$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

The immune response and immune evasion characteristics in SARS-CoV, MERS-CoV, and SARS-CoV-2: Vaccine design strategies 원문보기

International immunopharmacology, v.92, 2021년, pp.107051 -   

Molaei, Soheila (Deputy of Research & Technology, Ardabil University of Medical Sciences) ,  Dadkhah, Masoomeh (Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences) ,  Asghariazar, Vahid (Deputy of Research & Technology, Ardabil University of Medical Sciences) ,  Karami, Chiman (Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences) ,  Safarzadeh, Elham (Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences)

Abstract AI-Helper 아이콘AI-Helper

Abstract The worldwide outbreak of SARS-CoV-2, severe acute respiratory syndrome coronavirus 2 as a novel human coronavirus, was the worrying news at the beginning of 2020. Since its emergence complicated more than 870,000 individuals and led to more than 43,000 deaths worldwide. Considering to the...

주제어

참고문헌 (218)

  1. 1 Schwartz D.A. Graham A.L.J.V. Potential maternal and infant outcomes from (Wuhan) coronavirus 2019-nCoV infecting pregnant women: lessons from SARS, MERS, and other human coronavirus infections Viruses 12 2 2020 194 32050635 

  2. 2 Lu R. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding Lancet 395 10224 2020 565 574 32007145 

  3. 3 J.Y. Lee, et al., The clinical and virological features of the first imported case causing MERS-CoV outbreak in South Korea, 2015, BMC Infectious Diseases 17(1) (2017) 498. 

  4. 4 Peeri N.C. The SARS MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? Int. J. Epidemiol. 49 3 2020 717 726 32086938 

  5. 5 Guan W.-j. Clinical characteristics of coronavirus disease 2019 in China N. Engl. J. Med. 382 2020 1708 1720 32109013 

  6. 6 Su S. Epidemiology, genetic recombination, and pathogenesis of coronaviruses Trends Microbiol. 24 6 2016 490 502 27012512 

  7. 7 Hui D.S.J.C.i.c.m. Epidemic and emerging coronaviruses (severe acute respiratory syndrome and middle east respiratory syndrome) Clin. Chest Med. 38 1 2017 71 86 28159163 

  8. 8 Chen W.-H. The SARS-CoV-2 vaccine pipeline: An overview Curr. Trop. Med. Rep. 7 2020 61 64 32219057 

  9. 9 Jernigan D.B. Update: public health response to the coronavirus disease 2019 outbreak—United States, February 24, 2020. MMWR. Morbidity and mortality weekly report CDC 69 8 2020 216 219 

  10. 10 Giwa A. Desai A. Jagoda A. Novel coronavirus COVID-19: an overview for emergency clinicians Emerg. Med. Pract. 22 2 2020 1 21 

  11. 11 WHO, 2020. 

  12. 12 Fehr A.R. The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavirus infection mBio 7 6 2016 e01721-16 

  13. 13 Liu C. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases 2020 ACS Publications 

  14. 14 Angelini M.M. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles mBio 4 4 2013 e00524-13 

  15. 15 Minskaia E. Discovery of an RNA virus 3′→ 5′ exoribonuclease that is critically involved in coronavirus RNA synthesis Proc. Natl. Acad. Sci. U S A 103 13 2006 5108 5113 16549795 

  16. 16 Shokri S. Modulation of the immune response by Middle East respiratory syndrome coronavirus J. Cell Physiol. 234 3 2019 2143 2151 30146782 

  17. 17 Narayanan K. Coronavirus nonstructural protein 1: Common and distinct functions in the regulation of host and viral gene expression Virus Res. 202 2015 89 100 25432065 

  18. 18 Faure E. Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside? PLoS One 9 2 2014 e88716 

  19. 19 Menachery V.D. Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2′-O-methyltransferase activity J. Virol. 88 8 2014 4251 4264 24478444 

  20. 20 Prompetchara E. Ketloy C. Palaga T.J.A.P.J.A.I. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic Asian Pac. J. Allergy Immunol. 38 1 2020 1 9 32105090 

  21. 21 Pascal K.E. Pre-and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection Proc. Natl. Acad. Sci. U S A 112 28 2015 8738 8743 26124093 

  22. 22 Muth D. Infectious Middle East respiratory syndrome coronavirus excretion and serotype variability based on live virus isolates from patients in Saudi Arabia J. Clin. Microbiol. 53 9 2015 2951 2955 26157150 

