A or not? J Gen Physiol 145(1):75-77. https://doi.org/10.1085/jgp.201411283 

  55. Proc Natl Acad Sci U S A J Jung 110 1 360 2013 10.1073/pnas.1211594110 Jung J, Nam JH, Park HW, Oh U, Yoon JH, Lee MG (2013) Dynamic modulation of ANO1/TMEM16A HCO3− permeability by Ca2+/calmodulin. Proc Natl Acad Sci U S A 110(1):360-365. https://doi.org/10.1073/pnas.1211594110 

  56. J Physiol K Kaila 416 161 1989 10.1113/jphysiol.1989.sp017755 Kaila K, Pasternack M, Saarikoski J, Voipio J (1989) Influence of GABA-gated bicarbonate conductance on potential, current and intracellular chloride in crayfish muscle fibres. J Physiol 416:161-181. https://doi.org/10.1113/jphysiol.1989.sp017755 

  57. Cell Mol Gastroenterol Hepatol Y Kim 9 79 2019 10.1016/j.jcmgh.2019.09.003 Kim Y, Jun I, Shin DH, Yoon JG, Piao H, Jung J, Park HW, Cheng MH, Bahar I, Whitcomb DC, Lee MG (2019) Regulation of CFTR bicarbonate channel activity by WNK1: implications for pancreatitis and CFTR-related disorders. Cell Mol Gastroenterol Hepatol 9:79-103. https://doi.org/10.1016/j.jcmgh.2019.09.003 

  58. Trends Biochem Sci K Kunzelmann 40 9 535 2015 10.1016/j.tibs.2015.07.005 Kunzelmann K (2015) TMEM16, LRRC8A, bestrophin: chloride channels controlled by Ca(2+) and cell volume. Trends Biochem Sci 40(9):535-543. https://doi.org/10.1016/j.tibs.2015.07.005 

  59. PLoS Genet J LaRusch 10 7 e1004376 2014 10.1371/journal.pgen.1004376 LaRusch J, Jung J, General IJ, Lewis MD, Park HW, Brand RE, Gelrud A, Anderson MA, Banks PA, Conwell D, Lawrence C, Romagnuolo J, Baillie J, Alkaade S, Cote G, Gardner TB, Amann ST, Slivka A, Sandhu B, Aloe A, Kienholz ML, Yadav D, Barmada MM, Bahar I, Lee MG, Whitcomb DC, North American Pancreatitis Study G (2014) Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis. PLoS Genet 10(7):e1004376. https://doi.org/10.1371/journal.pgen.1004376 

  60. MG Lee 78 2008 Pancreas: an integrated textbook of basic science, medicine, and surgery 10.1002/9781444300123.ch7 Lee MG, Muallem S (2008) Physiology of duct cell secretion. In: Beger H, Buchler M, Kozarek R, Lerch M, Neoptolemos J, Warshaw A, Whitcomb D, Shiratori K (eds) Pancreas: an integrated textbook of basic science, medicine, and surgery. Blackwell Publishing, Oxford, pp 78-90 

  61. J Biol Chem MG Lee 272 25 15765 1997 10.1074/jbc.272.25.15765 Lee MG, Xu X, Zeng W, Diaz J, Wojcikiewicz RJ, Kuo TH, Wuytack F, Racymaekers L, Muallem S (1997) Polarized expression of Ca2+ channels in pancreatic and salivary gland cells. Correlation with initiation and propagation of [Ca2+]i waves. J Biol Chem 272(25):15765-15770. https://doi.org/10.1074/jbc.272.25.15765 

  62. J Biol Chem MG Lee 274 21 14670 1999 10.1074/jbc.274.21.14670 Lee MG, Choi JY, Luo X, Strickland E, Thomas PJ, Muallem S (1999) Cystic fibrosis transmembrane conductance regulator regulates luminal Cl−/HCO3− exchange in mouse submandibular and pancreatic ducts. J Biol Chem 274(21):14670-14677 

  63. J Biol Chem MG Lee 274 6 3414 1999 10.1074/jbc.274.6.3414 Lee MG, Wigley WC, Zeng W, Noel LE, Marino CR, Thomas PJ, Muallem S (1999) Regulation of Cl−/ HCO3− exchange by cystic fibrosis transmembrane conductance regulator expressed in NIH 3T3 and HEK 293 cells. J Biol Chem 274(6):3414-3421 

