$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Plastic waste residue-derived boron and nitrogen co-doped porous hybrid carbon for a modified separator of a lithium sulfur battery

Electrochimica acta, v.380, 2021년, pp.138243 -   

Gim, Hyeonseo (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Park, Jae Hyun (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Choi, Won Yeong (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Yang, Jeongwoo (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Kim, Dohyeun (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Lee, Kyong-Hwan (Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research (KIER)) ,  Lee, Jae W. (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST))

Abstract AI-Helper 아이콘AI-Helper

Abstract The continuous consumption of plastic has caused plastic waste accumulation and negative impacts on the environment. In response to this issue, plastic waste recycling through a pyrolysis process to produce liquid oils has been proposed. However, the pyrolysis process involves discarded or...

Keyword

참고문헌 (61)

  1. Renew. Sustain. Energy Rev. Kunwar 54 421 2016 10.1016/j.rser.2015.10.015 Plastics to fuel: a review 

  2. Electrochim. Acta. Zhao 331 2020 10.1016/j.electacta.2019.135436 Degradation-resistant waste plastics derived carbon supported MoS2 electrocatalyst: high‒nitrogen dependent activity for hydrogen evolution reaction 

  3. Palgrave Commun Lebreton 5 1 2019 10.1057/s41599-018-0212-7 Future scenarios of global plastic waste generation and disposal 

  4. Electrochim. Acta. Zhang 156 102 2015 10.1016/j.electacta.2015.01.011 Co@ MWNTs-Plastic: a novel electrode for NaBH4 oxidation 

  5. Sci. Adv. Geyer 3 2017 10.1126/sciadv.1700782 Production, use, and fate of all plastics ever made 

  6. Electrochim. Acta. Jiang 147 183 2014 10.1016/j.electacta.2014.09.050 Supercapacitor performance of spherical nanoporous carbon obtained by a CaCO3-assisted template carbonization method from polytetrafluoroethene waste and the electrochemical enhancement by the nitridation of CO (NH2) 2 

  7. Energy Convers. Manag. Sharuddin 115 308 2016 10.1016/j.enconman.2016.02.037 A review on pyrolysis of plastic wastes 

  8. Chem. Eng. J. Kim 98 53 2004 10.1016/S1385-8947(03)00184-0 Pyrolysis characteristics of polystyrene and polypropylene in a stirred batch reactor 

  9. Procedia Eng. Jamradloedluk 69 1437 2014 10.1016/j.proeng.2014.03.139 Characterization and utilization of char derived from fast pyrolysis of plastic wastes 

  10. Nat. Mater. Bruce 11 19 2012 10.1038/nmat3191 Li-O 2 and Li-S batteries with high energy storage 

  11. Chem. Rev. Manthiram 114 11751 2014 10.1021/cr500062v Rechargeable lithium-sulfur batteries 

  12. Chem. Soc. Rev. Seh 45 5605 2016 10.1039/C5CS00410A Designing high-energy lithium-sulfur batteries 

  13. Adv. Mater. Manthiram 27 1980 2015 10.1002/adma.201405115 Lithium-sulfur batteries: progress and prospects 

  14. Nat. Energy. Pang 1 1 2016 10.1038/nenergy.2016.132 Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes 

  15. J. Porous Mater. Kim 1 2019 Spent coffee derived hierarchical porous carbon and its application for energy storage 

  16. Angew. Chem. Int. Ed. Yin 52 13186 2013 10.1002/anie.201304762 Lithium-sulfur batteries: electrochemistry, materials, and prospects 

  17. Energy Storage Mater. Huang 1 127 2015 10.1016/j.ensm.2015.09.008 Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: progress and prospects 

  18. Chem. Commun. Su 48 8817 2012 10.1039/c2cc33945e A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer 

  19. Adv. Mater. Interfaces. Lee 6 2019 10.1002/admi.201801992 Graphene oxide/carbon nanotube bilayer flexible membrane for high-performance Li-S batteries with superior physical and electrochemical properties 

