$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Strategies to Improve Meat Products’ Quality 원문보기

Foods, v.9 no.12, 2020년, pp.1883 -   

Ursachi, Claudiu Ștefan ,  Perța-Crișan, Simona ,  Munteanu, Florentina-Daniela

Abstract AI-Helper 아이콘AI-Helper

Meat products represent an important component of the human diet, their consumption registering a global increase over the last few years. These foodstuffs constitute a good source of energy and some nutrients, such as essential amino acids, high biological value proteins, minerals like iron, zinc, ...

주제어

참고문헌 (187)

  1. 1. European Commission Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin J. Eur. Union 2004 139 55 205 

  2. 2. Simonin H. Duranton F. de Lamballerie M. New Insights into the High-Pressure Processing of Meat and Meat Products Compr. Rev. Food Sci. Food Saf. 2012 11 285 306 10.1111/j.1541-4337.2012.00184.x 

  3. 3. Higgs J.D. The changing nature of red meat: 20 years of improving nutritional quality Trends Food Sci. Technol. 2000 11 85 95 10.1016/S0924-2244(00)00055-8 

  4. 4. Jiang J. Xiong Y.L. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review Meat Sci. 2016 120 107 117 10.1016/j.meatsci.2016.04.005 27091079 

  5. 5. Pereira P.M. Vicente A.F. Meat nutritional composition and nutritive role in the human diet Meat Sci. 2013 93 586 592 10.1016/j.meatsci.2012.09.018 23273468 

  6. 6. Kulczynski B. Sidor A. Gramza-Michalowska A. Characteristics of Selected Antioxidative and Bioactive Compounds in Meat and Animal Origin Products Antioxidants 2019 8 335 10.3390/antiox8090335 

  7. 7. Skibska B. Goraca A. The protective effect of lipoic acid on selected cardiovascular diseases caused by age-related oxidative stress Oxid. Med. Cell. Longev. 2015 2 1 11 10.1155/2015/313021 

  8. 8. Albenzio M. Santillo A. Caroprese M. Della Malva A. Marino R. Bioactive Peptides in Animal Food Products Foods 2017 6 35 10.3390/foods6050035 

  9. 9. McBey D. Watts D. Johnstone A.M. Nudging, formulating new products, and the lifecourse: A qualitative assessment of the viability of three methods for reducing Scottish meat consumption for health, ethical, and environmental reasons Appetite 2019 142 104349 10.1016/j.appet.2019.104349 31279823 

  10. 10. Domingo J.L. Nadal M. Carcinogenicity of consumption of red meat and processed meat: A review of scientific news since the IARC decision Food Chem. Toxicol. 2017 105 256 261 10.1016/j.fct.2017.04.028 28450127 

  11. 11. Godfray H.C.J. Aveyard P. Garnett T. Hall J.W. Key T.J. Lorimer J. Pierrehumbert R.T. Scarborough P. Springmann M. Jebb S.A. Meat consumption, health, and the environment Science 2018 361 eaam5324 10.1126/science.aam5324 30026199 

  12. 12. Bouvard V. Loomis D. Guyton K.Z. Grosse Y. Ghissassi F.E. Benbrahim-Tallaa L. Guha N. Mattock H. Straif K. Carcinogenicity of consumption of red and processed meat Lancet Oncol. 2015 16 1599 1600 10.1016/S1470-2045(15)00444-1 26514947 

  13. 13. McAfee A.J. McSorley E.M. Cuskelly G.J. Moss B.W. Wallace J.M. Bonham M.P. Fearon A.M. Red meat consumption: An overview of the risks and benefits Meat Sci. 2010 84 1 13 10.1016/j.meatsci.2009.08.029 20374748 

  14. 14. Wolk A. Potential health hazards of eating red meat J. Intern. Med. 2017 281 106 122 10.1111/joim.12543 27597529 

  15. 15. Gagaoua M. Picard B. Current Advances in Meat Nutritional, Sensory and Physical Quality Improvement Foods 2020 9 321 10.3390/foods9030321 

  16. 16. Zhang W. Xiao S. Samaraweera H. Lee E.J. Ahn D.U. Improving functional value of meat products Meat Sci. 2010 86 15 31 10.1016/j.meatsci.2010.04.018 20537806 

  17. 17. Hathwar S.C. Rai A.K. Modi V.K. Narayan B. Characteristics and consumer acceptance of healthier meat and meat product formulations-a review J. Food Sci. Technol. 2012 49 653 664 10.1007/s13197-011-0476-z 24293684 

  18. 18. Rothstein W.G. Dietary fat, coronary heart disease, and cancer: A historical review Prev. Med. 2006 43 356 360 10.1016/j.ypmed.2006.07.013 16949142 

  19. 19. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) Scientific Opinion on Dietary Reference Values for carbohydrates and dietary fibre EFSA J. 2010 8 1462 10.2903/j.efsa.2010.1462 

  20. 20. Dai F.-J. Chau C.-F. Classification and regulatory perspectives of dietary fiber J. Food Drug Anal. 2017 25 37 42 10.1016/j.jfda.2016.09.006 28911542 

  21. 21. Mehta N. Ahlawat S.S. Sharma D.P. Dabur R.S. Novel trends in development of dietary fiber rich meat products-a critical review J. Food Sci. Technol. 2015 52 633 647 10.1007/s13197-013-1010-2 25694673 

  22. 22. Kim H.J. Paik H.-D. Functionality and Application of Dietary Fiber in Meat Products Korean J. Food Sci.. Anim. Resour. 2012 32 695 705 10.5851/kosfa.2012.32.6.695 

  23. 23. Talukder S. Effect of dietary fiber on properties and acceptance of meat products: A review Crit. Rev. Food Sci. Nutr. 2015 55 1005 1011 10.1080/10408398.2012.682230 24915339 

  24. 24. Hu G. Yu W. Effect of hemicellulose from rice bran on low fat meatballs chemical and functional properties Food Chem. 2015 186 239 243 10.1016/j.foodchem.2014.07.063 25976816 

  25. 25. Schmiele M. Nucci Mascarenhas M.C.C. da Silva Barretto A.C. Rodrigues Pollonio M.A. Dietary fiber as fat substitute in emulsified and cooked meat model system LWT Food Sci. Technol. 2015 61 105 111 10.1016/j.lwt.2014.11.037 

  26. 26. Barros J.C. Munekata P.E.S. Pires M.A. Rodrigues I. Andaloussi O.S. Rodrigues C.E.d.C. Trindade M.A. Omega-3- and fibre-enriched chicken nuggets by replacement of chicken skin with chia ( Salvia hispanica L.) flour LWT 2018 90 283 289 10.1016/j.lwt.2017.12.041 

