$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

A review and perspective on a convergence analysis of the direct simulation Monte Carlo and solution verification

Physics of fluids v.31 no.6 , 2019년, pp.066101 -   
초록이 없습니다.

참고문헌 (42)

  1. 1. Bird, G. A.. Approach to Translational Equilibrium in a Rigid Sphere Gas. The Physics of fluids, vol.6, no.10, 1518-.
  2. 2. Molecular Gas Dynamics Bird G. A. 1976 
  3. 3. Molecular Gas Dynamics and the Direct Simulation of Gas Flows Bird G. A. 1994 
  4. 4. Zakeri, Ramin, Kamali Moghadam, Ramin, Mani, Mahmoud. New chemical-DSMC method in numerical simulation of axisymmetric rarefied reactive flow. Physics of fluids, vol.29, no.4, 047105-.
  5. 5. Tumuklu, Ozgur, Theofilis, Vassilis, Levin, Deborah A.. On the unsteadiness of shock-laminar boundary layer interactions of hypersonic flows over a double cone. Physics of fluids, vol.30, no.10, 106111-.
  6. 6. Mahdavi, Amir-Mehran, Roohi, Ehsan. Investigation of cold-to-hot transfer and thermal separation zone through nano step geometries. Physics of fluids, vol.27, no.7, 072002-.
  7. 7. Oscillatory rarefied gas flow inside a three dimensional rectangular cavity. Physics of fluids, vol.30, no.10, 102002-.
  8. 8. Gallis, M. A., Koehler, T. P., Torczynski, J. R., Plimpton, S. J.. Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability (16 pages). Physics of fluids, vol.27, no.8, 084105-084105.
  9. 9. Gallis, M. A., Bitter, N. P., Koehler, T. P., Torczynski, J. R., Plimpton, S. J., Papadakis, G.. Molecular-Level Simulations of Turbulence and Its Decay. Physical review letters, vol.118, no.6, 064501-.
  10. 10. Verification and Validation in Scientific Computing Oberkampf W. L. 2010 10.1017/CBO9780511760396 
  11. 11. Myong, R. S.. Thermodynamically consistent hydrodynamic computational models for high-Knudsen-number gas flows. Physics of fluids, vol.11, no.9, 2788-2802.
  12. 12. Le, N.T.P., Xiao, H., Myong, R.S.. A triangular discontinuous Galerkin method for non-Newtonian implicit constitutive models of rarefied and microscale gases. Journal of computational physics, vol.273, 160-184.
  13. 13. Rana, A., Ravichandran, R., Park, J. H., Myong, R. S.. Microscopic molecular dynamics characterization of the second-order non-Navier-Fourier constitutive laws in the Poiseuille gas flow. Physics of fluids, vol.28, no.8, 082003-.
  14. 14. Nanbu, Kenichi. Direct Simulation Scheme Derived from the Boltzmann Equation. II. Multicomponent Gas Mixtures. Journal of the Physical Society of Japan, vol.49, no.5, 2050-2054.
  15. 15. Nanbu, Kenichi. Interrelations between Various Direct Simulation Methods for Solving the Boltzmann Equation. Journal of the Physical Society of Japan, vol.52, no.10, 3382-3388.
  16. 16. Babovsky, Hans, Illner, Reinhard. A Convergence Proof for Nanbu's Simulation Method for the Full Boltzmann Equation. SIAM journal on numerical analysis : a publication of the Society of Industrial and Applied Mathematics, vol.26, no.1, 45-65.
  17. 17. Wagner, Wolfgang. A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation. Journal of statistical physics, vol.66, no.3, 1011-1044.
  18. 18. Meiburg, Eckart. Comparison of the molecular dynamics method and the direct simulation Monte Carlo technique for flows around simple geometries. The Physics of fluids, vol.29, no.10, 3107-.
  19. 19. Alexander, Francis J., Garcia, Alejandro L., Alder, Berni J.. Cell size dependence of transport coefficients in stochastic particle algorithms. Physics of fluids, vol.10, no.6, 1540-.
  20. 20. Garcia, Alejandro L., Wagner, Wolfgang. Time step truncation error in direct simulation Monte Carlo. Physics of fluids, vol.12, no.10, 2621-.
  21. 21. Hadjiconstantinou, Nicolas G.. Analysis of discretization in the direct simulation Monte Carlo. Physics of fluids, vol.12, no.10, 2634-2638.