  64. Physiol Rev MG Lee 92 1 39 2012 10.1152/physrev.00011.2011 Lee MG, Ohana E, Park HW, Yang D, Muallem S (2012) Molecular mechanism of pancreatic and salivary gland fluid and HCO3− secretion. Physiol Rev 92(1):39-74. https://doi.org/10.1152/physrev.00011.2011 

  65. Biophys J P Linsdell 78 6 2973 2000 10.1016/s0006-3495(00)76836-6 Linsdell P, Evagelidis A, Hanrahan JW (2000) Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore. Biophys J 78(6):2973-2982. https://doi.org/10.1016/s0006-3495(00)76836-6 

  66. Cell F Liu 169 1 85 2017 10.1016/j.cell.2017.02.024 Liu F, Zhang Z, Csanady L, Gadsby DC, Chen J (2017) Molecular structure of the human CFTR ion channel. Cell 169(1):85-95 e88. https://doi.org/10.1016/j.cell.2017.02.024 

  67. J Membr Biol AG Lopes 97 2 117 1987 10.1007/bf01869418 Lopes AG, Guggino WB (1987) Volume regulation in the early proximal tubule of the Necturus kidney. J Membr Biol 97(2):117-125. https://doi.org/10.1007/bf01869418 

  68. J Cell Sci JT Low 123 Pt 18 3201 2010 10.1242/jcs.071225 Low JT, Shukla A, Behrendorff N, Thorn P (2010) Exocytosis, dependent on Ca2+ release from Ca2+ stores, is regulated by Ca2+ microdomains. J Cell Sci 123(Pt 18):3201-3208. https://doi.org/10.1242/jcs.071225 

  69. Am J Physiol M Mall 275 6 G1274 1998 10.1152/ajpgi.1998.275.6.G1274 Mall M, Bleich M, Schurlein M, Kuhr J, Seydewitz HH, Brandis M, Greger R, Kunzelmann K (1998) Cholinergic ion secretion in human colon requires coactivation by cAMP. Am J Physiol 275(6):G1274-G1281. https://doi.org/10.1152/ajpgi.1998.275.6.G1274 

  70. J Membr Biol L Mo 168 3 253 1999 10.1007/s002329900514 Mo L, Hellmich HL, Fong P, Wood T, Embesi J, Wills NK (1999) Comparison of amphibian and human ClC-5: similarity of functional properties and inhibition by external pH. J Membr Biol 168(3):253-264. https://doi.org/10.1007/s002329900514 

  71. Exp Physiol M Murek 95 4 471 2010 10.1113/expphysiol.2009.049445 Murek M, Kopic S, Geibel J (2010) Evidence for intestinal chloride secretion. Exp Physiol 95(4):471-478. https://doi.org/10.1113/expphysiol.2009.049445 

  72. Arch Oral Biol E Neyraud 54 5 449 2009 10.1016/j.archoralbio.2009.01.005 Neyraud E, Bult JH, Dransfield E (2009) Continuous analysis of parotid saliva during resting and short-duration simulated chewing. Arch Oral Biol 54(5):449-456. https://doi.org/10.1016/j.archoralbio.2009.01.005 

  73. Gastroenterology HW Park 139 2 620 2010 10.1053/j.gastro.2010.04.004 Park HW, Nam JH, Kim JY, Namkung W, Yoon JS, Lee JS, Kim KS, Venglovecz V, Gray MA, Kim KH, Lee MG (2010) Dynamic regulation of CFTR bicarbonate permeability by [Cl-]i and its role in pancreatic bicarbonate secretion. Gastroenterology 139(2):620-631. https://doi.org/10.1053/j.gastro.2010.04.004 

  74. Nature E Park 541 7638 500 2017 10.1038/nature20812 Park E, Campbell EB, MacKinnon R (2017) Structure of a CLC chloride ion channel by cryo-electron microscopy. Nature 541(7638):500-505. https://doi.org/10.1038/nature20812 