  27. 27. Berizi E. Shekarforoush S.S. Mohammadinezhad S. Hosseinzadeh S. Farahnaki A. The use of inulin as fat replacer and its effect on texture and sensory properties of emulsion type sausages Iran. J. Vet. Res. 2017 18 253 257 29387097 

  28. 28. Yılmaz I. Effects of rye bran addition on fatty acid composition and quality characteristics of low-fat meatballs Meat Sci. 2004 67 245 249 10.1016/j.meatsci.2003.10.012 22061320 

  29. 29. Petridis D. Raizi P. Ritzoulis C. Influence of Citrus Fiber, Rice Bran and Collagen on the Texture and Organoleptic Properties of Low-Fat Frankfurters J. Food Process. Preserv. 2014 38 1759 1771 10.1111/jfpp.12139 

  30. 30. Powell M.J. Sebranek J.G. Prusa K.J. Tarte R. Evaluation of citrus fiber as a natural replacer of sodium phosphate in alternatively-cured all-pork Bologna sausage Meat Sci. 2019 157 107883 10.1016/j.meatsci.2019.107883 31284235 

  31. 31. Fernandez-Lopez J. Fernandez-Gines J.M. Aleson-Carbonell L. Sendra E. Sayas-Barbera E. Perez-Alvarez J.A. Application of functional citrus by-products to meat products Trends Food Sci. Technol. 2004 15 176 185 10.1016/j.tifs.2003.08.007 

  32. 32. Ribeiro J.S. Santos M. Silva L.K.R. Pereira L.C.L. Santos I.A. da Silva Lannes S.C. da Silva M.V. Natural antioxidants used in meat products: A brief review Meat Sci. 2019 148 181 188 10.1016/j.meatsci.2018.10.016 30389412 

  33. 33. Sohaib M. Anjum F.M. Sahar A. Arshad M.S. Rahman U.U. Imran A. Hussain S. Antioxidant proteins and peptides to enhance the oxidative stability of meat and meat products: A comprehensive review Int. J. Food Prop. 2017 20 2581 2593 10.1080/10942912.2016.1246456 

  34. 34. Kausar T. Hanan E. Ayob O. Praween B. Azad Z. A review on functional ingredients in red meat products Bioinformation 2019 15 358 363 10.6026/97320630015358 31249439 

  35. 35. Manhani M.R. Nicoletti M.A. Barretto A.C.D.S. Jesus G.R.D. Camila Munhoz C. Abreu G.R.D. Zaccarelli-Magalhaes J. Fukushima A.R. Antioxidant Action of Rosemary and Oregano Extract in Pre-Cooked Meat Hamburger Food Nutr. Sci. 2018 9 806 817 10.4236/fns.2018.97060 

  36. 36. Armenteros M. Morcuende D. Ventanas S. Estevez M. Application of Natural Antioxidants from Strawberry Tree ( Arbutus unedo L.) and Dog Rose ( Rosa canina L.) to Frankfurters Subjected to Refrigerated Storage J. Integr. Agric. 2013 12 1972 1981 10.1016/S2095-3119(13)60635-8 

  37. 37. Pateiro M. Bermudez R. Lorenzo J.M. Franco D. Effect of Addition of Natural Antioxidants on the Shelf-Life of “Chorizo”, a Spanish Dry-Cured Sausage Antioxidants 2015 4 42 67 10.3390/antiox4010042 26785337 

  38. 38. Pateiro M. Vargas F.C. Chincha A.A.I.A. Sant’Ana A.S. Strozzi I. Rocchetti G. Barba F.J. Dominguez R. Lucini L. do Amaral Sobral P.J. Guarana seed extracts as a useful strategy to extend the shelf life of pork patties: UHPLC-ESI/QTOF phenolic profile and impact on microbial inactivation, lipid and protein oxidation and antioxidant capacity Food Res. Int. 2018 114 55 63 10.1016/j.foodres.2018.07.047 30361027 

  39. 39. Rodrigues A.S. Kubota E.H. da Silva C.G. Dos Santos Alves J. Hautrive T.P. Rodrigues G.S. Campagnol P.C.B. Banana inflorescences: A cheap raw material with great potential to be used as a natural antioxidant in meat products Meat Sci. 2020 161 107991 10.1016/j.meatsci.2019.107991 31710885 

  40. 40. Przybylski R. Firdaous L. Chataigne G. Dhulster P. Nedjar N. Production of an antimicrobial peptide derived from slaughterhouse by-product and its potential application on meat as preservative Food Chem. 2016 211 306 313 10.1016/j.foodchem.2016.05.074 27283637 

  41. 41. Zhao L. Wang S. Huang Y. Antioxidant function of tea dregs protein hydrolysates in liposome?meat system and its possible action mechanism Int. J. Food Sci. Technol. 2014 49 2299 2306 10.1111/ijfs.12546 

  42. 42. Sakanaka S. Tachibana Y. Ishihara N. Juneja L.R. Antioxidant Properties of Casein Calcium Peptides and Their Effects on Lipid Oxidation in Beef Homogenates J. Agric. Food Chem. 2005 53 464 468 10.1021/jf0487699 15656689 

  43. 43. Pena-Ramos E.A. Xiong Y.L. Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties Meat Sci. 2003 64 259 263 10.1016/S0309-1740(02)00187-0 22063011 

  44. 44. Saura-Calixto F. Antioxidant dietary fiber product: A new concept and a potential food ingredient J. Agric. Food Chem. 1998 46 4303 4306 10.1021/jf9803841 

  45. 45. Madane P. Das A.K. Pateiro M. Nanda P.K. Bandyopadhyay S. Jagtap P. Barba F.J. Shewalkar A. Maity B. Lorenzo J.M. Drumstick (Moringa oleifera) Flower as an Antioxidant Dietary Fibre in Chicken Meat Nuggets Foods 2019 8 307 10.3390/foods8080307 

  46. 46. Das A.K. Nanda P.K. Madane P. Biswas S. Das A. Zhang W. Lorenzo J.M. A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods Trends Food Sci. Technol. 2020 99 323 336 10.1016/j.tifs.2020.03.010 

  47. 47. Skinner R.C. Gigliotti J.C. Ku K.-M. Tou J.C. A comprehensive analysis of the composition, health benefits, and safety of apple pomace Nutr. Rev. 2018 76 893 909 10.1093/nutrit/nuy033 30085116 

  48. 48. Rivera K. Salas-Perez F. Echeverria G. Urquiaga I. Dicenta S. Perez D. de la Cerda P. Gonzalez L. Andia M.E. Uribe S. Red Wine Grape Pomace Attenuates Atherosclerosis and Myocardial Damage and Increases Survival in Association with Improved Plasma Antioxidant Activity in a Murine Model of Lethal Ischemic Heart Disease Nutrients 2019 11 2135 10.3390/nu11092135 