  23. 23 Corman V.M. Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat J. Virol. 88 19 2014 11297 11303 25031349 

  24. 24 Zhu Z. Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies Proc. Natl. Acad. Sci. U S A 104 29 2007 12123 12128 17620608 

  25. 25 Almazán F. Coronavirus reverse genetic systems: Infectious clones and replicons Virus Res. 189 2014 262 270 24930446 

  26. 26 Sui J. Effects of human anti-spike protein receptor binding domain antibodies on severe acute respiratory syndrome coronavirus neutralization escape and fitness J. Virol. 88 23 2014 13769 13780 25231316 

  27. 27 Jeffers S.A. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus Proc. Natl. Acad. Sci. U S A 101 44 2004 15748 15753 15496474 

  28. 28 Wu F. Complete genome characterisation of a novel coronavirus associated with severe human respiratory disease in Wuhan, China BioRvix 2020 

  29. 29 Wang Y. A recombinant infectious bronchitis virus from a chicken with a spike gene closely related to that of a turkey coronavirus Arch. Virol. 165 3 2020 703 707 31982944 

  30. 30 Navas-Martín S. Weiss S.R. Coronavirus replication and pathogenesis: implications for the recent outbreak of severe acute respiratory syndrome (SARS), and the challenge for vaccine development J. Neurovirology 10 2 2004 75 85 15204926 

  31. 31 Wong S.K. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2 J. Biol. Chem. 279 5 2004 3197 3201 14670965 

  32. 32 Du L. The spike protein of SARS-CoV—a target for vaccine and therapeutic development Nat. Rev. Microbiol. 7 3 2009 226 236 19198616 

  33. 33 Memish Z.A. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia Emerg. Infect. Dis. 19 11 2013 1819 24206838 

  34. 34 Voss M.W. Bridging animal and human models of exercise-induced brain plasticity Trends Cognitive Sci. 17 10 2013 525 544 

  35. 35 Gralinski L.E. Menachery V.D. Return of the Coronavirus: 2019-nCoV Viruses 12 2 2020 135 31991541 

  36. 36 Fehr A.R. Perlman S. Coronaviruses: an overview of their replication and pathogenesis Coronaviruses 2015 Springer 1 23 

  37. 37 Masters P.S. The molecular biology of coronaviruses Adv. Virus Res. 66 2006 193 292 16877062 

  38. 38 Knoops K. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum PLoS Biol. 6 9 2008 

  39. 39 Lu G. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 Nature 500 7461 2013 227 231 23831647 

  40. 40 Ling Y. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients Chin. Med. J. 133 9 2020 1039 1043 32118639 

  41. 41 Glowacka I. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response J. Virol. 85 9 2011 4122 4134 21325420 

  42. 42 Shulla A. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry J. Virol. 85 2 2011 873 882 21068237 

  43. 43 Kim E. Immunogenicity of an adenoviral-based Middle East Respiratory Syndrome coronavirus vaccine in BALB/c mice Vaccine 32 45 2014 5975 5982 25192975 

  44. 44 Hoffmann M. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor Cell 2020 

  45. 45 Shereen M.A. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses J. Adv. Res. 2020 

  46. 46 Braciale T.J. Hahn Y.S. Immunity to viruses Immunol. Rev. 255 2013 1 

  47. 47 Totura A.L. Baric R.S. SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon Curr. Opin. Virology 2 3 2012 264 275 

  48. 48 Yoneyama M. Viral RNA detection by RIG-I-like receptors Curr. Opin. Immunol. 32 2015 48 53 25594890 

  49. 49 Rehwinkel J. Gack M.U. RIG-I-like receptors: their regulation and roles in RNA sensing Nat. Rev. Immunol. 2020 1 15 31792373 

  50. 50 Satoh T. Akira S. Toll-like receptor signaling and its inducible proteins Myeloid Cells in Health and Disease: A Synthesis 2017 447 453 

  51. 51 Vijay K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future Int. Immunopharmacol. 59 2018 391 412 29730580 

  52. 52 Novoa R.R. Virus factories: associations of cell organelles for viral replication and morphogenesis Biol. Cell 97 2 2005 147 172 15656780 

  53. 53 Lau S.K. Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment J. Gen. Virol. 94 12 2013 2679 2690 24077366 