  20. ACS Appl. Energy Mater. Park 3 5247 2020 10.1021/acsaem.0c00073 CO 2 -derived synthesis of hierarchical porous carbon cathode and free-standing N-rich carbon interlayer applied for lithium-sulfur batteries 

  21. Adv. Mater. Xiao 27 2891 2015 10.1002/adma.201405637 A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries 

  22. Joule Pei 2 323 2018 10.1016/j.joule.2017.12.003 A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries 

  23. Energy Environ. Sci. Yao 7 3381 2014 10.1039/C4EE01377H Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface 

  24. Electrochim. Acta. Baik 330 2020 10.1016/j.electacta.2019.135264 One-pot conversion of carbon dioxide to CNT-grafted graphene bifunctional for sulfur cathode and thin interlayer of Li-S battery 

  25. Adv. Energy Mater. Pang 8 2018 10.1002/aenm.201702288 Synergetic protective effect of the ultralight MWCNTs/NCQDs modified separator for highly stable lithium-sulfur batteries 

  26. J. Electrochem. Soc. Pang 162 A2567 2015 10.1149/2.0171514jes The importance of chemical interactions between sulfur host materials and lithium polysulfides for advanced lithium-sulfur batteries 

  27. Adv. Mater. Liu 29 2017 Nanostructured metal oxides and sulfides for lithium-sulfur batteries 

  28. Adv. Mater. Interfaces. Imtiaz 5 2018 10.1002/admi.201800243 Electrocatalysis on separator modified by molybdenum trioxide nanobelts for lithium-sulfur batteries 

  29. ACS Nano Lee 14 9744 2020 10.1021/acsnano.0c01452 CO2-Oxidized Ti3C2T x-MXenes components for lithium-sulfur batteries: suppressing the shuttle phenomenon through physical and chemical adsorption 

  30. Appl. Surf. Sci. Zeng 427 242 2018 10.1016/j.apsusc.2017.08.062 Inhibiting polysulfides diffusion of lithium-sulfur batteries using an acetylene black-CoS2 modified separator: mechanism research and performance improvement 

  31. ACS Nano Zhang 12 9578 2018 10.1021/acsnano.8b05466 Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium-sulfur batteries 

  32. J. Mater. Chem. A. Qi 6 14359 2018 10.1039/C8TA04920C Mesoporous TiN microspheres as an efficient polysulfide barrier for lithium-sulfur batteries 

  33. Chem. Eng. J. Song 333 564 2018 10.1016/j.cej.2017.09.186 Fe-N-doped carbon nanofiber and graphene modified separator for lithium-sulfur batteries 

  34. J. Electroanal. Chem. Zhou 768 55 2016 10.1016/j.jelechem.2016.02.037 A high-level N-doped porous carbon nanowire modified separator for long-life lithium-sulfur batteries 

  35. J. Mater. Chem. A. Wu 4 17033 2016 10.1039/C6TA06516C Light-weight functional layer on a separator as a polysulfide immobilizer to enhance cycling stability for lithium-sulfur batteries 

  36. Adv. Energy Mater. Yuan 6 2016 10.1002/aenm.201501733 Graphene-supported nitrogen and boron rich carbon layer for improved performance of lithium-sulfur batteries due to enhanced chemisorption of lithium polysulfides 

  37. ACS Appl. Mater. Interfaces Balach 8 14586 2016 10.1021/acsami.6b03642 Synergistically enhanced polysulfide chemisorption using a flexible hybrid separator with N and S dual-doped mesoporous carbon coating for advanced lithium-sulfur batteries 

  38. Carbon Kim 126 215 2018 10.1016/j.carbon.2017.10.020 Facile nano-templated CO2 conversion into highly interconnected hierarchical porous carbon for high-performance supercapacitor electrodes 

  39. Nanoscale Kim 12 7822 2020 10.1039/C9NR10552B Transformation of carbon dioxide into carbon nanotubes for enhanced ion transport and energy storage 