  49. 49. Malav Om P. Sharma B.D. Kumar R.R. Talukder S. Ahmed S.R. Irshad A. Antioxidant potential and quality characteristics of functional mutton patties incorporated with cabbage powder Nutr. Food Sci. 2015 45 542 563 10.1108/NFS-03-2015-0019 

  50. 50. Noor S.A.A. Siti N.M. Mahmad N.J. Chemical Composition, Antioxidant Activity and Functional Properties of Mango (Mangifera indica L. var Perlis Sunshine) Peel Flour (MPF) Appl. Mech. Mater. 2015 754?755 1065 1070 10.4028/www.scientific.net/AMM.754-755.1065 

  51. 51. Martinez R. Torres P. Meneses M.A. Figueroa J.G. Perez-Alvarez J.A. Viuda-Martos M. Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate Food Chem. 2012 135 1520 1526 10.1016/j.foodchem.2012.05.057 22953888 

  52. 52. Tagliani C. Perez C. Curutchet A. Arcia P. Cozzano S. Blueberry pomace, valorization of an industry by-product source of fibre with antioxidant capacity Food Sci. Technol. 2019 39 644 651 10.1590/fst.00318 

  53. 53. Rojo-Poveda O. Barbosa-Pereira L. Zeppa G. Stevigny C. Cocoa Bean Shell-A By-Product with Nutritional Properties and Biofunctional Potential Nutrients 2020 12 1123 10.3390/nu12041123 

  54. 54. Montalvo-Gonzalez E. Aguilar-Hernandez G. Hernandez-Cazares A.S. Ruiz-Lopez I.I. Perez-Silva A. Hernandez-Torres J. Vivar-Vera M.D.L.A. Production, chemical, physical and technological properties of antioxidant dietary fiber from pineapple pomace and effect as ingredient in sausages CyTA J. Food 2018 16 831 839 10.1080/19476337.2018.1465125 

  55. 55. Benitez V. Rebollo-Hernanz M. Hernanz S. Chantres S. Aguilera Y. Martin-Cabrejas M.A. Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization Food Res. Int. 2019 122 105 113 10.1016/j.foodres.2019.04.002 31229061 

  56. 56. Zengin G. Sinan K.I. Mahomoodally M.F. Angeloni S. Mustafa A.M. Vittori S. Maggi F. Caprioli G. Chemical Composition, Antioxidant and Enzyme Inhibitory Properties of Different Extracts Obtained from Spent Coffee Ground and Coffee Silverskin Foods 2020 9 713 10.3390/foods9060713 

  57. 57. Per?a-Cri?an S. Ursachi C. Munteanu F.D. Trends in valorisation of spent cofee grounds: A review Sci. Tech. Bull. Ser. Chem. Food Sci. Eng. 2019 16 31 42 

  58. 58. Sayago-Ayerdi S.G. Brenes A. Goni I. Effect of grape antioxidant dietary fiber on the lipid oxidation of raw and cooked chicken hamburgers LWT Food Sci. Technol. 2009 42 971 976 10.1016/j.lwt.2008.12.006 

  59. 59. Verma A.K. Rajkumar V. Banerjee R. Biswas S. Das A.K. Guava ( Psidium guajava L.) Powder as an Antioxidant Dietary Fibre in Sheep Meat Nuggets Asian-Australas J. Anim. Sci. 2013 26 886 895 10.5713/ajas.2012.12671 25049864 

  60. 60. Hegazy A.E. Ibrahium M.I. Antioxidant activities of orange peel extracts World Appl. Sci. J. 2012 18 684 688 

  61. 61. Goswami M. Prajapati B. Solanki B. Nalwaya S. Shendurse A. Shelf life evaluation of chicken meat nuggets incorporated with gooseberry (pulp and seed coat) powder as natural preservatives at refrigerated storage (4 ± 1 °C) Int. J. Livest. Res. 2019 9 53 63 

  62. 62. Cofrades S. Benedi J. Garcimartin A. Sanchez-Muniz F.J. Jimenez-Colmenero F. A comprehensive approach to formulation of seaweed-enriched meat products: From technological development to assessment of healthy properties Food Res. Int. 2017 99 1084 1094 10.1016/j.foodres.2016.06.029 28865619 

  63. 63. Jahanban-Esfahlan A. Ostadrahimi A. Tabibiazar M. Amarowicz R. A Comparative Review on the Extraction, Antioxidant Content and Antioxidant Potential of Different Parts of Walnut ( Juglans regia L.) Fruit and Tree Molecules 2019 24 2133 10.3390/molecules24112133 

  64. 64. Madane P. Das A.K. Nanda P.K. Bandyopadhyay S. Jagtap P. Shewalkar A. Maity B. Dragon fruit (Hylocereus undatus) peel as antioxidant dietary fibre on quality and lipid oxidation of chicken nuggets J. Food Sci. Technol. 2020 57 1449 1461 10.1007/s13197-019-04180-z 32180641 

  65. 65. Soquetta M.B. Sabrina M. Boeira C. Copetti C. Polli V.A. Rosa C. Terra N.N. Development and Quality of Ham Pate with Added Natural Antioxidant Kiwi Fruit (Actinidia deliciosa) Skin J. Nutr. Food Sci. 2017 7 1000624 

  66. 66. Fijan S. Microorganisms with claimed probiotic properties: An overview of recent literature Int. J. Environ. Res. Public Health 2014 11 4745 4767 10.3390/ijerph110504745 24859749 

  67. 67. Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria Probiotcs in Food―Health and Nutritional Properties and Guidelines for Evaluation FAO Rome, Italy 2006 

  68. 68. Ashaolu T.J. Immune boosting functional foods and their mechanisms: A critical evaluation of probiotics and prebiotics Biomed. Pharmacother. 2020 130 110625 10.1016/j.biopha.2020.110625 32795926 

  69. 69. Pique N. Berlanga M. Minana-Galbis D. Health Benefits of Heat-Killed (Tyndallized) Probiotics: An Overview Int. J. Mol. Sci. 2019 20 2534 10.3390/ijms20102534 

  70. 70. Scourboutakos M.J. Franco-Arellano B. Murphy S.A. Norsen S. Comelli E.M. L’Abbe M.R. Mismatch between Probiotic Benefits in Trials versus Food Products Nutrients 2017 9 400 10.3390/nu9040400 

  71. 71. Hill C. Guarner F. Reid G. Gibson G.R. Merenstein D.J. Pot B. Morelli L. Canani R.B. Flint H.J. Salminen S. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic Nat. Rev. Gastroenterol. Hepatol. 2014 11 506 514 10.1038/nrgastro.2014.66 24912386 

  72. 72. Sanders M.E. Merenstein D. Merrifield C.A. Hutkins R. Probiotics for human use Nutr. Bull. 2018 43 212 225 10.1111/nbu.12334 