  54. 54 Frieman M. Heise M. Baric R. SARS coronavirus and innate immunity Virus Res. 133 1 2008 101 112 17451827 

  55. 55 Zhao J. Evasion by stealth: inefficient immune activation underlies poor T cell response and severe disease in SARS-CoV-infected mice PLoS Pathog. 5 10 2009 

  56. 56 Yoshikawa T. Dynamic innate immune responses of human bronchial epithelial cells to severe acute respiratory syndrome-associated coronavirus infection PLoS ONE 5 1 2010 

  57. 57 Vabret N. Immunology of COVID-19: current state of the science Immunity 2020 

  58. 58 Law H.K. Toll-like receptors, chemokine receptors and death receptor ligands responses in SARS coronavirus infected human monocyte derived dendritic cells BMC Immunology 10 1 2009 35 19505311 

  59. 59 Dosch S.F. Mahajan S.D. Collins A.R. SARS coronavirus spike protein-induced innate immune response occurs via activation of the NF-κB pathway in human monocyte macrophages in vitro Virus Res. 142 1–2 2009 19 27 19185596 

  60. 60 Channappanavar R. Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology Seminars in Immunopathology 2017 Springer 

  61. 61 Fung T.S. Liu D.X. Coronavirus infection, ER stress, apoptosis and innate immunity Front. Microbiol. 5 2014 296 24987391 

  62. 62 Al von Messling V. Griffin D.E. How respiratory viruses overcome mucosal defenses and exploit the unique environment of the respiratory tract Curr. Opin. Virol. 2 3 2012 221 22554837 

  63. 63 Iwata-Yoshikawa N. Effects of Toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine J. Virol. 88 15 2014 8597 8614 24850731 

  64. 64 Hemmat N. Neutrophils, crucial, or harmful immune cells involved in coronavirus infection: a bioinformatics study Front. Genet. 11 2020 641 32582303 

  65. 65 Barnes B.J. Targeting potential drivers of COVID-19: Neutrophil extracellular traps J. Exp. Med. 217 6 2020 

  66. 66 Wong J.J.M. Insights into the immuno-pathogenesis of acute respiratory distress syndrome Ann. Translational Med. 7 19 2019 

  67. 67 Camp J.V. Jonsson C.B. A role for neutrophils in viral respiratory disease Front. Immunol. 8 2017 550 28553293 

  68. 68 Chen N. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study The Lancet 395 10223 2020 507 513 

  69. 69 Huang C. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China The Lancet 395 10223 2020 497 506 

  70. 70 Li X. Molecular immune pathogenesis and diagnosis of COVID-19 J. Pharm. Anal. 2020 

  71. 71 Gorski S.A. Hufford M.M. Braciale T.J. Recent insights into pulmonary repair following virus-induced inflammation of the respiratory tract Curr. Opin. Virology 2 3 2012 233 241 

  72. 72 Prompetchara E. Ketloy C. Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic Asian Pac. J. Allergy Immunol. 38 1 2020 1 9 32105090 

  73. 73 Yip M.S. Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus Virology J. 11 1 2014 1 11 24393133 

  74. 74 Arvin A.M. A perspective on potential antibody-dependent enhancement of SARS-CoV-2 Nature 2020 1 14 

  75. 75 Wang J. Zand M.S. The potential for antibody-dependent enhancement of SARS-CoV-2 infection: Translational implications for vaccine development J. Clin. Transl. Sci. 2020 1 11 32257403 

  76. 76 Quinlan B.D. The SARS-CoV-2 receptor-binding domain elicits a potent neutralizing response without antibody-dependent enhancement IMMUNITY-D-20-00389 2020 

  77. 77 Bao L. Reinfection could not occur in SARS-CoV-2 infected rhesus macaques BioRxiv 2020 

  78. 78 García L.F. Immune response, inflammation, and the clinical spectrum of COVID-19 Front. Immunol. 11 2020 1441 32612615 

  79. 79 Yu H.-Q. Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients Eur. Respir. J. 2020 

  80. 80 Chen X. Host immune response to influenza A virus infection Front. Immunol. 9 2018 320 29556226 

  81. 81 Nurieva R.I. Chung Y. Understanding the development and function of T follicular helper cells Cell. Mol. Immunol. 7 3 2010 190 197 20383172 

  82. 82 Huang Q. Molecular basis of the differentiation and function of virus specific follicular helper CD4+ T cells Front. Immunol. 10 2019 249 30828337 

