$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Brain somatic mutations observed in Alzheimer’s disease associated with aging and dysregulation of tau phosphorylation

Nature communications v.10 no.1 = v.10 , 2019년, pp.3090 -   
초록이 없습니다.

참고문헌 (78)

  1. 1. Nat. Rev. Genet. LG Biesecker 14 307 2013 10.1038/nrg3424 Biesecker, L. G. & Spinner, N. B. A genomic view of mosaicism and human disease. Nat. Rev. Genet. 14, 307 (2013). 
  2. 2. Cold Spring Harbor Perspectives in Medicine Scott Maynard 5 10 a025130 2015 10.1101/cshperspect.a025130 Maynard, S., Fang, E. F., Scheibye-Knudsen, M., Croteau, D. L. & Bohr V. A. DNA damage, DNA repair, aging, and neurodegeneration. Cold Spring Harb. Perspect. Med. 5, https://doi.org/10.1101/cshperspect.a025130 (2015). 
  3. 3. Biochim. Biophys. Acta X Wang 1842 1240 2014 10.1016/j.bbadis.2013.10.015 Wang, X. et al. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim. Biophys. Acta 1842, 1240-1247 (2014). 
  4. 4. Nat. Med. JS Lim 21 395 2015 10.1038/nm.3824 Lim, J. S. et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat. Med. 21, 395 (2015). 
  5. 5. Nature JH Lee 560 243 2018 10.1038/s41586-018-0389-3 Lee, J. H. et al. Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature 560, 243-247 (2018). 
  6. 6. Dialog. Clin. Neurosci. C Qiu 11 111 2009 10.31887/DCNS.2009.11.2/cqiu Qiu, C., Kivipelto, M. & von Strauss, E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialog. Clin. Neurosci. 11, 111-128 (2009). 
  7. 7. Cold Spring Harb. Perspect. Med. A Serrano-Pozo 1 a006189 2011 10.1101/cshperspect.a006189 Serrano-Pozo, A., Frosch, M. P., Masliah, E. & Hyman, B. T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 1, a006189-a006189 (2011). 
  8. 8. Nature A Goate 349 704 1991 10.1038/349704a0 Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349, 704 (1991). 
  9. 9. Nature R Sherrington 375 754 1995 10.1038/375754a0 Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375, 754 (1995). 
  10. 10. Science E Levy-Lahad 269 973 1995 10.1126/science.7638622 Levy-Lahad, E. et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269, 973-977 (1995). 
  11. 11. Neuron J Kim 63 287 2009 10.1016/j.neuron.2009.06.026 Kim, J., Basak, J. M. & Holtzman, D. M. The role of apolipoprotein E in Alzheimer’s disease. Neuron 63, 287-303 (2009). 
  12. 12. N. Engl. J. Med. T Jonsson 368 107 2012 10.1056/NEJMoa1211103 Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 368, 107-116 (2012). 
  13. 13. Neurobiol. Aging RJ Guerreiro 33 437 2012 10.1016/j.neurobiolaging.2010.03.025 Guerreiro, R. J., Gustafson, D. R. & Hardy, J. The genetic architecture of Alzheimer’s disease: beyond APP, PSENs and APOE. Neurobiol. Aging 33, 437-456 (2012). 
  14. 14. Neurobiol. Aging PG Ridge 41 200.e213 2016 10.1016/j.neurobiolaging.2016.02.024 Ridge, P. G. et al. Assessment of the genetic variance of late-onset Alzheimer’s disease. Neurobiol. Aging 41, 200.e213-200.e220 (2016). 
  15. 15. Nat. Cell Biol. F Clavaguera 11 909 2009 10.1038/ncb1901 Clavaguera, F. et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 11, 909 (2009). 
  16. 16. Neuron A de Calignon 73 685 2012 10.1016/j.neuron.2011.11.033 de Calignon, A. et al. Propagation of Tau pathology in a model of early Alzheimer’s disease. Neuron 73, 685-697 (2012). 
  17. 17. J. Neuropathol. Exp. Neurol. PT Nelson 71 362 2012 10.1097/NEN.0b013e31825018f7 Nelson, P. T. et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J. Neuropathol. Exp. Neurol. 71, 362-381 (2012). 
