최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기The European physical journal. C, Particles and fields, v.80 no.9, 2020년, pp.889 -
Acharya, S. , Adamová, D. , Adler, A. , Adolfsson, J. , Aggarwal, M. M. , Aglieri Rinella, G. , Agnello, M. , Agrawal, N. , Ahammed, Z. , Ahmad, S. , Ahn, S. U. , Akindinov, A. , Al-Turany, M. , Alam, S. N. , Albuquerque, D. S. D. , Aleksandrov, D. , Alessandro, B. , Alfanda, H. M. , Alfaro Molina, R. , Ali, B. , Ali, Y. , Alici, A. , Alkin, A. , Alme, J. , Alt, T. , Altenkamper, L. , Altsybeev, I. , Anaam, M. N. , Andrei, C. , Andreou, D. , Andrews, H. A. , Andronic, A. , Angeletti, M. , Anguelov, V. , Anson, C. , Antičić, T. , Antinori, F. , Antonioli, P. , Anwar, R. , Apadula, N. , Aphecetche, L. , Appelshäuser, H. , Arcelli, S. , Arnaldi, R. , Arratia, M. , Arsene, I. C. , Arslandok, M. , Augustinus, A. , Averbeck, R. , Aziz, S. , Azmi, M. D. , Badalà, A. , Baek, Y. W. , Bagnasco, S. , Bai, X. , Bailhache, R. , Bala, R. , Baldisseri, A. , Ball, M. , Balouza, S. , Barbera, R. , Barioglio, L. , Barnaföldi, G. G. , Barnby, L. S. , Barret, V. , Barta
AbstractThe study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. In this paper the production of
10.1103/PhysRevC.93.024917 ALICE Collaboration, J. Adam et al., Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions at energies available at the CERN large hadron collider. Phys. Rev. C 93(2), 024917 (2016). https://doi.org/10.1103/PhysRevC.93.024917. arXiv:1506.08951 [nucl-ex]
10.1103/PhysRevLett.87.262301 STAR Collaboration, C. Adler et al., Anti-deuteron and anti-$$^3$$He production in $$\sqrt{s_{\rm NN}}=130~\text{GeV}$$ Au+Au collisions. Phys. Rev. Lett. 87, 262301 (2001). https://doi.org/10.1103/PhysRevLett.87.262301. arXiv:nucl-ex/0108022 [nucl-ex]. [Erratum: Phys. Rev. Lett. 87, 279902 (2001)]
10.1103/PhysRevLett.94.122302 PHENIX Collaboration, S.S. Adler et al., Deuteron and antideuteron production in Au + Au collisions at $$\sqrt{s_{\rm NN}}=200~\text{ GeV }$$. Phys. Rev. Lett. 94, 122302 (2005). https://doi.org/10.1103/PhysRevLett.94.122302. arXiv:nucl-ex/0406004 [nucl-ex]
Phys. Lett. B Alper 46B 265 1973 10.1016/0370-2693(73)90700-4 B. Alper et al., Large angle production of stable particles heavier than the proton and a search for quarks at the cern intersecting storage rings. Phys. Lett. 46B, 265-268 (1973). https://doi.org/10.1016/0370-2693(73)90700-4
10.1007/BF02822248 British-Scandinavian-MIT Collaboration, S. Henning et al., Production of deuterons and anti-deuterons in proton proton collisions at the CERN ISR. Lett. Nuovo Cim. 21, 189 (1978). https://doi.org/10.1007/BF02822248
10.1103/PhysRevC.97.024615 ALICE Collaboration, S. Acharya et al., Production of deuterons, tritons, $$^{3}$$He nuclei and their antinuclei in pp collisions at $${\sqrt{{s}}}$$ = 0.9, 2.76 and 7 TeV. Phys. Rev. C 97(2), 024615 (2018). https://doi.org/10.1103/PhysRevC.97.024615. arXiv:1709.08522 [nucl-ex]
10.1016/j.nuclphysa.2017.12.004 ALICE Collaboration, S. Acharya et al., Production of $$^{4}$$He and $$^{4}\overline{\rm He}$$ in Pb-Pb collisions at $$\sqrt{s_{\rm NN}} = 2.76 \text{ TeV }$$ at the LHC. Nucl. Phys. A 971, 1-20 (2018). https://doi.org/10.1016/j.nuclphysa.2017.12.004. arXiv:1710.07531 [nucl-ex]
10.1016/j.physletb.2019.05.028 ALICE Collaboration, S. Acharya et al., Multiplicity dependence of (anti-)deuteron production in pp collisions at $$\sqrt{s} = 7 \text{ TeV }$$. Phys. Lett. B 794, 50-63 (2019) .https://doi.org/10.1016/j.physletb.2019.05.028. arXiv:1902.09290 [nucl-ex]