  83. 83 Marshall N.B. Swain S.L. Cytotoxic CD4 T cells in antiviral immunity Biomed Res. Int. 2011 2011 

  84. 84 Brown D.M. Multifunctional CD4 cells expressing gamma interferon and perforin mediate protection against lethal influenza virus infection J. Virol. 86 12 2012 6792 6803 22491469 

  85. 85 Brown D.M. CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch J. Immunol. 177 5 2006 2888 2898 16920924 

  86. 86 Siu K.-L. Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain Cell. Mol. Immunol. 11 2 2014 141 149 24509444 

  87. 87 de Wit E. SARS and MERS: recent insights into emerging coronaviruses Nat. Rev. Microbiol. 14 8 2016 523 27344959 

  88. 88 Sun L. Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling PLoS ONE 7 2 2012 

  89. 89 Perrotta F. COVID-19 and the elderly: insights into pathogenesis and clinical decision-making Aging Clin. Exp. Res. 2020 1 10 31721096 

  90. 90 C.Y. Yong, et al., Recent advances in the vaccine development against middle east respiratory syndrome-coronavirus, 10 (2019) 1781. 

  91. 91 A. Roberts, et al., Animal models and vaccines for SARS-CoV infection. 133(1) (2008) 20–32. 

  92. 92 Spruth M. A double-inactivated whole virus candidate SARS coronavirus vaccine stimulates neutralising and protective antibody responses. 24 5 2006 652 661 

  93. 93 D. Qu, et al., Intranasal immunization with inactivated SARS-CoV (SARS-associated coronavirus) induced local and serum antibodies in mice. 23(7) (2005) 924–931. 

  94. 94 J. Zhou, et al., Immunogenicity, safety, and protective efficacy of an inactivated SARS-associated coronavirus vaccine in rhesus monkeys. 23(24) (2005) 3202–3209. 

  95. 95 W.-p. Kong, et al., Modulation of the immune response to the severe acute respiratory syndrome spike glycoprotein by gene-based and inactivated virus immunization. 79(22) (2005) 13915–13923. 

  96. 96 A. Roberts, et al., Immunogenicity and protective efficacy in mice and hamsters of a β-propiolactone inactivated whole virus SARS-CoV vaccine, 23(5) (2010) 509–519. 

  97. 97 R.H. See, et al., Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus, 87(3) (2006) 641–650. 

  98. 98 M. Bolles, et al., A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge 85(23) (2011) 12201–12215. 

  99. 99 C.-T. Tseng, et al., Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus, 7(4), 2012. 

  100. 100 S. Xiong, et al., Immunogenicity of SARS inactivated vaccine in BALB/c mice. 95(2) (2004) 139–143. 

  101. 101 Y., He, et al., Inactivated SARS-CoV vaccine elicits high titers of spike protein-specific antibodies that block receptor binding and virus entry, 325(2) (2004) 445–452. 

  102. 102 K.G. Lokugamage, et al., Chimeric coronavirus-like particles carrying severe acute respiratory syndrome coronavirus (SCoV) S protein protect mice against challenge with SCoV. 26(6) (2008) 797–808. 

  103. 103 M.E. Darnell, et al., Severe acute respiratory syndrome coronavirus infection in vaccinated ferrets, 196(9) (2007) 1329–1338. 

  104. 104 R.H. See, et al., Severe acute respiratory syndrome vaccine efficacy in ferrets: whole killed virus and adenovirus-vectored vaccines. 89(9) (2008) 2136–2146. 

  105. 105 Y. Honda-Okubo, et al., Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. 89(6) (2015) 2995–3007. 

  106. 106 Roper, R.L. and K.E.J.E.r.o.v. Rehm, SARS vaccines: where are we? 2009. 8(7): p. 887-898. 

  107. 107 Y. Deng, et al., Enhanced protection in mice induced by immunization with inactivated whole viruses compare to spike protein of middle east respiratory syndrome coronavirus. 7(1) (2018) 1–10. 