  18. 18. Acta Neuropathol. SK Kaufman 136 57 2018 10.1007/s00401-018-1855-6 Kaufman, S. K., Del Tredici, K., Thomas, T. L., Braak, H. & Diamond, M. I. Tau seeding activity begins in the transentorhinal/entorhinal regions and anticipates phospho-tau pathology in Alzheimer’s disease and PART. Acta Neuropathol. 136, 57-67 (2018). 
  19. 19. Nat. Biotechnol. K Cibulskis 31 213 2013 10.1038/nbt.2514 Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213-219 (2013). 
  20. 20. Trends Genet. Y Dou 34 545 2018 10.1016/j.tig.2018.04.003 Dou, Y., Gold, H. D., Luquette, L. J. & Park, P. J. Detecting somatic mutations in normal cells. Trends Genet. 34, 545-557 (2018). 
  21. 21. BMC Genom. H Xu 15 2014 10.1186/1471-2164-15-244 Xu, H., DiCarlo, J., Satya, R. V., Peng, Q. & Wang, Y. Comparison of somatic mutation calling methods in amplicon and whole exome sequence data. BMC Genom. 15, 244 (2014). 
  22. 22. Nucleic Acids Res. Y Shiraishi 41 e89 2013 10.1093/nar/gkt126 Shiraishi, Y. et al. An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data. Nucleic Acids Res. 41, e89-e89 (2013). 
  23. 23. Oncotarget B Milholland 6 24627 2015 10.18632/oncotarget.5685 Milholland, B., Auton, A., Suh, Y. & Vijg, J. Age-related somatic mutations in the cancer genome. Oncotarget 6, 24627-24635 (2015). 
  24. 24. Science MA Lodato 359 555 2018 10.1126/science.aao4426 Lodato, M. A. et al. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359, 555-559 (2018). 
  25. 25. Science T Bae 359 550 2018 10.1126/science.aan8690 Bae, T. et al. Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis. Science 359, 550-555 (2018). 
  26. 26. Nature LB Alexandrov 500 415 2013 10.1038/nature12477 Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415 (2013). 
  27. 27. Science LB Alexandrov 354 618 2016 10.1126/science.aag0299 Alexandrov, L. B. et al. Mutational signatures associated with tobacco smoking in human cancer. Science 354, 618-622 (2016). 
  28. 28. Nucleic Acids Res. J Lee 46 W102 2018 10.1093/nar/gky406 Lee, J. et al. Mutalisk: a web-based somatic MUTation AnaLyIS toolKit for genomic, transcriptional and epigenomic signatures. Nucleic Acids Res. 46, W102-W108 (2018). 
  29. 29. 10.1101/322859 Alexandrov, L. et al. The repertoire of mutational signatures in human cancer. bioRxiv https://doi.org/10.1101/322859 (2018). 
  30. 30. Nat. Genet. LB Alexandrov 47 1402 2015 10.1038/ng.3441 Alexandrov, L. B. et al. Clock-like mutational processes in human somatic cells. Nat. Genet. 47, 1402 (2015). 
  31. 31. Nature M Lek 536 285 2016 10.1038/nature19057 Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285 (2016). 
  32. 32. Nucleic Acids Res. P Rentzsch 47 D886 2018 10.1093/nar/gky1016 Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47, D886-D894 (2018). 
  33. 33. Nucleic Acids Res. MV Kuleshov 44 W90 2016 10.1093/nar/gkw377 Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90-W97 (2016). 
  34. 34. Acta Neuropathol. V Vingtdeux 121 337 2011 10.1007/s00401-010-0759-x Vingtdeux, V., Davies, P., Dickson, D. W. & Marambaud, P. AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies. Acta Neuropathol. 121, 337-349 (2011). 
  35. 35. Brain Pathol. I Ferrer 11 144 2001 10.1111/j.1750-3639.2001.tb00387.x Ferrer, I. et al. Phosphorylated Map inase (ERK1, ERK2) expression is associated with early Tau deposition in neurones and glial cells, but not with increased nuclear DNA vulnerability and cell death, in Alzheimer disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Brain Pathol. 11, 144-158 (2001). 
