$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Pharmacological inhibition of mTOR attenuates replicative cell senescence and improves cellular function via regulating the STAT3-PIM1 axis in human cardiac progenitor cells 원문보기

Experimental & molecular medicine : EMM, v.52 no.4, 2020년, pp.615 - 628  

Park, Ji Hye (Laboratory of Regenerative Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612 Republic of Korea) ,  Lee, Na Kyoung (Laboratory of Regenerative Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612 Republic of Korea) ,  Lim, Hye Ji (Laboratory of Regenerative Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612 Republic of Korea) ,  Ji, Seung taek (Laboratory of Regenerative Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612 Republic of Korea) ,  Kim, Yeon-Ju (Laboratory of Regenerative Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612 Republic of Korea) ,  Jang, Woong Bi (Laboratory of Regenerativ) ,  Kim, Da Yeon ,  Kang, Songhwa ,  Yun, Jisoo ,  Ha, Jong seong ,  Kim, Hyungtae ,  Lee, Dongjun ,  Baek, Sang Hong ,  Kwon, Sang-Mo

Abstract AI-Helper 아이콘AI-Helper

The mammalian target of rapamycin (mTOR) signaling pathway efficiently regulates the energy state of cells and maintains tissue homeostasis. Dysregulation of the mTOR pathway has been implicated in several human diseases. Rapamycin is a specific inhibitor of mTOR and pharmacological inhibition of mT...

참고문헌 (64)

  1. 1. Cesselli D Cardiac cell senescence and redox signaling Front. Cardiovasc. Med 2017 4 38 10.3389/fcvm.2017.00038 28612009 

  2. 2. Burton DG Cellular senescence, ageing and disease Age (Dordr) 2009 31 1 9 10.1007/s11357-008-9075-y 19234764 

  3. 3. Childs BG Durik M Baker DJ van Deursen JM Cellular senescence in aging and age-related disease: from mechanisms to therapy Nat. Med 2015 21 1424 1435 10.1038/nm.4000 26646499 

  4. 4. Baker DJ Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan Nature 2016 530 184 189 10.1038/nature16932 26840489 

  5. 5. Olivetti G Melissari M Capasso JM Anversa P Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy Circ. Res 1991 68 1560 1568 10.1161/01.RES.68.6.1560 2036710 

  6. 6. Cesselli D Aleksova A Mazzega E Caragnano A Beltrami AP Cardiac stem cell aging and heart failure Pharmacol. Res 2018 127 26 32 10.1016/j.phrs.2017.01.013 28111264 

  7. 7. Chimenti I Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice Circ. Res 2010 106 971 980 10.1161/CIRCRESAHA.109.210682 20110532 

  8. 8. Cesselli D Effects of age and heart failure on human cardiac stem cell function Am. J. Pathol 2011 179 349 366 10.1016/j.ajpath.2011.03.036 21703415 

  9. 9. Katare R Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling Circ. Res 2011 108 1238 1251 10.1161/CIRCRESAHA.110.239111 21474815 

  10. 10. Piegari E Doxorubicin induces senescence and impairs function of human cardiac progenitor cells Basic Res. Cardiol 2013 108 334 10.1007/s00395-013-0334-4 23411815 

  11. 11. Avolio E Ex vivo molecular rejuvenation improves the therapeutic activity of senescent human cardiac stem cells in a mouse model of myocardial infarction Stem Cells 2014 32 2373 2385 10.1002/stem.1728 24801508 

  12. 12. De Angelis A SIRT1 activation rescues doxorubicin-induced loss of functional competence of human cardiac progenitor cells Int. J. Cardiol 2015 189 30 44 10.1016/j.ijcard.2015.03.438 25889431 

  13. 13. Chimenti C Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure Circ. Res 2003 93 604 613 10.1161/01.RES.0000093985.76901.AF 12958145 

  14. 14. Park, J. H. et al. Doxorubicin regulates autophagy signals via accumulation of cytosolic Ca(2 + ) in human cardiac progenitor cells. Int. J. Mol. Sci. 17 , 10.3390/ijms17101680 (2016). 