  73. 73. Didari T. Solki S. Mozaffari S. Nikfar S. Abdollahi M. A systematic review of the safety of probiotics Expert Opin. Drug Saf. 2014 13 227 239 10.1517/14740338.2014.872627 24405164 

  74. 74. Silva K.C.G. Cezarino E.C. Michelon M. Kawazoe Sato A.C. Symbiotic microencapsulation to enhance Lactobacillus acidophilus survival LWT Food Sci. Technol. 2018 89 503 509 10.1016/j.lwt.2017.11.026 

  75. 75. Sonmez . Onal Darilmaz D. Beyatli Y. Determination of the relationship between oxalate degradation and exopolysaccharide production by different Lactobacillus probiotic strains Int. J. Dairy Technol. 2018 71 741 752 10.1111/1471-0307.12513 

  76. 76. Bai M. Huang T. Guo S. Wang Y. Wang J. Kwok L.-Y. Dan T. Zhang H. Bilige M. Probiotic Lactobacillus casei Zhang improved the properties of stirred yogurt Food Biosci. 2020 37 100718 10.1016/j.fbio.2020.100718 

  77. 77. Karimi R. Mortazavian A.M. Amiri-Rigi A. Selective enumeration of probiotic microorganisms in cheese Food Microbiol. 2012 29 1 9 10.1016/j.fm.2011.08.008 22029912 

  78. 78. Huang C.-H. Lin Y.-C. Jan T.-R. Lactobacillus reuteri induces intestinal immune tolerance against food allergy in mice J. Funct. Foods 2017 31 44 51 10.1016/j.jff.2017.01.034 

  79. 79. Coelho S.R. Lima I.A. Martins M.L. Benevenuto Junior A.A. Torres Filho R.D.A. Ramos A.D.L.S. Ramos E.M. Application of Lactobacillus paracasei LPC02 and lactulose as a potential symbiotic system in the manufacture of dry-fermented sausage LWT 2019 102 254 259 10.1016/j.lwt.2018.12.045 

  80. 80. Bis-Souza C.V. Pateiro M. Dominguez R. Lorenzo J.M. Penna A.L.B. da Silva Barretto A.C. Volatile profile of fermented sausages with commercial probiotic strains and fructooligosaccharides J. Food Sci. Technol. 2019 56 5465 5473 10.1007/s13197-019-04018-8 31749494 

  81. 81. Perez-Burillo S. Pastoriza S. Girones A. Avellaneda A. Pilar Francino M. Rufian-Henares J.A. Potential probiotic salami with dietary fiber modulates metabolism and gut microbiota in a human intervention study J. Funct. Foods 2020 66 103790 10.1016/j.jff.2020.103790 

  82. 82. Khan M.I. Arshad M.S. Anjum F.M. Sameen A. Aneeq ur R. Gill W.T. Meat as a functional food with special reference to probiotic sausages Food Res. Int. 2011 44 3125 3133 10.1016/j.foodres.2011.07.033 

  83. 83. Ayyash M. Liu S.-Q. Al Mheiri A. Aldhaheri M. Raeisi B. Al-Nabulsi A. Osaili T. Olaimat A. In vitro investigation of health-promoting benefits of fermented camel sausage by novel probiotic Lactobacillus plantarum: A comparative study with beef sausages LWT 2019 99 346 354 10.1016/j.lwt.2018.09.084 

  84. 84. Campaniello D. Speranza B. Bevilacqua A. Altieri C. Rosaria Corbo M. Sinigaglia M. Industrial Validation of a Promising Functional Strain of Lactobacillus plantarum to Improve the Quality of Italian Sausages Microorganisms 2020 8 116 10.3390/microorganisms8010116 

  85. 85. Bagdatli A. Kundakci A. Optimization of compositional and structural properties in probiotic sausage production J. Food Sci. Technol. 2016 53 1679 1689 10.1007/s13197-015-2098-3 27570293 

  86. 86. Lewis Z.T. Shani G. Masarweh C.F. Popovic M. Frese S.A. Sela D.A. Underwood M.A. Mills D.A. Validating bifidobacterial species and subspecies identity in commercial probiotic products Pediatr. Res. 2016 79 445 452 10.1038/pr.2015.244 26571226 

  87. 87. Niamah A.K. Physicochemical and Microbial Characteristics of Yogurt with Added Saccharomyces Boulardii Curr. Res. Nutr. Food Sci. J. 2017 5 300 307 10.12944/CRNFSJ.5.3.15 

  88. 88. Behnsen J. Deriu E. Sassone-Corsi M. Raffatellu M. Probiotics: Properties, examples, and specific applications Cold Spring Harb. Perspect. Med. 2013 3 a010074 10.1101/cshperspect.a010074 23457295 

  89. 89. Akpinar A. Saygili D. Yerlikaya O. Production of set-type yoghurt using Enterococcus faecium and Enterococcus durans strains with probiotic potential as starter adjuncts Int. J. Dairy Technol. 2020 73 726 736 10.1111/1471-0307.12714 

  90. 90. Uriot O. Denis S. Junjua M. Roussel Y. Dary-Mourot A. Blanquet-Diot S. Streptococcus thermophilus : From yogurt starter to a new promising probiotic candidate? J. Funct. Foods 2017 37 74 89 10.1016/j.jff.2017.07.038 

  91. 91. Halim M. Mohd Mustafa N.A. Othman M. Wasoh H. Kapri M.R. Ariff A.B. Effect of encapsulant and cryoprotectant on the viability of probiotic Pediococcus acidilactici ATCC 8042 during freeze-drying and exposure to high acidity, bile salts and heat LWT Food Sci. Technol. 2017 81 210 216 10.1016/j.lwt.2017.04.009 

  92. 92. Yi Y.-J. Lim J.-M. Gu S. Lee W.-K. Oh E. Lee S.-M. Oh B.-T. Potential use of lactic acid bacteria Leuconostoc mesenteroides as a probiotic for the removal of Pb(II) toxicity J. Microbiol. 2017 55 296 303 10.1007/s12275-017-6642-x 28361342 

  93. 93. Konuray G. Erginkaya Z. Potential Use of Bacillus coagulans in the Food Industry Foods 2018 7 92 10.3390/foods7060092 

  94. 94. Jeon H.-L. Lee N.-K. Yang S.-J. Kim W.-S. Paik H.-D. Probiotic characterization of Bacillus subtilis P223 isolated from kimchi Food Sci. Biotechnol. 2017 26 1641 1648 10.1007/s10068-017-0148-5 30263701 

  95. 95. Rubio R. Jofre A. Aymerich T. Guardia M.D. Garriga M. Nutritionally enhanced fermented sausages as a vehicle for potential probiotic lactobacilli delivery Meat Sci. 2014 96 937 942 10.1016/j.meatsci.2013.09.008 24211552 