  40. Carbon N. Y. Zhu 111 667 2017 10.1016/j.carbon.2016.10.016 A novel synthesis of hierarchical porous carbons from interpenetrating polymer networks for high performance supercapacitor electrodes 

  41. Electrochim. Acta. Park 2020 10.1016/j.electacta.2020.136310 Graphene intercalated free-standing carbon paper coated with MnO2 for anode materials of lithium ion batteries 

  42. Electrochim. Acta. Lee 210 743 2016 10.1016/j.electacta.2016.05.206 Carbon dioxide conversion into boron/nitrogen dual-doped carbon as an electrode material for oxygen reduction reaction 

  43. ACS Appl. Nano Mater. Kim 3 8592 2020 10.1021/acsanm.0c01909 Electrically conductive oxidation-resistant boron-coated carbon nanotubes derived from atmospheric CO2 for use at high temperature 

  44. Angew. Chem. Hou 129 8290 2017 10.1002/ange.201704324 Lithium bond chemistry in lithium-sulfur batteries 

  45. Sci. Rep. Bharti 6 32355 2016 10.1038/srep32355 Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment 

  46. Electrochem. Commun. Byeon 60 199 2015 10.1016/j.elecom.2015.09.004 Effect of hydrogenation on performance of TiO2 (B) nanowire for lithium ion capacitors 

  47. Adv. Mater. Chen 29 2017 A new type of multifunctional polar binder: toward practical application of high energy lithium sulfur batteries 

  48. Nano Lett Qiu 14 4821 2014 10.1021/nl5020475 High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene 

  49. ACS Appl. Mater. Interfaces. Yang 6 8789 2014 10.1021/am501627f Insight into the effect of boron doping on sulfur/carbon cathode in lithium-sulfur batteries 

  50. Anal. Chem. Barchasz 84 3973 2012 10.1021/ac2032244 Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification 

  51. Adv. Funct. Mater. Cai 28 2018 10.1002/adfm.201704865 Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries 

  52. J. Mater. Chem. A. Chen 5 7403 2017 10.1039/C7TA01265A Hydrothermal preparation of nitrogen, boron co-doped curved graphene nanoribbons with high dopant amounts for high-performance lithium sulfur battery cathodes 

  53. Carbon N. Y. Li 149 564 2019 10.1016/j.carbon.2019.04.022 Manipulating the redox kinetics of LiS chemistry by porous hollow cobalt-B, N codoped-graphitic carbon polyhedrons for high performance lithium-sulfur batteries 

  54. J. Electrochem. Soc. Park 166 6 A838 2019 10.1149/2.1071904jes Visualized pulverization via ex situ analyses: nickel sulfide anode caged in a hierarchical carbon 

  55. Electrochim. Acta. Byeon 258 979 2017 10.1016/j.electacta.2017.11.149 Molybdenum oxide/carbon composites derived from the CO2 oxidation of Mo2CTx (MXene) for lithium ion battery anodes 

  56. Angew. Chem. Int. Ed. Wang 50 11756 2011 10.1002/anie.201105204 Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: a synergetic effect by co-doping with boron and nitrogen 

  57. J. Mater. Chem. A. Zuo 5 10936 2017 10.1039/C7TA02245J Facilitating the redox reaction of polysulfides by an electrocatalytic layer-modified separator for lithium-sulfur batteries 

  58. ACS Appl. Mater. Interfaces Lin 12 2497 2019 10.1021/acsami.9b18723 CoP/C nanocubes-modified separator suppressing polysulfide dissolution for high-rate and stable lithium-sulfur batteries 

  59. Electrochim. Acta. Wang 354 2020 10.1016/j.electacta.2020.136704 Alleviating the shuttle effect via bifunctional MnFe2O4/AB modified separator for high performance lithium sulfur battery 

  60. Adv. Mater. Zhang 31 2019 Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries 

  61. J. Membr. Sci. Chen 548 247 2018 10.1016/j.memsci.2017.11.026 A multifunctional separator modified with cobalt and nitrogen co-doped porous carbon nanofibers for Li-S batteries 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로