  108. 108 Wirblich C. One-health: a safe, efficient, dual-use vaccine for humans and animals against Middle East respiratory syndrome coronavirus and rabies virus J. Virol. 91 2 2017 e02040 16 27807241 

  109. 109 Agrawal S. Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease J. Virol. 89 7 2015 3659 3670 25589660 

  110. 110 Lin J. Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine Antivir. Ther. 12 7 2007 1107 1113 18018769 

  111. 111 Zhang J. Progress and prospects on vaccine development against SARS-CoV-2 Vaccines 8 2 2020 153 32235387 

  112. 112 Martins K.A. Bavari S. Salazar A.M. Vaccine adjuvant uses of poly-IC and derivatives Expert Rev. Vaccines 14 3 2015 447 459 25308798 

  113. 113 Chattopadhyay S. Sen G.C. dsRNA-activation of TLR3 and RLR signaling: gene induction-dependent and independent effects J. Interferon Cytokine Res. 34 6 2014 427 436 24905199 

  114. 114 Buniello A. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019 Nucleic Acids Res. 47 D1 2019 D1005 D1012 30445434 

  115. 115 Totura A.L. Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection MBio 6 3 2015 

  116. 116 Zhao J. Intranasal treatment with poly (I· C) protects aged mice from lethal respiratory virus infections J. Virol. 86 21 2012 11416 11424 22915814 

  117. 117 Barnard D.L. Kumaki Y. Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy Future Virology 6 5 2011 615 631 21765859 

  118. 118 P. Mosaddeghi, et al., Therapeutic approaches for COVID-19 based on the dynamics of interferon-mediated immune responses, 2020. 

  119. 119 Barnard D.L. Evaluation of immunomodulators, interferons and known in vitro SARS-coV inhibitors for inhibition of SARS-coV replication in BALB/c mice Antiviral Chem. Chemother. 17 5 2006 275 284 

  120. 120 Calina D. Towards effective COVID-19 vaccines: Updates, perspectives and challenges Int. J. Mol. Med. 46 1 2020 3 16 32377694 

  121. 121 Gao Q. Development of an inactivated vaccine candidate for SARS-CoV-2 Science 2020 

  122. 122 Organization W.H. DRAFT landscape of COVID-19 candidate vaccines World 2020 

  123. 123 S.A. Plotkin, W.A. Orenstein, O. PA., Vaccines. 5th edn ed. Vol. 5th edn. 2008, Philadelphia: Saunders/Elsevier. 

  124. 124 Perlman S. Vijay R.J.I.J.o.I.D. Middle East respiratory syndrome vaccines Int. J. Infect. Dis. 47 2016 23 28 27062985 

  125. 125 Almazan F. Engineering a replication-competent, propagationdefective middle east respiratory syndrome coronavirus as a vaccine candidate MBio 4 2013 e00650 e713 24023385 

  126. 126 T. Scobey, et al., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. 110(40) (2013) 16157–16162. 

  127. 127 Pulendran B. Ahmed R.J.N.i. Immunological mechanisms of vaccination Nat. Immunol. 12 6 2011 509 21739679 

  128. 128 Graham R.L. A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease Nat. Med. 18 12 2012 1820 23142821 

  129. 129 Subbarao K. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice J. Virol. 78 7 2004 3572 3577 15016880 

  130. 130 Jimenez-Guardeno J.M. Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine PLoS Pathog. 11 10 2015 1005215 

  131. 131 Züst R. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5 Nat. Immunol. 12 2 2011 137 143 21217758 

  132. 132 Lamirande E.W. A live attenuated severe acute respiratory syndrome coronavirus is immunogenic and efficacious in golden Syrian hamsters J. Virol. 82 15 2008 7721 7724 18463152 

  133. 133 Vogel L.N. Utility of the aged BALB/c mouse model to demonstrate prevention and control strategies for severe acute respiratory syndrome coronavirus (SARS-CoV) Vaccine 25 12 2007 2173 2179 17227689 

  134. 134 DeDiego M.L. Coronavirus virulence genes with main focus on SARS-CoV envelope gene Virus Res. 194 2014 124 137 25093995 

  135. 135 !!! INVALID CITATION !!! (41, 53, 96-105). 