  22. 22. 10.1103/physreve.69.042201 
  23. 23. Notes for DSMC07 Bird G. A. 
  24. 24. Bird, G. A., Gallis, M. A., Torczynski, J. R., Rader, D. J.. Accuracy and efficiency of the sophisticated direct simulation Monte Carlo algorithm for simulating noncontinuum gas flows. Physics of fluids, vol.21, no.1, 017103-.
  25. 25. Gallis, M.A., Torczynski, J.R., Rader, D.J., Bird, G.A.. Convergence behavior of a new DSMC algorithm. Journal of computational physics, vol.228, no.12, 4532-4548.
  26. 26. Burt, Jonathan M., Boyd, Iain D.. Convergence Detection in Direct Simulation Monte Carlo Calculations for Steady State Flows. Communications in computational physics, vol.10, no.4, 807-822.
  27. 27. Karchani, A., Myong, R.S.. Convergence analysis of the direct simulation Monte Carlo based on the physical laws of conservation. Computers & fluids, vol.115, 98-114.
  28. 28. Taheri, Elmira, Roohi, Ehsan, Stefanov, Stefan. On the convergence of the simplified Bernoulli trial collision scheme in rarefied Fourier flow. Physics of fluids, vol.29, no.6, 062003-.
  29. 29. Gallis, M. A., Torczynski, J. R., Rader, D. J., Tij, M., Santos, A.. Normal solutions of the Boltzmann equation for highly nonequilibrium Fourier flow and Couette flow (15 pages). Physics of fluids, vol.18, no.1, 017104-.
  30. 30. Akhlaghi, Hassan, Roohi, Ehsan, Stefanov, Stefan. On the consequences of successively repeated collisions in no-time-counter collision scheme in DSMC. Computers & fluids, vol.161, 23-32.
  31. 31. Garcia, Alejandro L.. Nonequilibrium fluctuations studied by a rarefied-gas simulation. Physical review. A, General physics, vol.34, no.2, 1454-1457.
  32. 32. Fallavollita, M.A., Baganoff, D., McDonald, J.D.. Reduction of Simulation Cost and Error for Particle Simulations of Rarefied Flows. Journal of computational physics, vol.109, no.1, 30-36.
  33. 33. Chen, G., Boyd, I.D.. Statistical Error Analysis for the Direct Simulation Monte Carlo Technique. Journal of computational physics, vol.126, no.2, 434-448.
  34. 34. Rjasanow, S., Schreiber, T., Wagner, W.. Reduction of the Number of Particles in the Stochastic Weighted Particle Method for the Boltzmann Equation. Journal of computational physics, vol.145, no.1, 382-405.
  35. 35. Hadjiconstantinou, Nicolas G., Garcia, Alejandro L., Bazant, Martin Z., He, Gang. Statistical error in particle simulations of hydrodynamic phenomena. Journal of computational physics, vol.187, no.1, 274-297.
  36. 36. Cave, H.M., Tseng, K.C., Wu, J.S., Jermy, M.C., Huang, J.C., Krumdieck, S.P.. Implementation of unsteady sampling procedures for the parallel direct simulation Monte Carlo method. Journal of computational physics, vol.227, no.12, 6249-6271.
  37. 37. Sun, Q., Fan, J., Boyd, I.D.. Improved sampling techniques for the direct simulation Monte Carlo method. Computers & fluids, vol.38, no.2, 475-479.
  38. 38. Plotnikov, M. Yu., Shkarupa, E. V.. Estimation of the statistical error of the direct simulation Monte Carlo method. Computational mathematics and mathematical physics, vol.50, no.2, 335-344.
  39. 39. Plotnikov, M. Yu., Shkarupa, E. V.. Some approaches to error analysis and optimization of the DSMC method. Russian journal of numerical analysis and mathematical modelling, vol.25, no.2,
  40. 40. Plotnikov, M.Yu., Shkarupa, E.V.. Theoretical and numerical analysis of approaches to evaluation of statistical error of the DSMC method. Computers & fluids, vol.105, 251-261.
  41. 41. Plotnikov, M.Yu., Shkarupa, E.V.. Selection of sampling numerical parameters for the DSMC method. Computers & fluids, vol.58, 102-111.
  42. 42. Karchani, A., Ejtehadi, O., Myong, R. S.. A Probabilistic Automatic Steady State Detection Method for the Direct Simulation Monte Carlo. Communications in computational physics, vol.20, no.5, 1183-1209.

DOI 인용 스타일

"" 핵심어 질의응답