  96. 96. Gandhi A. Shah N.P. Effect of salt on cell viability and membrane integrity of Lactobacillus acidophilus , Lactobacillus casei and Bifidobacterium longum as observed by flow cytometry Food Microbiol. 2015 49 197 202 10.1016/j.fm.2015.02.003 25846931 

  97. 97. Jofre A. Aymerich T. Garriga M. Probiotic Fermented Sausages: Myth or Reality? Procedia Food Sci. 2015 5 133 136 10.1016/j.profoo.2015.09.038 

  98. 98. Sun Q. Chen Q. Li F. Zheng D. Kong B. Biogenic amine inhibition and quality protection of Harbin dry sausages by inoculation with Staphylococcus xylosus and Lactobacillus plantarum Food Control. 2016 68 358 366 10.1016/j.foodcont.2016.04.021 

  99. 99. Vuyst L.D. Falony G. Leroy F. Probiotics in fermented sausages Meat Sci. 2008 80 75 78 10.1016/j.meatsci.2008.05.038 22063171 

  100. 100. Pasqualin Cavalheiro C. Ruiz-Capillas C. Herrero A.M. Jimenez-Colmenero F. Ragagnin de Menezes C. Martins Fries L.L. Application of probiotic delivery systems in meat products Trends Food Sci. Technol. 2015 46 120 131 10.1016/j.tifs.2015.09.004 

  101. 101. Erkkila S. Petaja E. Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use Meat Sci. 2000 55 297 300 10.1016/S0309-1740(99)00156-4 22061286 

  102. 102. Sameshima T. Magome C. Takeshita K. Arihara K. Itoh M. Kondo Y. Effect of intestinal Lactobacillus starter cultures on the behaviour of Staphylococcus aureus in fermented sausage Int. J. Food Microbiol. 1998 41 1 7 10.1016/S0168-1605(98)00038-5 9631333 

  103. 103. Ba H.V. Seo H.W. Seong P.N. Kang S.M. Kim Y.S. Cho S.H. Park B.Y. Ham J.S. Kim J.H. Lactobacillus plantarum (KACC 92189) as a Potential Probiotic Starter Culture for Quality Improvement of Fermented Sausages Korean J. Food Sci. Anim. Resour. 2018 38 189 202 10.5851/kosfa.2018.38.1.189 29725237 

  104. 104. Ba H.V. Seo H.-W. Cho S.-H. Kim Y.-S. Kim J.-H. Park B.-Y. Kim H.-W. Ham J.-S. Seong P.-N. Utilisation possibility of Enterococcus faecalis isolates from neonate’s faeces for production of fermented sausages as starter cultures Int. J. Food Sci. Technol. 2017 52 1660 1669 10.1111/ijfs.13440 

  105. 105. Sidira M. Karapetsas A. Galanis A. Kanellaki M. Kourkoutas Y. Effective survival of immobilized Lactobacillus casei during ripening and heat treatment of probiotic dry-fermented sausages and investigation of the microbial dynamics Meat Sci. 2014 96 948 955 10.1016/j.meatsci.2013.09.013 24211554 

  106. 106. Fernandez-Gines J.M. Fernandez-Lopez J. Sayas-Barbera E. Perez-Alvarez J.A. Meat Products as Functional Foods: A Review J. Food Sci. 2005 70 R37 R43 10.1111/j.1365-2621.2005.tb07110.x 

  107. 107. Chavarri M. Maranon I. Ares R. Ibanez F.C. Marzo F. Villaran M.d.C. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions Int. J. Food Microbiol. 2010 142 185 189 10.1016/j.ijfoodmicro.2010.06.022 20659775 

  108. 108. Ramos P.E. Cerqueira M.A. Teixeira J.A. Vicente A.A. Physiological protection of probiotic microcapsules by coatings Crit. Rev. Food Sci. Nutr. 2018 58 1864 1877 10.1080/10408398.2017.1289148 28362165 

  109. 109. Clinoiu L.-F. tefnescu B. Pop I. Muntean L. Vodnar D. Chitosan Coating Applications in Probiotic Microencapsulation Coatings 2019 9 194 10.3390/coatings9030194 

  110. 110. Song M.Y. Van-Ba H. Park W.S. Yoo J.Y. Kang H.B. Kim J.H. Kang S.M. Kim B.M. Oh M.H. Ham J.S. Quality Characteristics of Functional Fermented Sausages Added with Encapsulated Probiotic Bifidobacterium longum KACC 91563 Korean J. Food Sci. Anim. Resour. 2018 38 981 994 10.5851/kosfa.2018.e30 30479505 

  111. 111. Cavalheiro C.P. Ruiz-Capillas C. Herrero A.M. Jimenez-Colmenero F. Pintado T. de Menezes C.R. Fries L.L.M. Effect of encapsulated Lactobacillus plantarum as probiotic on dry-sausages during chilled storage Int. J. Food Sci. Technol. 2020 55 3613 3621 10.1111/ijfs.14695 

  112. 112. Sidira M. Galanis A. Nikolaou A. Kanellaki M. Kourkoutas Y. Evaluation of Lactobacillus casei ATCC 393 protective effect against spoilage of probiotic dry-fermented sausages Food Control. 2014 42 315 320 10.1016/j.foodcont.2014.02.024 

  113. 113. Sparo M.D. Confalonieri A. Urbizu L. Ceci M. Sanchez Bruni S.F. Bio-preservation of ground beef meat by Enterococcus faecalis CECT7121 Braz. J. Microbiol. 2013 44 43 49 10.1590/S1517-83822013005000003 24159282 

  114. 114. Muthukumarasamy P. Holley R.A. Survival of Escherichia coli O157:H7 in dry fermented sausages containing micro-encapsulated probiotic lactic acid bacteria Food Microbiol. 2007 24 82 88 10.1016/j.fm.2006.03.004 16943098 

  115. 115. World Health Organization Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013?2020 World Health Organization Geneva, Switzerland 2013 

  116. 116. He F.J. Brown M. Tan M. MacGregor G.A. Reducing population salt intake―An update on latest evidence and global action J. Clin. Hypertens. 2019 21 1596 1601 10.1111/jch.13664 

  117. 117. Petit G. Jury V. Lamballerie M. Duranton F. Pottier L. Martin J.L. Salt Intake from Processed Meat Products: Benefits, Risks and Evolving Practices Compr. Rev. Food Sci. Food Saf. 2019 18 1453 1473 10.1111/1541-4337.12478 33336907 

  118. 118. Chen J. Hu Y. Wen R. Liu Q. Chen Q. Kong B. Effect of NaCl substitutes on the physical, microbial and sensory characteristics of Harbin dry sausage Meat Sci. 2019 156 205 213 10.1016/j.meatsci.2019.05.035 31202095 