  15. 15. Torella D Ellison GM Mendez-Ferrer S Ibanez B Nadal-Ginard B Resident human cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration Nat. Clin. Pract. Cardiovasc. Med. 2006 3 Suppl 1 S8 S13 10.1038/ncpcardio0409 16501638 

  16. 16. Bearzi C Human cardiac stem cells Proc. Natl Acad. Sci. USA 2007 104 14068 14073 10.1073/pnas.0706760104 17709737 

  17. 17. Raught B Gingras AC Sonenberg N The target of rapamycin (TOR) proteins Proc. Natl Acad. Sci. USA 2001 98 7037 7044 10.1073/pnas.121145898 11416184 

  18. 18. Noda T Ohsumi Y Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast J. Biol. Chem. 1998 273 3963 3966 10.1074/jbc.273.7.3963 9461583 

  19. 19. Schmelzle T Hall MN TOR, a central controller of cell growth Cell 2000 103 253 262 10.1016/S0092-8674(00)00117-3 11057898 

  20. 20. Wullschleger S Loewith R Hall MN TOR signaling in growth and metabolism Cell 2006 124 471 484 10.1016/j.cell.2006.01.016 16469695 

  21. 21. Laplante M Sabatini DM mTOR signaling in growth control and disease Cell 2012 149 274 293 10.1016/j.cell.2012.03.017 22500797 

  22. 22. Zhou J mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells Proc. Natl Acad. Sci. USA 2009 106 7840 7845 10.1073/pnas.0901854106 19416884 

  23. 23. Sciarretta S Volpe M Sadoshima J Mammalian target of rapamycin signaling in cardiac physiology and disease Circ. Res. 2014 114 549 564 10.1161/CIRCRESAHA.114.302022 24481845 

  24. 24. Murakami M mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells Mol. Cell Biol. 2004 24 6710 6718 10.1128/MCB.24.15.6710-6718.2004 15254238 

  25. 25. Zhu Y Mechanistic target of rapamycin (Mtor) is essential for murine embryonic heart development and growth PLoS ONE 2013 8 e54221 10.1371/journal.pone.0054221 23342106 

  26. 26. Shende P Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice Circulation 2011 123 1073 1082 10.1161/CIRCULATIONAHA.110.977066 21357822 

  27. 27. Li J Kim SG Blenis J Rapamycin: one drug, many effects Cell Metab 2014 19 373 379 10.1016/j.cmet.2014.01.001 24508508 

  28. 28. Hsu PP The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling Science 2011 332 1317 1322 10.1126/science.1199498 21659604 

  29. 29. Choo AY Yoon SO Kim SG Roux PP Blenis J Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation Proc. Natl Acad. Sci. USA 2008 105 17414 17419 10.1073/pnas.0809136105 18955708 

  30. 30. Yu Y Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling Science 2011 332 1322 1326 10.1126/science.1199484 21659605 

  31. 31. Sarbassov DD Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB Mol Cell 2006 22 159 168 10.1016/j.molcel.2006.03.029 16603397 

  32. 32. Janes MR Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor Nat. Med 2010 16 205 213 10.1038/nm.2091 20072130 

  33. 33. Lu, Q. et al. Rapamycin efficiently promotes cardiac differentiation of mouse embryonic stem cells. Biosci. Rep . 37 , 10.1042/BSR20160552 (2017). 

  34. 34. Qiu, X. X. et al. Rapamycin and CHIR99021 coordinate robust cardiomyocyte differentiation from human pluripotent stem cells via reducing p53-dependent apoptosis. J. Am. Heart. Assoc. 6 , 10.1161/JAHA.116.005295 (2017). 

  35. 35. Trapnell C Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks Nat. Protoc. 2012 7 562 578 10.1038/nprot.2012.016 22383036 

  36. 36. Malaquin N Martinez A Rodier F Keeping the senescence secretome under control: molecular reins on the senescence-associated secretory phenotype Exp. Gerontol 2016 82 39 49 10.1016/j.exger.2016.05.010 27235851 

  37. 37. Hayflick L The limited in vitro lifetime of human diploid cell strains Exp. Cell Res. 1965 37 614 636 10.1016/0014-4827(65)90211-9 14315085 

  38. 38. Bernadotte A Mikhelson VM Spivak IM Markers of cellular senescence. Telomere shortening as a marker of cellular senescence Aging (Albany NY) 2016 8 3 11 10.18632/aging.100871 26805432 

  39. 39. Nechemia-Arbely Y Fachinetti D Cleveland DW Replicating centromeric chromatin: spatial and temporal control of CENP-A assembly Exp. Cell Res. 2012 318 1353 1360 10.1016/j.yexcr.2012.04.007 22561213 

  40. 40. McGregor M Hariharan N Joyo AY Margolis RL Sussman MA CENP-A is essential for cardiac progenitor cell proliferation Cell Cycle 2014 13 739 748 10.4161/cc.27549 24362315 

  41. 41. Konstandin MH Fibronectin is essential for reparative cardiac progenitor cell response after myocardial infarction Circ. Res. 2013 113 115 125 10.1161/CIRCRESAHA.113.301152 23652800 

  42. 42. Torella D Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression Circ. Res. 2004 94 514 524 10.1161/01.RES.0000117306.10142.50 14726476 

  43. 43. Urbanek K Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival Circ. Res. 2005 97 663 673 10.1161/01.RES.0000183733.53101.11 16141414 