  36. 36. Neurochem. Res. O Mercado-Gomez 33 1599 2008 10.1007/s11064-008-9714-9 Mercado-Gomez, O. et al. Inhibition of Wnt and PI3K signaling modulates GSK-3β activity and induces morphological changes in cortical neurons: role of Tau phosphorylation. Neurochem. Res. 33, 1599-1609 (2008). 
  37. 37. Curr. Opin. Neurobiol. MD Kaytor 12 275 2002 10.1016/S0959-4388(02)00320-3 Kaytor, M. D. & Orr, H. T. The GSK3β signaling cascade and neurodegenerative disease. Curr. Opin. Neurobiol. 12, 275-278 (2002). 
  38. 38. Sci. Rep. J Kim 7 2017 10.1038/srep40154 Kim, J., Kim J-j & Lee, H. An analysis of disease-gene relationship from Medline abstracts by DigSee. Sci. Rep. 7, 40154 (2017). 
  39. 39. Nat. Rev. Mol. Cell Biol. KP Lu 8 904 2007 10.1038/nrm2261 Lu, K. P. & Zhou, X. Z. The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat. Rev. Mol. Cell Biol. 8, 904 (2007). 
  40. 40. Nature Y-C Liou 424 556 2003 10.1038/nature01832 Liou, Y.-C. et al. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424, 556 (2003). 
  41. 41. Mol. Cell XZ Zhou 6 873 2000 10.1016/S1097-2765(05)00083-3 Zhou, X. Z. et al. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and Tau proteins. Mol. Cell 6, 873-883 (2000). 
  42. 42. J. Clin. Investig. J Lim 118 1877 2008 10.1172/JCI34777 Lim, J. et al. Pin1 has opposite effects on wild-type and P301L tau stability and tauopathy. J. Clin. Investig. 118, 1877-1889 (2008). 
  43. 43. PLoS One H Tak 8 e81682 2013 10.1371/journal.pone.0081682 Tak, H. et al. Bimolecular Fluorescence complementation; lighting-up Tau-Tau interaction in living cells. PLoS ONE 8, e81682 (2013). 
  44. 44. Nat. Genet. L Bertram 39 17 2007 10.1038/ng1934 Bertram, L., McQueen, M. B., Mullin, K., Blacker, D. & Tanzi, R. E. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet. 39, 17 (2007). 
  45. 45. Neurology D Blacker 48 139 1997 10.1212/WNL.48.1.139 Blacker, D. et al. ApoE-4 and age at onset of Alzheimer’s disease: the NIMH genetics initiative. Neurology 48, 139-147 (1997). 
  46. 46. Hum. Mol. Genet. SC Jin 23 5838 2014 10.1093/hmg/ddu277 Jin, S. C. et al. Coding variants in TREM2 increase risk for Alzheimer’s disease. Hum. Mol. Genet. 23, 5838-5846 (2014). 
  47. 47. PLoS One C Cruchaga 7 e31039 2012 10.1371/journal.pone.0031039 Cruchaga, C. et al. Rare variants in APP, PSEN1 and PSEN2 increase risk for AD in late-onset Alzheimer’s disease families. PLoS ONE 7, e31039 (2012). 
  48. 48. Exp. Mol. Med. JH Lee 48 e239 2016 10.1038/emm.2016.53 Lee, J. H. Somatic mutations in disorders with disrupted brain connectivity. Exp. Mol. Med. 48, e239 (2016). 
  49. 49. Nat. Med. M Xie 20 1472 2014 10.1038/nm.3733 Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472 (2014). 
  50. 50. Eur. J. Neurosci. JE Swatton 19 2711 2004 10.1111/j.0953-816X.2004.03365.x Swatton, J. E. et al. Increased MAP kinase activity in Alzheimer’s and Down syndrome but not in schizophrenia human brain. Eur. J. Neurosci. 19, 2711-2719 (2004). 