  119. 119. Yotsuyanagi S.E. Contreras-Castillo C.J. Haguiwara M.M.H. Cipolli K.M.V.A.B. Lemos A.L.S.C. Morgano M.A. Yamada E.A. Technological, sensory and microbiological impacts of sodium reduction in frankfurters Meat Sci. 2016 115 50 59 10.1016/j.meatsci.2015.12.016 26854791 

  120. 120. Kloss L. Meyer J.D. Graeve L. Vetter W. Sodium intake and its reduction by food reformulation in the European Union―A review NFS J. 2015 1 9 19 10.1016/j.nfs.2015.03.001 

  121. 121. Pinton M.B. dos Santos B.A. Lorenzo J.M. Cichoski A.J. Boeira C.P. Campagnol P.C.B. Green technologies as a strategy to reduce NaCl and phosphate in meat products: An overview Curr. Opin. Food Sci. 2021 40 1 5 10.1016/j.cofs.2020.03.011 

  122. 122. Delgado-Pando G. Fischer E. Allen P. Kerry J.P. O’Sullivan M.G. Hamill R.M. Salt content and minimum acceptable levels in whole-muscle cured meat products Meat Sci. 2018 139 179 186 10.1016/j.meatsci.2018.01.025 29428882 

  123. 123. Aaslyng M.D. Vestergaard C. Koch A.G. The effect of salt reduction on sensory quality and microbial growth in hotdog sausages, bacon, ham and salami Meat Sci. 2014 96 47 55 10.1016/j.meatsci.2013.06.004 23896136 

  124. 124. Fellendorf S. Kerry J.P. Hamill R.M. O’Sullivan M.G. Impact on the physicochemical and sensory properties of salt reduced corned beef formulated with and without the use of salt replacers LWT 2018 92 584 592 10.1016/j.lwt.2018.03.001 

  125. 125. Gaudette N.J. Pietrasik Z. The sensory impact of salt replacers and flavor enhancer in reduced sodium processed meats is matrix dependent J. Sens. Stud. 2017 32 e12247 10.1111/joss.12247 

  126. 126. Nachtigall F.M. Vidal V.A.S. Pyarasani R.D. Dominguez R. Lorenzo J.M. Pollonio M.A.R. Santos L.S. Substitution effects of NaCl by KCl and CaCl2 on Lipolysis of Salted Meat Foods 2019 8 595 10.3390/foods8120595 

  127. 127. Inguglia E.S. Zhang Z. Tiwari B.K. Kerry J.P. Burgess C.M. Salt reduction strategies in processed meat products―A review Trends Food Sci. Technol. 2017 59 70 78 10.1016/j.tifs.2016.10.016 

  128. 128. Armenteros M. Aristoy M.-C. Barat J.M. Toldra F. Biochemical and sensory changes in dry-cured ham salted with partial replacements of NaCl by other chloride salts Meat Sci. 2012 90 361 367 10.1016/j.meatsci.2011.07.023 21871742 

  129. 129. Dos Santos B.A. Campagnol P.C.B. Morgano M.A. Pollonio M.A.R. Monosodium glutamate, disodium inosinate, disodium guanylate, lysine and taurine improve the sensory quality of fermented cooked sausages with 50% and 75% replacement of NaCl with KCl Meat Sci. 2014 96 509 513 10.1016/j.meatsci.2013.08.024 24008059 

  130. 130. Da Silva S.L. Lorenzo J.M. Machado J.M. Manfio M. Cichoski A.J. Fries L.L.M. Morgano M.A. Campagnol P.C.B. Application of arginine and histidine to improve the technological and sensory properties of low-fat and low-sodium bologna-type sausages produced with high levels of KCl Meat Sci. 2020 159 107939 10.1016/j.meatsci.2019.107939 31513991 

  131. 131. Choi Y.-S. Kum J.-S. Jeon K.-H. Park J.-D. Choi H.-W. Hwang K.-E. Jeong T.-J. Kim Y.-B. Kim C.-J. Effects of Edible Seaweed on Physicochemical and Sensory Characteristics of Reduced-salt Frankfurters Korean J. Food Sci. Anim. Resour. 2015 35 748 756 10.5851/kosfa.2015.35.6.748 26877634 

  132. 132. Fellendorf S. O’Sullivan M.G. Kerry J.P. Impact of ingredient replacers on the physicochemical properties and sensory quality of reduced salt and fat black puddings Meat Sci. 2016 113 17 25 10.1016/j.meatsci.2015.11.006 26595176 

  133. 133. Vilar E.G. Ouyang H. O’Sullivan M.G. Kerry J.P. Hamill R.M. O’Grady M.N. Mohammed H.O. Kilcawley K.N. Effect of salt reduction and inclusion of 1% edible seaweeds on the chemical, sensory and volatile component profile of reformulated frankfurters Meat Sci. 2020 161 108001 10.1016/j.meatsci.2019.108001 31756515 

  134. 134. Jin S.-K. Choi J.S. Yang H.-S. Park T.-S. Yim D.-G. Natural curing agents as nitrite alternatives and their effects on the physicochemical, microbiological properties and sensory evaluation of sausages during storage Meat Sci. 2018 146 34 40 10.1016/j.meatsci.2018.07.032 30086439 

  135. 135. Gassara F. Kouassi A.P. Brar S.K. Belkacemi K. Green Alternatives to Nitrates and Nitrites in Meat-based Products?A Review Crit. Rev. Food Sci. Nutr. 2016 56 2133 2148 10.1080/10408398.2013.812610 25750989 

  136. 136. Herrmann S.S. Granby K. Duedahl-Olesen L. Formation and mitigation of N-nitrosamines in nitrite preserved cooked sausages Food Chem. 2015 174 516 526 10.1016/j.foodchem.2014.11.101 25529714 

  137. 137. Alahakoon A.U. Jayasena D.D. Ramachandra S. Jo C. Alternatives to nitrite in processed meat: Up to date Trends Food Sci. Technol. 2015 45 37 49 10.1016/j.tifs.2015.05.008 

  138. 138. Flores M. Toldra F. Chemistry, safety, and regulatory considerations in the use of nitrite and nitrate from natural origin in meat products―Invited review Meat Sci. 2021 171 108272 10.1016/j.meatsci.2020.108272 32777687 

  139. 139. Safa H. Portanguen S. Mirade P.-S. Reducing the Levels of Sodium, Saturated Animal Fat, and Nitrite in Dry-Cured Pork Meat Products: A Major Challenge Food Nutr. Sci. 2017 8 419 443 10.4236/fns.2017.84029 

  140. 140. Villaverde A. Ventanas J. Estevez M. Nitrite promotes protein carbonylation and Strecker aldehyde formation in experimental fermented sausages: Are both events connected? Meat Sci. 2014 98 665 672 10.1016/j.meatsci.2014.06.017 25089792 

  141. 141. Hung Y. de Kok T.M. Verbeke W. Consumer attitude and purchase intention towards processed meat products with natural compounds and a reduced level of nitrite Meat Sci. 2016 121 119 126 10.1016/j.meatsci.2016.06.002 27310600 