  75. Nature AA Pezzulo 487 7405 109 2012 10.1038/nature11130 Pezzulo AA, Tang XX, Hoegger MJ, Abou Alaiwa MH, Ramachandran S, Moninger TO, Karp PH, Wohlford-Lenane CL, Haagsman HP, van Eijk M, Banfi B, Horswill AR, Stoltz DA, McCray PB Jr, Welsh MJ, Zabner J (2012) Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 487(7405):109-113. https://doi.org/10.1038/nature11130 

  76. Sci Signal AT Piala 7 324 ra41 2014 10.1126/scisignal.2005050 Piala AT, Moon TM, Akella R, He H, Cobb MH, Goldsmith EJ (2014) Chloride sensing by WNK1 involves inhibition of autophosphorylation. Sci Signal 7(324):ra41. https://doi.org/10.1126/scisignal.2005050 

  77. Front Pharmacol DR Poroca 8 151 2017 10.3389/fphar.2017.00151 Poroca DR, Pelis RM, Chappe VM (2017) ClC channels and transporters: structure, physiological functions, and implications in human chloride Channelopathies. Front Pharmacol 8:151. https://doi.org/10.3389/fphar.2017.00151 

  78. Proc Natl Acad Sci U S A JH Poulsen 91 12 5340 1994 10.1073/pnas.91.12.5340 Poulsen JH, Fischer H, Illek B, Machen TE (1994) Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A 91(12):5340-5344. https://doi.org/10.1073/pnas.91.12.5340 

  79. J Gen Physiol Z Qu 116 6 825 2000 10.1085/jgp.116.6.825 Qu Z, Hartzell HC (2000) Anion permeation in Ca2+-activated Cl− channels. J Gen Physiol 116(6):825-844. https://doi.org/10.1085/jgp.116.6.825 

  80. Nat Med PM Quinton 7 3 292 2001 10.1038/85429 Quinton PM (2001) The neglected ion: HCO3−. Nat Med 7(3):292-293. https://doi.org/10.1038/85429 

  81. Lancet PM Quinton 372 9636 415 2008 10.1016/S0140-6736(08)61162-9 Quinton PM (2008) Cystic fibrosis: impaired bicarbonate secretion and mucoviscidosis. Lancet 372(9636):415-417. https://doi.org/10.1016/S0140-6736(08)61162-9 

  82. Am J Physiol Cell Physiol PM Quinton 299 6 C1222 2010 10.1152/ajpcell.00362.2010 Quinton PM (2010) Role of epithelial HCO3- transport in mucin secretion: lessons from cystic fibrosis. Am J Physiol Cell Physiol 299(6):C1222-C1233. https://doi.org/10.1152/ajpcell.00362.2010 

  83. J Cell Sci C Richardson 124 Pt 5 789 2011 10.1242/jcs.077230 Richardson C, Sakamoto K, de los Heros P, Deak M, Campbell DG, Prescott AR, Alessi DR (2011) Regulation of the NKCC2 ion cotransporter by SPAK-OSR1-dependent and -independent pathways. J Cell Sci 124(Pt 5):789-800. https://doi.org/10.1242/jcs.077230 

  84. Nature C Rivera 397 6716 251 1999 10.1038/16697 Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397(6716):251-255. https://doi.org/10.1038/16697 

  85. J Biol Chem VG Romanenko 285 17 12990 2010 10.1074/jbc.M109.068544 Romanenko VG, Catalan MA, Brown DA, Putzier I, Hartzell HC, Marmorstein AD, Gonzalez-Begne M, Rock JR, Harfe BD, Melvin JE (2010) Tmem16A encodes the Ca2+-activated Cl- channel in mouse submandibular salivary gland acinar cells. J Biol Chem 285(17):12990-13001. https://doi.org/10.1074/jbc.M109.068544 

  86. 10.1152/ajpcell.1989.257.6.C1093 Rome L, Grantham J, Savin V, Lohr J, Lechene C (1989) Proximal tubule volume regulation in hyperosmotic media: intracellular K+, Na+, and Cl. Am J Physiol 257(6 Pt 1):C1093-C1100. https://doi.org/10.1152/ajpcell.1989.257.6.C1093 

  87. Physiol Rev A Roos 61 2 296 1981 10.1152/physrev.1981.61.2.296 Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61(2):296-434 