  136. 136 Tang J. Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus Hum. Vaccin. Immunother. 11 5 2015 1244 1250 25874632 

  137. 137 Pallesen J. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen Proc. Natl. Acad. Sci. U S A 114 35 2017 E7348 E7357 28807998 

  138. 138 Li K. Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase J. Infect. Dis. 213 5 2016 712 722 26486634 

  139. 139 Wang L. Evaluation of candidate vaccine approaches for MERS-CoV Nat. Commun. 6 1 2015 

  140. 140 Jiaming L. The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection Vaccine 35 1 2017 10 18 27899228 

  141. 141 Wang Y. Receptor-binding domain of MERS-CoV with optimal immunogen dosage and immunization interval protects human transgenic mice from MERS-CoV infection Hum. Vaccin. Immunother. 13 7 2017 1615 1624 28277821 

  142. 142 Adney D.R. Efficacy of an adjuvanted Middle East respiratory syndrome coronavirus spike protein vaccine in dromedary camels and alpacas Viruses 11 3 2019 212 30832356 

  143. 143 Lan J. Recombinant receptor binding domain protein induces partial protective immunity in rhesus macaques against Middle East respiratory syndrome coronavirus challenge EBioMedicine 2 10 2015 1438 1446 26629538 

  144. 144 Ma C. Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments—the importance of immunofocusing in subunit vaccine design Vaccine 32 46 2014 6170 6176 25240756 

  145. 145 Chen Y. Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus J. Virol. 87 19 2013 10777 10783 23903833 

  146. 146 Mou H. The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies J. Virol. 87 16 2013 9379 9383 23785207 

  147. 147 Jiang L. Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein Sci. Transl. Med. 6 234 2014 234ra59 

  148. 148 Du L. Identification of receptor-binding domain in S protein of the novel human coronavirus MERS-CoV as an essential target for vaccine development J. Virol. 2013 01048-13 

  149. 149 Du L. Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines Nat. Commun. 7 1 2016 1 9 

  150. 150 Ma C. Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: Implication for designing novel mucosal MERS vaccines Vaccine 32 18 2014 2100 2108 24560617 

  151. 151 Weingartl H. Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets J. Virol. 78 22 2004 12672 12676 15507655 

  152. 152 See R.H. Rapid response research-SARS coronavirus vaccines and application of processes to other emerging infectious diseases Curr. Immunol. Rev. 1 2 2005 185 200 

  153. 153 Berger A. Severe acute respiratory syndrome (SARS)—paradigm of an emerging viral infection J. Clin. Virol. 29 1 2004 13 22 14675864 

  154. 154 Du L. Recombinant receptor-binding domain of SARS-CoV spike protein expressed in mammalian, insect and E. coli cells elicits potent neutralizing antibody and protective immunity Virology 393 1 2009 144 150 19683779 

  155. 155 Bisht H. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice Proc. Natl. Acad. Sci. U S A 101 17 2004 6641 6646 15096611 

  156. 156 Bukreyev A. Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS Lancet 363 9427 2004 2122 2127 15220033 

  157. 157 Hu M.C. Intranasal protollin-formulated recombinant SARS S-protein elicits respiratory and serum neutralizing antibodies and protection in mice Vaccine 25 34 2007 6334 6340 17640780 

  158. 158 Kam Y.W. Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcγRII-dependent entry into B cells in vitro Vaccine 25 4 2007 729 740 17049691 

  159. 159 Du L. A 219-mer CHO-expressing receptor-binding domain of SARS-CoV S protein induces potent immune responses and protective immunity Viral Immunol. 23 2 2010 211 219 20374001 

  160. 160 Li J. Immunogenicity and protection efficacy of monomeric and trimeric recombinant SARS coronavirus spike protein subunit vaccine candidates Viral Immunol. 26 2 2013 126 132 23573979 

  161. 161 Huang J. Priming with SARS CoV S DNA and boosting with SARS CoV S epitopes specific for CD4+ and CD8+ T cells promote cellular immune responses Vaccine 25 39–40 2007 6981 6991 17709158 

  162. 162 Stadler K. SARS vaccine protective in mice Emerg. Infect. Dis. 11 8 2005 1312 1314 16110580 

  163. 163 He Y. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine Biochem. Biophys. Res. Commun. 324 2 2004 773 781 15474494 

  164. 164 Guo Y. Elicitation of immunity in mice after immunization with the S2 subunit of the severe acute respiratory syndrome coronavirus DNA Cell Biol. 24 8 2005 510 515 16101349 

  165. 165 Yang Z.-y. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice Nature 428 6982 2004 561 564 15024391 

  166. 166 He Y. Identification of immunodominant epitopes on the membrane protein of the severe acute respiratory syndrome-associated coronavirus J. Clin. Microbiol. 43 8 2005 3718 3726 16081901 

  167. 167 Liu S.-J. Immunological characterizations of the nucleocapsid protein based SARS vaccine candidates Vaccine 24 16 2006 3100 3108 16494977 