  44. 44. Beltrami AP Adult cardiac stem cells are multipotent and support myocardial regeneration Cell 2003 114 763 776 10.1016/S0092-8674(03)00687-1 14505575 

  45. 45. Muraski JA Pim-1 regulates cardiomyocyte survival downstream of Akt Nat. Med. 2007 13 1467 1475 10.1038/nm1671 18037896 

  46. 46. Liu N PIM1-minicircle as a therapeutic treatment for myocardial infarction PLoS ONE 2017 12 e0173963 10.1371/journal.pone.0173963 28323876 

  47. 47. Mohsin S Rejuvenation of human cardiac progenitor cells with Pim-1 kinase Circ. Res. 2013 113 1169 1179 10.1161/CIRCRESAHA.113.302302 24044948 

  48. 48. Kulandavelu S Pim1 kinase overexpression enhances ckit(+) cardiac stem cell cardiac repair following myocardial infarction in swine J. Am. Coll. Cardiol 2016 68 2454 2464 10.1016/j.jacc.2016.09.925 27908351 

  49. 49. Bachmann M Moroy T The serine/threonine kinase Pim-1 Int. J. Biochem. Cell. Biol. 2005 37 726 730 10.1016/j.biocel.2004.11.005 15694833 

  50. 50. Haghikia A Ricke-Hoch M Stapel B Gorst I Hilfiker-Kleiner D STAT3, a key regulator of cell-to-cell communication in the heart Cardiovasc. Res. 2014 102 281 289 10.1093/cvr/cvu034 24518140 

  51. 51. Iwakura T STAT3/Pim-1 signaling pathway plays a crucial role in endothelial differentiation of cardiac resident Sca-1+ cells both in vitro and in vivo J. Mol. Cell Cardiol. 2011 51 207 214 10.1016/j.yjmcc.2011.04.013 21600215 

  52. 52. Li TS Expansion of human cardiac stem cells in physiological oxygen improves cell production efficiency and potency for myocardial repair Cardiovasc. Res. 2011 89 157 165 10.1093/cvr/cvq251 20675298 

  53. 53. Jung SY Choi SH Yoo SY Baek SH Kwon SM Modulation of human cardiac progenitors via hypoxia-ERK circuit improves their functional bioactivities Biomol. Ther. (Seoul) 2013 21 196 203 10.4062/biomolther.2013.019 24265864 

  54. 54. Shaul YD Seger R The MEK/ERK cascade: from signaling specificity to diverse functions Biochim. Biophys. Acta 2007 1773 1213 1226 10.1016/j.bbamcr.2006.10.005 17112607 

  55. 55. Qian Q 5-Azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase Stem Cells Dev. 2012 21 67 75 10.1089/scd.2010.0519 21476855 

  56. 56. Volkmer E Hypoxic preconditioning of human mesenchymal stem cells overcomes hypoxia-induced inhibition of osteogenic differentiation Tissue Eng. Part A 2010 16 153 164 10.1089/ten.tea.2009.0021 19642854 

  57. 57. Hung SP Ho JH Shih YR Lo T Lee OK Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells J. Orthop. Res. 2012 30 260 266 10.1002/jor.21517 21809383 

  58. 58. Ong LL Hypoxic/normoxic preconditioning increases endothelial differentiation potential of human bone marrow CD133 + cells Tissue Eng. Part C Methods 2010 16 1069 1081 10.1089/ten.tec.2009.0641 20073989 

  59. 59. Zheng B Wang J Tang L Shi J Zhu D mTORC1 and mTORC2 play different roles in regulating cardiomyocyte differentiation from embryonic stem cells Int. J. Dev. Biol. 2017 61 65 72 10.1387/ijdb.160207dz 28287249 

  60. 60. Zheng B Involvement of Rictor/mTORC2 in cardiomyocyte differentiation of mouse embryonic stem cells in vitro Int. J. Biol. Sci. 2017 13 110 121 10.7150/ijbs.16312 28123351 

  61. 61. Chen Y Klionsky DJ The regulation of autophagy - unanswered questions J. Cell Sci. 2011 124 161 170 10.1242/jcs.064576 21187343 

  62. 62. Ravikumar B Regulation of mammalian autophagy in physiology and pathophysiology Physiol. Rev 2010 90 1383 1435 10.1152/physrev.00030.2009 20959619 

  63. 63. Gozuacik D Kimchi A Autophagy as a cell death and tumor suppressor mechanism Oncogene 2004 23 2891 2906 10.1038/sj.onc.1207521 15077152 

  64. 64. Tacar O Sriamornsak P Dass CR Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems J. Pharm. Pharmacol. 2013 65 157 170 10.1111/j.2042-7158.2012.01567.x 23278683 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로