  51. 51. Neuromol. Med. Z Cai 14 1 2012 10.1007/s12017-012-8173-2 Cai, Z., Yan, L.-J., Li, K., Quazi, S. H. & Zhao, B. Roles of AMP-activated protein kinase in Alzheimer’s disease. Neuromol. Med. 14, 1-14 (2012). 
  52. 52. J. Neurochem. C-X Gong 65 732 1995 10.1046/j.1471-4159.1995.65020732.x Gong, C.-X. et al. Phosphatase activity toward abnormally phosphorylated τ: decrease in Alzheimer disease brain. J. Neurochem. 65, 732-738 (1995). 
  53. 53. Curr. Opin. Drug Discov. Dev. PJ Dolan 13 595 2010 Dolan, P. J. & Johnson, G. V. W. The role of tau kinases in Alzheimer’s disease. Curr. Opin. Drug Discov. Dev. 13, 595-603 (2010). 
  54. 54. J. Neurosci. A Sydow 31 2511 2011 10.1523/JNEUROSCI.5245-10.2011 Sydow, A. et al. Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic Tau mutant. J. Neurosci. 31, 2511 (2011). 
  55. 55. Neuron E Sontag 17 1201 1996 10.1016/S0896-6273(00)80250-0 Sontag, E., Nunbhakdi-Craig, V., Lee, G., Bloom, G. S. & Mumby, M. C. Regulation of the phosphorylation state and microtubule-binding activity of Tau by protein phosphatase 2A. Neuron 17, 1201-1207 (1996). 
  56. 56. Front. Mol. Neurosci. J-M Sontag 7 16 2014 10.3389/fnmol.2014.00016 Sontag, J.-M. & Sontag, E. Protein phosphatase 2A dysfunction in Alzheimer’s disease. Front. Mol. Neurosci. 7, 16-16 (2014). 
  57. 57. Biochem. J. J Eswaran 395 483 2006 10.1042/BJ20051931 Eswaran, J. et al. Crystal structures and inhibitor identification for PTPN5, PTPRR and PTPN7: a family of human MAPK-specific protein tyrosine phosphatases. Biochem. J. 395, 483-491 (2006). 
  58. 58. J. Neurosci. L Boulanger 15 1532 1995 10.1523/JNEUROSCI.15-02-01532.1995 Boulanger, L. et al. Cellular and molecular characterization of a brain-enriched protein tyrosine phosphatase. J. Neurosci. 15, 1532-1544 (1995). 
  59. 59. J. Biol. Chem. J Segarra 281 4771 2006 10.1074/jbc.M508298200 Segarra, J., Balenci, L., Drenth, T., Maina, F. & Lamballe, F. Combined signaling through ERK, PI3K/AKT, and RAC1/p38 Is required for Met-triggered cortical neuron migration. J. Biol. Chem. 281, 4771-4778 (2006). 
  60. 60. Mol. Cell. Biol. LM Shaw 21 5082 2001 10.1128/MCB.21.15.5082-5093.2001 Shaw, L. M. Identification of insulin receptor substrate 1 (IRS-1) and IRS-2 as signaling intermediates in the α6β4 integrin-dependent activation of phosphoinositide 3-OH kinase and promotion of invasion. Mol. Cell. Biol. 21, 5082-5093 (2001). 
  61. 61. Cell DA Fruman 170 605 2017 10.1016/j.cell.2017.07.029 Fruman, D. A. et al. The PI3K pathway in human disease. Cell 170, 605-635 (2017). 
  62. 62. Neurobiol. Aging Y Wang 36 188 2015 10.1016/j.neurobiolaging.2014.07.035 Wang, Y. et al. Cross talk between PI3K-AKT-GSK-3β and PP2A pathways determines tau hyperphosphorylation. Neurobiol. Aging 36, 188-200 (2015). 
  63. 63. J. Neurochem. C Hooper 104 1433 2008 10.1111/j.1471-4159.2007.05194.x Hooper, C., Killick, R. & Lovestone, S. The GSK3 hypothesis of Alzheimer’s disease. J. Neurochem. 104, 1433-1439 (2008). 
  64. 64. Genetics in Medicine Wei Wei 21 4 904 2018 10.1038/s41436-018-0274-3 Wei, W. et al. Frequency and signature of somatic variants in 1461 human brain exomes. Genet. Med. https://doi.org/10.1038/s41436-018-0274-3 (2018). 