10.1016/j.physletb.2019.135043 ALICE Collaboration, S. Acharya et al., Multiplicity dependence of light (anti-)nuclei production in p-Pb collisions at $$\sqrt{s_{\rm {NN}}} = 5.02 \text{ TeV }$$. Phys. Lett. B 800, 135043 (2020). https://doi.org/10.1016/j.physletb.2019.135043. arXiv:1906.03136 [nucl-ex]
Phys. Rev. C N Sharma 99 4 044914 2019 10.1103/PhysRevC.99.044914 N. Sharma, J. Cleymans, B. Hippolyte, M. Paradza, A Comparison of p-p, p-Pb, Pb-Pb collisions in the thermal model: multiplicity dependence of thermal parameters. Phys. Rev. C 99(4), 044914 (2019). https://doi.org/10.1103/PhysRevC.99.044914. arXiv:1811.00399 [hep-ph]
10.1140/epjc/s10052-015-3422-9 ALICE Collaboration, J. Adam et al., Measurement of pion, kaon and proton production in proton-proton collisions at $$\sqrt{s} = 7 \text{ TeV }$$. Eur. Phys. J. C 75(5), 226 (2015). https://doi.org/10.1140/epjc/s10052-015-3422-9. arXiv:1504.00024 [nucl-ex]
10.1140/epjc/s10052-018-5767-3 N. Sharma, J. Cleymans, L. Kumar, Thermal model description of p-Pb collisions at $$\sqrt{s_{NN}} = 5.02 \text{ TeV }$$. Eur. Phys. J. C 78(4), 288 (2018). https://doi.org/10.1140/epjc/s10052-018-5767-3. arXiv:1802.07972 [hep-ph]
Phys. Lett. B V Vovchenko 785 171 2018 10.1016/j.physletb.2018.08.041 V. Vovchenko, B. Dönigus, H. Stoecker, Multiplicity dependence of light nuclei production at LHC energies in the canonical statistical model. Phys. Lett. B 785, 171-174 (2018). https://doi.org/10.1016/j.physletb.2018.08.041. arXiv:1808.05245 [hep-ph]
Phys. Rev. C JI Kapusta 21 1301 1980 10.1103/PhysRevC.21.1301 J.I. Kapusta, Mechanisms for deuteron production in relativistic nuclear collisions. Phys. Rev. C 21, 1301-1310 (1980). https://doi.org/10.1103/PhysRevC.21.1301
10.1103/PhysRevC.69.024902 NA49 Collaboration, T. Anticic et al., Energy and centrality dependence of deuteron and proton production in Pb + Pb collisions at relativistic energies. Phys. Rev. C 69, 024902 (2004). https://doi.org/10.1103/PhysRevC.69.024902
Phys. Lett. B A Polleri 419 19 1998 10.1016/S0370-2693(97)01455-X A. Polleri, J.P. Bondorf, I.N. Mishustin, Effects of collective expansion on light cluster spectra in relativistic heavy ion collisions. Phys. Lett. B 419, 19-24 (1998). https://doi.org/10.1016/S0370-2693(97)01455-X. arXiv:nucl-th/9711011
Phys. Rev. C N Sharma 98 1 014914 2018 10.1103/PhysRevC.98.014914 N. Sharma, T. Perez, A. Castro, L. Kumar, C. Nattrass, Methods for separation of deuterons produced in the medium and in jets in high energy collisions. Phys. Rev. C 98(1), 014914 (2018). https://doi.org/10.1103/PhysRevC.98.014914. arXiv:1803.02313 [hep-ph]
10.1142/S0217751X14300440 ALICE Collaboration, B. Abelev et al., Performance of the ALICE Experiment at the CERN LHC. Int. J. Mod. Phys. A 29, 1430044 (2014). https://doi.org/10.1142/S0217751X14300440. arXiv:1402.4476 [nucl-ex]
10.1088/1748-0221/8/10/P10016 ALICE Collaboration, E. Abbas et al., Performance of the ALICE VZERO system. JINST 8, P10016 (2013). https://doi.org/10.1088/1748-0221/8/10/P10016. arXiv:1306.3130 [nucl-ex]
10.1088/1748-0221/5/03/P03003 ALICE Collaboration, K. Aamodt et al., Alignment of the ALICE inner tracking system with cosmic-ray tracks. JINST 5, P03003 (2010). https://doi.org/10.1088/1748-0221/5/03/P03003. arXiv:1001.0502 [physics.ins-det]
Nucl. Instrum. Methods A J Alme 622 316 2010 10.1016/j.nima.2010.04.042 J. Alme, Y. Andres, H. Appelshäuser, S. Bablok, N. Bialas et al., The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events. Nucl. Instrum. Methods A 622, 316-367 (2010). https://doi.org/10.1016/j.nima.2010.04.042. arXiv:1001.1950 [physics.ins-det]