  142. 142. Laranjo M. Potes M.E. Elias M. Role of Starter Cultures on the Safety of Fermented Meat Products Front. Microbiol. 2019 10 853 10.3389/fmicb.2019.00853 31133993 

  143. 143. Ferysiuk K. Wojciak K.M. Reduction of Nitrite in Meat Products through the Application of Various Plant-Based Ingredients Antioxidants 2020 9 711 10.3390/antiox9080711 

  144. 144. Bryan N.S. Ivy J.L. Inorganic nitrite and nitrate: Evidence to support consideration as dietary nutrients Nutr. Res. 2015 35 643 654 10.1016/j.nutres.2015.06.001 26189149 

  145. 145. Raubenheimer K. Bondonno C. Blekkenhorst L. Wagner K.-H. Peake J.M. Neubauer O. Effects of dietary nitrate on inflammation and immune function, and implications for cardiovascular health Nutr. Rev. 2019 77 584 599 10.1093/nutrit/nuz025 

  146. 146. Correia M. Barroso A. Barroso M.F. Soares D. Oliveira M.B.P.P. Delerue-Matos C. Contribution of different vegetable types to exogenous nitrate and nitrite exposure Food Chem. 2010 120 960 966 10.1016/j.foodchem.2009.11.030 

  147. 147. Colla G. Kim H.-J. Kyriacou M.C. Rouphael Y. Nitrate in fruits and vegetables Sci. Hortic. 2018 237 221 238 10.1016/j.scienta.2018.04.016 

  148. 148. Choi Y.S. Kim T.K. Jeon K.H. Park J.D. Kim H.W. Hwang K.E. Kim Y.B. Effects of Pre-Converted Nitrite from Red Beet and Ascorbic Acid on Quality Characteristics in Meat Emulsions Korean J. Food Sci. Anim. Resour. 2017 37 288 296 10.5851/kosfa.2017.37.2.288 28515652 

  149. 149. Sebranek J.G. Jackson-Davis A.L. Myers K.L. Lavieri N.A. Beyond celery and starter culture: Advances in natural/organic curing processes in the United States Meat Sci. 2012 92 267 273 10.1016/j.meatsci.2012.03.002 22445489 

  150. 150. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32011R1169 (accessed on 16 November 2020) 

  151. 151. Kim T.-K. Hwang K.-E. Lee M.-A. Paik H.-D. Kim Y.-B. Choi Y.-S. Quality characteristics of pork loin cured with green nitrite source and some organic acids Meat Sci. 2019 152 141 145 10.1016/j.meatsci.2019.02.015 30827821 

  152. 152. Ozaki M.M. Munekata P.E.S. Jacinto-Valderrama R.A. Efraim P. Pateiro M. Lorenzo J.M. Pollonio M.A.R. Beetroot and radish powders as natural nitrite source for fermented dry sausages Meat Sci. 2020 171 108275 10.1016/j.meatsci.2020.108275 32853888 

  153. 153. Leroy S. Vermassen A. Ras G. Talon R. Insight into the Genome of Staphylococcus xylosus, a Ubiquitous Species Well Adapted to Meat Products Microorganisms 2017 5 52 10.3390/microorganisms5030052 

  154. 154. Lofblom J. Rosenstein R. Nguyen M.-T. Stahl S. Gotz F. Staphylococcus carnosus: From starter culture to protein engineering platform Appl. Microbiol. Biotechnol. 2017 101 8293 8307 10.1007/s00253-017-8528-6 28971248 

  155. 155. Ko Y.M. Park J.H. Yoon K.S. Nitrite formation from vegetable sources and its use as a preservative in cooked sausage J. Sci. Food Agric. 2017 97 1774 1783 10.1002/jsfa.7974 27469979 

  156. 156. Jeong J.Y. Bae S.M. Yoon J. Jeong D.H. Gwak S.H. Effect of Using Vegetable Powders as Nitrite/Nitrate Sources on the Physicochemical Characteristics of Cooked Pork Products Food Sci. Anim. Resour. 2020 40 831 843 10.5851/kosfa.2020.e63 32968733 

  157. 157. Shin D.M. Hwang K.E. Lee C.W. Kim T.K. Park Y.S. Han S.G. Effect of Swiss Chard (Beta vulgaris var. cicla) as Nitrite Replacement on Color Stability and Shelf-Life of Cooked Pork Patties during Refrigerated Storage Korean J. Food Sci. Anim. Resour. 2017 37 418 428 10.5851/kosfa.2017.37.3.418 28747828 

  158. 158. Sucu C. Turp G.Y. The investigation of the use of beetroot powder in Turkish fermented beef sausage (sucuk) as nitrite alternative Meat Sci. 2018 140 158 166 10.1016/j.meatsci.2018.03.012 29551571 

  159. 159. De Mey E. de Maere H. Paelinck H. Fraeye I. Volatile N-nitrosamines in meat products: Potential precursors, influence of processing, and mitigation strategies Crit. Rev. Food Sci. Nutr. 2017 57 2909 2923 10.1080/10408398.2015.1078769 26528731 

  160. 160. Flores M. Mora L. Reig M. Toldra F. Risk assessment of chemical substances of safety concern generated in processed meats Food Sci. Hum. Wellness 2019 8 244 251 10.1016/j.fshw.2019.07.003 

  161. 161. Sallan S. Kaban G. iik Ora . Celik M. Kaya M. Nitrosamine formation in a semi-dry fermented sausage: Effects of nitrite, ascorbate and starter culture and role of cooking Meat Sci. 2020 159 107917 10.1016/j.meatsci.2019.107917 31494521 

  162. 162. Cantwell M. Elliott C. Nitrates, Nitrites and Nitrosamines from Processed Meat Intake and ColorectalCancer Risk J. Clin. Nutr. Diet. 2017 3 27 30 10.4172/2472-1921.100062 

  163. 163. Walters C.L. Edwards M.W. Elsey T.S. Martin M. The effect of antioxidants on the production, of volatile nitrosamines during the frying of bacon Zeitschrift fur Lebensmittel-Untersuchung und Forschung 1976 162 377 385 10.1007/BF01122791 1034383 

  164. 164. Zhou Y. Wang Q. Wang S. Effects of rosemary extract, grape seed extract and green tea polyphenol on the formation of N-nitrosamines and quality of western-style smoked sausage J. Food Process. Preserv. 2020 44 e14459 10.1111/jfpp.14459 

  165. 165. Pinton M.B. Correa L.P. Facchi M.M.X. Heck R.T. Leaes Y.S.V. Cichoski A.J. Lorenzo J.M. Dos Santos M. Pollonio M.A.R. Campagnol P.C.B. Ultrasound: A new approach to reduce phosphate content of meat emulsions Meat Sci. 2019 152 88 95 10.1016/j.meatsci.2019.02.010 30836267 