  65. 65. Alzheimer’s Dement. G Nicolas 14 1632 2018 10.1016/j.jalz.2018.06.3056 Nicolas, G. et al. Somatic variants in autosomal dominant genes are a rare cause of sporadic Alzheimer’s disease. Alzheimer’s Dement. 14, 1632-1639 (2018). 
  66. 66. Nature M-H Lee 563 639 2018 10.1038/s41586-018-0718-6 Lee, M.-H. et al. Somatic APP gene recombination in Alzheimer’s disease and normal neurons. Nature 563, 639-645 (2018). 
  67. 67. Oxid. Med. Cell. Longev. S Manoharan 2016 8590578 2016 10.1155/2016/8590578 Manoharan, S. et al. The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: a mini review. Oxid. Med. Cell. Longev. 2016, 8590578-8590578 (2016). 
  68. 68. Front. aging Neurosci. X Wang 2 12 2010 Wang, X. & Michaelis, E. K. Selective neuronal vulnerability to oxidative stress in the brain. Front. aging Neurosci. 2, 12-12 (2010). 
  69. 69. J. Neuropathol. Exp. Neurol. KS Montine 7 415 1998 10.1097/00005072-199805000-00005 Montine, K. S. et al. Distribution of reducible 4-hydroxynonenal adduct immunoreactivity in Alzheimer disease is associated with APOE genotype. J. Neuropathol. Exp. Neurol. 7, 415-425 (1998). 
  70. 70. Mol. Brain Res. X Wang 140 120 2005 10.1016/j.molbrainres.2005.07.018 Wang, X. et al. High intrinsic oxidative stress may underlie selective vulnerability of the hippocampal CA1 region. Mol. Brain Res. 140, 120-126 (2005). 
  71. 71. Neuroscience MY Aksenov 103 373 2001 10.1016/S0306-4522(00)00580-7 Aksenov, M. Y., Aksenova, M. V., Butterfield, D. A., Geddes, J. W. & Markesbery, W. R. Protein oxidation in the brain in Alzheimer’s disease. Neuroscience 103, 373-383 (2001). 
  72. 72. J. Neurochem. ZI Alam 69 1326 1997 10.1046/j.1471-4159.1997.69031326.x Alam, Z. I. et al. A generalised increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease. J. Neurochem. 69, 1326-1329 (1997). 
  73. 73. Mech. Ageing Dev. SR Kennedy 133 118 2012 10.1016/j.mad.2011.10.009 Kennedy, S. R., Loeb, L. A. & Herr, A. J. Somatic mutations in aging, cancer and neurodegeneration. Mech. Ageing Dev. 133, 118-126 (2012). 
  74. 74. Ann. Neurol. JG Hoekstra 80 301 2016 10.1002/ana.24709 Hoekstra, J. G., Hipp, M. J., Montine, T. J. & Kennedy, S. R. Mitochondrial DNA mutations increase in early stage Alzheimer disease and are inconsistent with oxidative damage. Ann. Neurol. 80, 301-306 (2016). 
  75. 75. Ann. Neurol. MT Lin 71 850 2012 10.1002/ana.23568 Lin, M. T. et al. Somatic mitochondrial DNA mutations in early parkinson and incidental lewy body disease. Ann. Neurol. 71, 850-854 (2012). 
  76. 76. Trends Genet. AP Grollman 9 246 1993 10.1016/0168-9525(93)90089-Z Grollman, A. P. & Moriya, M. Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet. 9, 246-249 (1993). 
  77. 77. Nature S Shibutani 349 431 1991 10.1038/349431a0 Shibutani, S., Takeshita, M. & Grollman, A. P. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349, 431-434 (1991). 
  78. 78. Nat. Commun. J Kim 10 2019 10.1038/s41467-019-09026-y Kim, J. et al. The use of technical replication for detection of low-level somatic mutations in next-generation sequencing. Nat. Commun. 10, 1047 (2019). 

DOI 인용 스타일

"" 핵심어 질의응답