Eur. Phys. J. Plus A Akindinov 128 44 2013 10.1140/epjp/i2013-13044-x A. Akindinov et al., Performance of the ALICe time-of-flight detector at the LHC. Eur. Phys. J. Plus 128, 44 (2013). https://doi.org/10.1140/epjp/i2013-13044-x
10.1140/epjp/i2017-11279-1 ALICE Collaboration, J. Adam et al., Determination of the event collision time with the ALICE detector at the LHC. Eur. Phys. J. Plus 132(2), 99 (2017). https://doi.org/10.1140/epjp/i2017-11279-1. arXiv:1610.03055 [physics.ins-det]
10.1140/epjc/s10052-020-7673-8 ALICE Collaboration, S. Acharya et al., Multiplicity dependence of (multi-)strange hadron production in proton-proton collisions at $$\sqrt{s} = 13 \text{ TeV }$$. Eur. Phys. J. C 80(2), 167 (2020). https://doi.org/10.1140/epjc/s10052-020-7673-8. arXiv:1908.01861 [nucl-ex]
Comput. Phys. Commun. T Sjostrand 178 852 2008 10.1016/j.cpc.2008.01.036 T. Sjostrand, S. Mrenna, P.Z. Skands, A Brief Introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852-867 (2008). https://doi.org/10.1016/j.cpc.2008.01.036. arXiv:0710.3820 [hep-ph]
J. Stat. Phys. C Tsallis 52 1-2 479 1988 10.1007/BF01016429 C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52(1-2), 479-487 (1988). https://doi.org/10.1007/BF01016429
10.1140/epjc/s10052-017-5222-x ALICE Collaboration, S. Acharya et al., Measurement of deuteron spectra and elliptic flow in Pb-Pb collisions at $$\sqrt{s_{\rm NN}} = 2.76 \text{ TeV }$$ at the LHC. Eur. Phys. J. C 77(10), 658 (2017). https://doi.org/10.1140/epjc/s10052-017-5222-x. arXiv:1707.07304 [nucl-ex]
Phys. Rev. Lett. G Wilk 84 2770 2000 10.1103/PhysRevLett.84.2770 G. Wilk, Z. Wlodarczyk, On the interpretation of nonextensive parameter q in Tsallis statistics and Lévy distributions. Phys. Rev. Lett. 84, 2770 (2000). https://doi.org/10.1103/PhysRevLett.84.2770. arXiv:hep-ph/9908459
10.1103/PhysRevC.71.064902 STAR Collaboration, J. Adams et al., K(892)* resonance production in Au + Au and p + p collisions at $$\sqrt{s_{\rm NN}} = 200 \text{ GeV }$$. Phys. Rev. C 71, 064902 (2005). https://doi.org/10.1103/PhysRevC.71.064902. arXiv:nucl-ex/0412019
10.1140/epjc/s10052-020-8125-1 ALICE Collaboration, S. Acharya et al., Multiplicity dependence of $$\pi $$, K, and p production in pp collisions at $$\sqrt{s} = 13 \text{ TeV }$$. Eur. Phys. J. C 80, 693 (2020). https://doi.org/10.1140/epjc/s10052-020-8125-1. arXiv:2003.02394 [nucl-ex]
Phys. Rev. C R Scheibl 59 1585 1999 10.1103/PhysRevC.59.1585 R. Scheibl, U.W. Heinz, Coalescence and flow in ultrarelativistic heavy ion collisions. Phys. Rev. C 59, 1585-1602 (1999). https://doi.org/10.1103/PhysRevC.59.1585. arXiv:nucl-th/9809092 [nucl-th]
Phys. Rev. C F Bellini 99 5 054905 2019 10.1103/PhysRevC.99.054905 F. Bellini, A.P. Kalweit, Testing coalescence and statistical-thermal production scenarios for (anti-)(hyper-)nuclei and exotic QCD objects at LHC energies. Phys. Rev. C 99(5), 054905 (2019). https://doi.org/10.1103/PhysRevC.99.054905. arXiv:1807.05894 [hep-ph]
10.1103/PhysRevC.99.024906 ALICE Collaboration, B. Abelev et al., Multiplicity dependence of light-flavor hadron production in pp collisions at $$\sqrt{s} = 7 \text{ TeV }$$. Phys. Rev. C 99(2), 024906 (2019). https://doi.org/10.1103/PhysRevC.99.024906. arXiv:1807.11321 [nucl-ex]
10.1016/j.physletb.2019.03.033 K.-J. Sun, C.M. Ko, B. Dönigus, Suppression of light nuclei production in collisions of small systems at the Large Hadron Collider. Phys. Lett. B 792, 132 (2019). https://doi.org/10.1016/j.physletb.2019.03.033. arXiv:1812.05175 [nucl-th]
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.