  166. 166. O’Neill C. High Pressure Processing as a Hurdle Technology for Development of Consumer-Accepted, Low-Salt Processed Meat Products with Enhanced Safety and Shelf-Life University College Cork Cork, Ireland 2018 

  167. 167. Huang H.-W. Wu S.-J. Lu J.-K. Shyu Y.-T. Wang C.-Y. Current status and future trends of high-pressure processing in food industry Food Control. 2017 72 1 8 10.1016/j.foodcont.2016.07.019 

  168. 168. Bhat Z.F. Morton J.D. Mason S.L. Bekhit A.E.-D.A. Applied and Emerging Methods for Meat Tenderization: A Comparative Perspective Compr. Rev. Food Sci. Food Saf. 2018 17 841 859 10.1111/1541-4337.12356 33350109 

  169. 169. Sikes A.L. Warner R. 10―Application of High Hydrostatic Pressure for Meat Tenderization Woodhead Publishing Series in Food Science, Technology and Nutrition. Innovative Food Processing Technologies Knoerzer K.J.P. Smithers G. Woodhead Publishing Cambridge, UK 2016 259 290 

  170. 170. Warner R.D. McDonnell C.K. Bekhit A.E.D. Claus J. Vaskoska R. Sikes A. Dunshea F.R. Ha M. Systematic review of emerging and innovative technologies for meat tenderisation Meat Sci. 2017 132 72 89 10.1016/j.meatsci.2017.04.241 28666558 

  171. 171. Yang H.-J. Han M.-Y. Wang H.-F. Cao G.-T. Tao F. Xu X.-L. Zhou G.-H. Shen Q. HPP improves the emulsion properties of reduced fat and salt meat batters by promoting the adsorption of proteins at fat droplets/water interface LWT 2020 137 110394 10.1016/j.lwt.2020.110394 

  172. 172. Pietrasik Z. Gaudette N.J. Johnston S.P. The impact of high hydrostatic pressure on the functionality and consumer acceptability of reduced sodium naturally cured wieners Meat Sci. 2017 129 127 134 10.1016/j.meatsci.2017.02.020 28284123 

  173. 173. Misra N.N. Jo C. Applications of cold plasma technology for microbiological safety in meat industry Trends Food Sci. Technol. 2017 64 74 86 10.1016/j.tifs.2017.04.005 

  174. 174. Varilla C. Marcone M. Annor G.A. Potential of Cold Plasma Technology in Ensuring the Safety of Foods and Agricultural Produce: A Review Foods 2020 9 1435 10.3390/foods9101435 

  175. 175. Rudy M. Kucharyk S. Duma-Kocan P. Stanisławczyk R. Gil M. Unconventional Methods of Preserving Meat Products and Their Impact on Health and the Environment Sustainability 2020 12 5948 10.3390/su12155948 

  176. 176. Kim J.-S. Lee E.-J. Choi E.H. Kim Y.-J. Inactivation of Staphylococcus aureus on the beef jerky by radio-frequency atmospheric pressure plasma discharge treatment Innov. Food Sci. Emerg. Technol. 2014 22 124 130 10.1016/j.ifset.2013.12.012 

  177. 177. Dirks B.P. Dobrynin D. Fridman G. Mukhin Y. Fridman A. Quinlan J.J. Treatment of Raw Poultry with Nonthermal Dielectric Barrier Discharge Plasma To Reduce Campylobacter jejuni and Salmonella enterica J. Food Prot. 2012 75 22 28 10.4315/0362-028X.JFP-11-153 22221351 

  178. 178. Kim H.-J. Yong H.I. Park S. Choe W. Jo C. Corrigendum to “Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin” [Curr. Appl. Phys. 13 (7) (2013) 1420?1425] Curr. Appl. Phys. 2013 13 1953 10.1016/j.cap.2013.08.001 

  179. 179. Jayasena D.D. Kim H.J. Yong H.I. Park S. Kim K. Choe W. Jo C. Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: Effects on pathogen inactivation and meat-quality attributes Food Microbiol. 2015 46 51 57 10.1016/j.fm.2014.07.009 25475266 

  180. 180. Jung S. Lee J. Lim Y. Choe W. Yong H.I. Jo C. Direct infusion of nitrite into meat batter by atmospheric pressure plasma treatment Innov. Food Sci. Emerg. Technol. 2017 39 113 118 10.1016/j.ifset.2016.11.010 

  181. 181. Jung S. Kim H.J. Park S. Yong H.I. Choe J.H. Jeon H.J. Choe W. Jo C. Color Developing Capacity of Plasma-treated Water as a Source of Nitrite for Meat Curing Korean J. Food Sci. Anim. Resour. 2015 35 703 706 10.5851/kosfa.2015.35.5.703 26761900 

  182. 182. Bhargava N. Mor R.S. Kumar K. Sharanagat V.S. Advances in application of ultrasound in food processing: A review Ultrason. Sonochem. 2020 70 105293 10.1016/j.ultsonch.2020.105293 32750658 

  183. 183. Alarcon-Rojo A.D. Carrillo-Lopez L.M. Reyes-Villagrana R. Huerta-Jimenez M. Garcia-Galicia I.A. Ultrasound and meat quality: A review Ultrason. Sonochem. 2019 55 369 382 10.1016/j.ultsonch.2018.09.016 31027999 

  184. 184. Cichoski A.J. Silva M.S. Leaes Y.S.V. Brasil C.C.B. de Menezes C.R. Barin J.S. Wagner R. Campagnol P.C.B. Ultrasound: A promising technology to improve the technological quality of meat emulsions Meat Sci. 2019 148 150 155 10.1016/j.meatsci.2018.10.009 30388479 

  185. 185. Zhao X. Sun Y. Zhou Y. Leng Y. Effect of ultrasonic-assisted brining on mass transfer of beef J. Food Process. Eng. 2019 42 e13257 10.1111/jfpe.13257 

  186. 186. Barretto T.L. Pollonio M.A.R. Telis-Romero J. da Silva Barretto A.C. Improving sensory acceptance and physicochemical properties by ultrasound application to restructured cooked ham with salt (NaCl) reduction Meat Sci. 2018 145 55 62 10.1016/j.meatsci.2018.05.023 29894848 

  187. 187. Sena Vaz Leaes Y. Basso Pinton M. Terezinha de Aguiar Rosa C. Sasso Robalo S. Wagner R. Ragagnin de Menezes C. Smanioto Barin J. Cezar Bastianello Campagnol P. Jose Cichoski A. Ultrasound and basic electrolyzed water: A green approach to reduce the technological defects caused by NaCl reduction in meat emulsions Ultrason. Sonochem. 2020 61 104830 10.1016/j.ultsonch.2019.104830 31670256 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로