  88. J Gen Physiol B Roux 137 5 415 2011 10.1085/jgp.201010577 Roux B, Berneche S, Egwolf B, Lev B, Noskov SY, Rowley CN, Yu H (2011) Ion selectivity in channels and transporters. J Gen Physiol 137(5):415-426. https://doi.org/10.1085/jgp.201010577 

  89. J Physiol C Sagheddu 588 Pt 21 4189 2010 10.1113/jphysiol.2010.194407 Sagheddu C, Boccaccio A, Dibattista M, Montani G, Tirindelli R, Menini A (2010) Calcium concentration jumps reveal dynamic ion selectivity of calcium-activated chloride currents in mouse olfactory sensory neurons and TMEM16b-transfected HEK 293T cells. J Physiol 588(Pt 21):4189-4204. https://doi.org/10.1113/jphysiol.2010.194407 

  90. Cell BC Schroeder 134 6 1019 2008 10.1016/j.cell.2008.09.003 Schroeder BC, Cheng T, Jan YN, Jan LY (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134(6):1019-1029. https://doi.org/10.1016/j.cell.2008.09.003 

  91. Curr Opin Pharmacol UE Seidler 13 6 900 2013 10.1016/j.coph.2013.10.001 Seidler UE (2013) Gastrointestinal HCO3- transport and epithelial protection in the gut: new techniques, transport pathways and regulatory pathways. Curr Opin Pharmacol 13(6):900-908. https://doi.org/10.1016/j.coph.2013.10.001 

  92. Proc Natl Acad Sci U S A VS Shah 113 19 5382 2016 10.1073/pnas.1604905113 Shah VS, Ernst S, Tang XX, Karp PH, Parker CP, Ostedgaard LS, Welsh MJ (2016) Relationships among CFTR expression, HCO3- secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies. Proc Natl Acad Sci U S A 113(19):5382-5387. https://doi.org/10.1073/pnas.1604905113 

  93. Science VS Shah 351 6272 503 2016 10.1126/science.aad5589 Shah VS, Meyerholz DK, Tang XX, Reznikov L, Abou Alaiwa M, Ernst SE, Karp PH, Wohlford-Lenane CL, Heilmann KP, Leidinger MR, Allen PD, Zabner J, McCray PB Jr, Ostedgaard LS, Stoltz DA, Randak CO, Welsh MJ (2016) Airway acidification initiates host defense abnormalities in cystic fibrosis mice. Science 351(6272):503-507. https://doi.org/10.1126/science.aad5589 

  94. J Physiol J Shan 590 21 5273 2012 10.1113/jphysiol.2012.236893 Shan J, Liao J, Huang J, Robert R, Palmer ML, Fahrenkrug SC, O'Grady SM, Hanrahan JW (2012) Bicarbonate-dependent chloride transport drives fluid secretion by the human airway epithelial cell line Calu-3. J Physiol 590(21):5273-5297. https://doi.org/10.1113/jphysiol.2012.236893 

  95. Nature DN Sheppard 362 6416 160 1993 10.1038/362160a0 Sheppard DN, Rich DP, Ostedgaard LS, Gregory RJ, Smith AE, Welsh MJ (1993) Mutations in CFTR associated with mild-disease-form Cl− channels with altered pore properties. Nature 362(6416):160-164. https://doi.org/10.1038/362160a0 

  96. J Clin Invest JJ Smith 89 4 1148 1992 10.1172/JCI115696 Smith JJ, Welsh MJ (1992) cAMP stimulates bicarbonate secretion across normal, but not cystic fibrosis airway epithelia. J Clin Invest 89(4):1148-1153. https://doi.org/10.1172/JCI115696 

  97. J Gen Physiol SS Smith 114 6 799 1999 10.1085/jgp.114.6.799 Smith SS, Steinle ED, Meyerhoff ME, Dawson DC (1999) Cystic fibrosis transmembrane conductance regulator. Physical basis for lyotropic anion selectivity patterns. J Gen Physiol 114(6):799-818. https://doi.org/10.1085/jgp.114.6.799 

  98. Int J Biochem Cell Biol E Sondo 52 73 2014 10.1016/j.biocel.2014.03.022 Sondo E, Caci E, Galietta LJV (2014) The TMEM16A chloride channel as an alternative therapeutic target in cystic fibrosis. Int J Biochem Cell Biol 52:73-76. https://doi.org/10.1016/j.biocel.2014.03.022 