  168. 168 Zheng N. Boosted expression of the SARS-CoV nucleocapsid protein in tobacco and its immunogenicity in mice Vaccine 27 36 2009 5001 5007 19523911 

  169. 169 Li Structure, function, and evolution of coronavirus spike proteins Annu. Rev. Virol. 3 2016 237 261 27578435 

  170. 170 Syomin B. Ilyin Y.J.M.B. Virus-like particles as an instrument of vaccine production Mol. Biol. 53 3 2019 323 334 32214478 

  171. 171 Mukherjee R.J.J.o.B. Global efforts on vaccines for COVID-19: Since, sooner or later, we all will catch the coronavirus J. Biosci. 45 1 2020 68 32385219 

  172. 172 Kahandal S.S. Recent developments on COVID-19 and associated human coronavirus disease therapeutic agents, and vaccines ACS Cent. Sci. 6 3 2020 315 331 32226821 

  173. 173 Franklin S.E. Mayfield S.P. Prospects for molecular farming in the green alga Chlamydomonas reinhardtii Curr. Opin. Plant Biol. 7 2 2004 159 165 15003216 

  174. 174 Bull J.J. Smithson M.W. Nuismer S.L. Transmissible viral vaccines Trends Microbiol. 26 1 2018 6 15 29033339 

  175. 175 Murphy A.A. Redwood A.J. Jarvis M.A. Self-disseminating vaccines for emerging infectious diseases Expert Rev. Vaccines 15 1 2016 31 39 26524478 

  176. 176 Souza A. Recombinant viruses as vaccines against viral diseases Braz. J. Med. Biol. Res. 38 4 2005 509 522 15962176 

  177. 177 Du L. Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model Vaccine 25 15 2007 2832 2838 17092615 

  178. 178 Jiang S. He Y. Liu S. SARS vaccine development Emerg. Infect. Dis. 11 7 2005 1016 16022774 

  179. 179 Song Z. From SARS to MERS, thrusting coronaviruses into the spotlight Viruses 11 1 2019 59 30646565 

  180. 180 Liu R. A recombinant VSV-vectored MERS-CoV vaccine induces neutralizing antibody and T cell responses in rhesus monkeys after single dose immunization Antiviral Res. 150 2018 30 38 29246504 

  181. 181 Lan J. Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptor-binding domain as an antigen PLoS ONE 9 11 2014 

  182. 182 Kim M.H. Kim H.J. Chang J. Superior immune responses induced by intranasal immunization with recombinant adenovirus-based vaccine expressing full-length Spike protein of Middle East respiratory syndrome coronavirus PLoS ONE 14 7 2019 

  183. 183 Chen W.-H. The SARS-CoV-2 vaccine pipeline: an overview Curr. Tropical Med. Rep. 2020 1 4 

  184. 184 Martin J.E. A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial Vaccine 26 50 2008 6338 6343 18824060 

  185. 185 Vaxart. PipelineReview.com. Vaxart Announces Initiation of Coronavirus Vaccine Program. 2020 [cited 2020 January 31]; Available from: https:// investors.vaxart.com/news-releases/news-release-details/vaxart-announcesinitiation-coronavirus-vaccine-program; Accessed on: 09.02.2020. 

  186. 186 https://clinicaltrials.gov/ct2/show/NCT04341389. A Phase II Clinical Trial to Evaluate the Recombinant Vaccine for COVID-19 (Adenovirus Vector) (CTII-nCoV). 2020. 

  187. 187 https://www.trialsitenews.com/cansino-biologics-ad5-ncov-the-first-covid-19-vaccine-to-phase-ii-clinical-trials/. CanSino Biologics’ Ad5-nCoV the First COVID-19 Vaccine to Phase II Clinical Trials, 2020. 