  99. Am J Physiol Cell Physiol Y Song 290 3 C741 2006 10.1152/ajpcell.00379.2005 Song Y, Salinas D, Nielson DW, Verkman AS (2006) Hyperacidity of secreted fluid from submucosal glands in early cystic fibrosis. Am J Physiol Cell Physiol 290(3):C741-C749. https://doi.org/10.1152/ajpcell.00379.2005 

  100. Epilepsy Curr KJ Staley 6 4 124 2006 10.1111/j.1535-7511.2006.00119.x Staley KJ (2006) Wrong-way chloride transport: is it a treatable cause of some intractable seizures? Epilepsy Curr 6(4):124-127. https://doi.org/10.1111/j.1535-7511.2006.00119.x 

  101. Science KJ Staley 269 5226 977 1995 10.1126/science.7638623 Staley KJ, Soldo BL, Proctor WR (1995) Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 269(5226):977-981. https://doi.org/10.1126/science.7638623 

  102. Annu Rev Physiol MC Steward 67 377 2005 10.1146/annurev.physiol.67.031103.153247 Steward MC, Ishiguro H, Case RM (2005) Mechanisms of bicarbonate secretion in the pancreatic duct. Annu Rev Physiol 67:377-409. https://doi.org/10.1146/annurev.physiol.67.031103.153247 

  103. J Cyst Fibros L Tang 8 2 115 2009 10.1016/j.jcf.2008.10.004 Tang L, Fatehi M, Linsdell P (2009) Mechanism of direct bicarbonate transport by the CFTR anion channel. J Cyst Fibros 8(2):115-121. https://doi.org/10.1016/j.jcf.2008.10.004 

  104. 10.1152/ajplegacy.1954.178.1.155 Thaysen JH, Thorn NA, Schwartz IL (1954) Excretion of sodium, potassium, chloride and carbon dioxide in human parotid saliva. Am J Physiol 178(1):155-159 

  105. Biophys J R Thul 86 5 2660 2004 10.1016/S0006-3495(04)74322-2 Thul R, Falcke M (2004) Release currents of IP3 receptor channel clusters and concentration profiles. Biophys J 86(5):2660-2673. https://doi.org/10.1016/S0006-3495(04)74322-2 

  106. Science FK Voss 344 6184 634 2014 10.1126/science.1252826 Voss FK, Ullrich F, Munch J, Lazarow K, Lutter D, Mah N, Andrade-Navarro MA, von Kries JP, Stauber T, Jentsch TJ (2014) Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 344(6184):634-638. https://doi.org/10.1126/science.1252826 

  107. Cell Rep M Wakabayashi 3 3 858 2013 10.1016/j.celrep.2013.02.024 Wakabayashi M, Mori T, Isobe K, Sohara E, Susa K, Araki Y, Chiga M, Kikuchi E, Nomura N, Mori Y, Matsuo H, Murata T, Nomura S, Asano T, Kawaguchi H, Nonoyama S, Rai T, Sasaki S, Uchida S (2013) Impaired KLHL3-mediated ubiquitination of WNK4 causes human hypertension. Cell Rep 3(3):858-868. https://doi.org/10.1016/j.celrep.2013.02.024 

  108. Nat Cell Biol XF Wang 5 10 902 2003 10.1038/ncb1047 Wang XF, Zhou CX, Shi QX, Yuan YY, Yu MK, Ajonuma LC, Ho LS, Lo PS, Tsang LL, Liu Y, Lam SY, Chan LN, Zhao WC, Chung YW, Chan HC (2003) Involvement of CFTR in uterine bicarbonate secretion and the fertilizing capacity of sperm. Nat Cell Biol 5(10):902-906. https://doi.org/10.1038/ncb1047 

  109. Am J Physiol Renal Physiol AM Weinstein 298 3 F543 2010 10.1152/ajprenal.00232.2009 Weinstein AM (2010) A mathematical model of rat ascending Henle limb. III. Tubular function. Am J Physiol Renal Physiol 298(3):F543-F556. https://doi.org/10.1152/ajprenal.00232.2009 

  110. PLoS One Q Xiao 9 6 e99376 2014 10.1371/journal.pone.0099376 Xiao Q, Cui Y (2014) Acidic amino acids in the first intracellular loop contribute to voltage- and calcium- dependent gating of anoctamin1/TMEM16A. PLoS One 9(6):e99376. https://doi.org/10.1371/journal.pone.0099376 

  111. J Physiol J Yamada 557 Pt 3 829 2004 10.1113/jphysiol.2004.062471 Yamada J, Okabe A, Toyoda H, Kilb W, Luhmann HJ, Fukuda A (2004) Cl- uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1. J Physiol 557(Pt 3):829-841. https://doi.org/10.1113/jphysiol.2004.062471 

  112. Nat Chem Biol K Yamada 12 11 896 2016 10.1038/nchembio.2168 Yamada K, Park HM, Rigel DF, DiPetrillo K, Whalen EJ, Anisowicz A, Beil M, Berstler J, Brocklehurst CE, Burdick DA, Caplan SL, Capparelli MP, Chen G, Chen W, Dale B, Deng L, Fu F, Hamamatsu N, Harasaki K, Herr T, Hoffmann P, Hu QY, Huang WJ, Idamakanti N, Imase H, Iwaki Y, Jain M, Jeyaseelan J, Kato M, Kaushik VK, Kohls D, Kunjathoor V, LaSala D, Lee J, Liu J, Luo Y, Ma F, Mo R, Mowbray S, Mogi M, Ossola F, Pandey P, Patel SJ, Raghavan S, Salem B, Shanado YH, Trakshel GM, Turner G, Wakai H, Wang C, Weldon S, Wielicki JB, Xie X, Xu L, Yagi YI, Yasoshima K, Yin J, Yowe D, Zhang JH, Zheng G, Monovich L (2016) Small-molecule WNK inhibition regulates cardiovascular and renal function. Nat Chem Biol 12(11):896-898. https://doi.org/10.1038/nchembio.2168 

  113. Nature YD Yang 455 7217 1210 2008 10.1038/nature07313 Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455(7217):1210-1215. https://doi.org/10.1038/nature07313 

  114. Cell H Yang 151 1 111 2012 10.1016/j.cell.2012.07.036 Yang H, Kim A, David T, Palmer D, Jin T, Tien J, Huang F, Cheng T, Coughlin SR, Jan YN, Jan LY (2012) TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell 151(1):111-122. https://doi.org/10.1016/j.cell.2012.07.036 

  115. J Clin Invest K Yu 120 5 1722 2010 10.1172/JCI41129 Yu K, Lujan R, Marmorstein A, Gabriel S, Hartzell HC (2010) Bestrophin-2 mediates bicarbonate transport by goblet cells in mouse colon. J Clin Invest 120(5):1722-1735. https://doi.org/10.1172/JCI41129 

  116. J Gen Physiol Y Yu 144 1 115 2014 10.1085/jgp.201411179 Yu Y, Kuan AS, Chen TY (2014) Calcium-calmodulin does not alter the anion permeability of the mouse TMEM16A calcium-activated chloride channel. J Gen Physiol 144(1):115-124. https://doi.org/10.1085/jgp.201411179 

  117. J Membr Biol GH Zhang 129 3 311 1992 10.1007/BF00232912 Zhang GH, Cragoe EJ Jr, Melvin JE (1992) Regulation of cytoplasmic pH in rat sublingual mucous acini at rest and during muscarinic stimulation. J Membr Biol 129(3):311-321 

  118. Cell Z Zhang 167 6 1586 2016 10.1016/j.cell.2016.11.014 Zhang Z, Chen J (2016) Atomic structure of the cystic fibrosis transmembrane conductance regulator. Cell 167(6):1586-1597 e1589. https://doi.org/10.1016/j.cell.2016.11.014 

  119. Proc Natl Acad Sci U S A Z Zhang 115 50 12757 2018 10.1073/pnas.1815287115 Zhang Z, Liu F, Chen J (2018) Molecular structure of the ATP-bound, phosphorylated human CFTR. Proc Natl Acad Sci U S A 115(50):12757-12762. https://doi.org/10.1073/pnas.1815287115 

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로