  188. 188 Leitner W.W. Ying H. Restifo N.P. DNA and RNA-based vaccines: principles, progress and prospects Vaccine 18 9–10 1999 765 777 10580187 

  189. 189 Al-Amri S.S. Immunogenicity of candidate MERS-CoV DNA vaccines based on the spike protein Sci. Rep. 7 2017 44875 28332568 

  190. 190 Gurunathan S. DNA vaccines: a key for inducing long-term cellular immunity Curr. Opin. Immunol. 12 4 2000 442 447 10899026 

  191. 191 Roper R.L. Rehm K.E. SARS vaccines: where are we? Expert Rev. Vaccines 8 7 2009 887 898 19538115 

  192. 192 Okada M. Development of vaccines and passive immunotherapy against SARS corona virus using SCID-PBL/hu mouse models Vaccine 25 16 2007 3038 3040 17289225 

  193. 193 Cheung Y.-K. Induction of T-cell response by a DNA vaccine encoding a novel HLA-A* 0201 severe acute respiratory syndrome coronavirus epitope Vaccine 25 32 2007 6070 6077 17629360 

  194. 194 Muthumani K. A synthetic consensus anti–spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates Sci. Transl. Med. 7 301 2015 p. 301ra132-301ra132 

  195. 195 Zhang N. Receptor-binding domain-based subunit vaccines against MERS-CoV Virus Res. 202 2015 151 159 25445336 

  196. 196 Chi H. DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice Vaccine 35 16 2017 2069 2075 28314561 

  197. 197 Kim E. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development EBioMedicine 2020 102743 

  198. 198 Yong C.Y. Recent advances in the vaccine development against middle east respiratory syndrome-coronavirus Front. Microbiol. 10 2019 1781 31428074 

  199. 199 Padron-Regalado E. Vaccines for SARS-CoV-2: lessons from other coronavirus strains Infect. Dis. Therapy 2020 1 20 

  200. 200 Le T.T. The COVID-19 vaccine development landscape Nat. Rev. Drug Discov. 19 2020 305 306 32273591 

  201. 201 Modjarrad K. Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial Lancet Infect. Dis. 19 9 2019 1013 1022 31351922 

  202. 202 C. Biopharmaceuticals, Clover initiates development of recombinant subunit-trimer vaccine for wuhan coronavirus (2019-ncov), 2020. 

  203. 203 fudan.edu.cn. Towards an effective mRNA vaccine against 2019-nCoV. 2020 [cited 2020 7 MAR]; Available from: https://www.fudan.edu.cn/en/2020/0307/c344a104281/page.htm. 

  204. 204 Zhu F.-C. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial The Lancet 2020 

  205. 205 Josefsberg J.O. Buckland B. Vaccine process technology Biotechnol. Bioeng. 109 6 2012 1443 1460 22407777 

  206. 206 businesswire. Medicago Announces Production of a Viable Vaccine Candidate for COVID-19. 2020 [cited 2020 MAR 12]; Available from: https://www.businesswire.com/news/home/20200312005345/en/ . 

  207. 207 Korber B. Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus Cell 182 4 2020 pp. 812–827. e19 

  208. 208 Gudbjartsson D.F. Spread of SARS-CoV-2 in the Icelandic population N. Engl. J. Med. 2020 

  209. 209 Korber B. Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus Cell 2020 

  210. 210 Guo J.-P. SARS corona virus peptides recognized by antibodies in the sera of convalescent cases Virology 324 2 2004 251 256 15207612 

  211. 211 Menachery V.D. Combination attenuation offers strategy for live attenuated coronavirus vaccines J. Virol. 92 17 2018 e00710 18 29976657 

  212. 212 Jaume M. SARS CoV subunit vaccine: antibodymediated neutralisation and enhancement Mediccine 18 2 2012 31 36 

  213. 213 Tao X. Characterization and demonstration of the value of a lethal mouse model of Middle East respiratory syndrome coronavirus infection and disease J. Virol. 90 1 2016 57 67 26446606 

  214. 214 Malczyk A.H. A highly immunogenic and protective Middle East respiratory syndrome coronavirus vaccine based on a recombinant measles virus vaccine platform J. Virol. 89 22 2015 11654 11667 26355094 

  215. 215 Menachery V.D. Middle east respiratory syndrome coronavirus nonstructural protein 16 is necessary for interferon resistance and viral pathogenesis mSphere 2 6 2017 e00346-17 

  216. 216 Bodmer B.S. Live-attenuated bivalent measles virus-derived vaccines targeting Middle East respiratory syndrome coronavirus induce robust and multifunctional T cell responses against both viruses in an appropriate mouse model Virology 521 2018 99 107 29902727 

  217. 217 Tai W. A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoV infection Virology 499 2016 375 382 27750111 

  218. 218 Nyon M.P. Engineering a stable CHO cell line for the expression of a MERS-coronavirus vaccine antigen Vaccine 36 14 2018 1853 1862 29496347 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로