$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Deep learning segmentation of major vessels in X-ray coronary angiography 원문보기

Scientific reports, v.9 no.1, 2019년, pp.16897 -   

Yang, Su ,  Kweon, Jihoon ,  Roh, Jae-Hyung ,  Lee, Jae-Hwan ,  Kang, Heejun ,  Park, Lae-Jeong ,  Kim, Dong Jun ,  Yang, Hyeonkyeong ,  Hur, Jaehee ,  Kang, Do-Yoon ,  Lee, Pil Hyung ,  Ahn, Jung-Min ,  Kang, Soo-Jin ,  Park, Duk-Woo ,  Lee, Seung-Whan ,  Kim, Young-Hak ,  Lee, Cheol Whan ,  Park, Seong-Wook ,  Park, Seung-Jung

Abstract AI-Helper 아이콘AI-Helper

AbstractX-ray coronary angiography is a primary imaging technique for diagnosing coronary diseases. Although quantitative coronary angiography (QCA) provides morphological information of coronary arteries with objective quantitative measures, considerable training is required to identify the target ...

참고문헌 (29)

  1. EuroIntervention G Sianos 1 219 2005 Sianos, G. et al. The SYNTAX Score: an angiographic tool grading the complexity of coronary artery disease. EuroIntervention 1, 219-227 (2005). 

  2. JACC Cardiovasc. Interv S Tu 7 768 2014 10.1016/j.jcin.2014.03.004 Tu, S. et al. Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: a fast computer model to quantify the functional significance of moderately obstructed coronary arteries. JACC Cardiovasc. Interv 7, 768-777 (2014). 

  3. Circulation PH Stone 126 172 2012 10.1161/CIRCULATIONAHA.112.096438 Stone, P. H. et al. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study. Circulation 126, 172-181 (2012). 

  4. IEEE Trans. Med. Imaging C Blondel 25 653 2006 10.1109/TMI.2006.873224 Blondel, C., Malandain, G., Vaillant, R. & Ayache, N. Reconstruction of coronary arteries from a single rotational X-ray projection sequence. IEEE Trans. Med. Imaging 25, 653-663 (2006). 

  5. Biomed. Signal Process Control I Cruz-Aceves 25 76 2016 10.1016/j.bspc.2015.11.001 Cruz-Aceves, I., Oloumi, F., Rangayyan, R. M., Avina-Cervantes, J. G. & Hernandez-Aguirre, A. Automatic segmentation of coronary arteries using Gabor filters and thresholding based on multiobjective optimization. Biomed. Signal Process Control 25, 76-85 (2016). 

  6. Med. Biol. Eng. Comput. HR Fazlali 56 1515 2018 10.1007/s11517-018-1793-4 Fazlali, H. R. et al. Vessel segmentation and catheter detection in X-ray angiograms using superpixels. Med. Biol. Eng. Comput. 56, 1515-1530 (2018). 

  7. Pattern Recognit B Qin 87 38 2019 10.1016/j.patcog.2018.09.015 Qin, B. et al. Accurate vessel extraction via tensor completion of background layer in X-ray coronary angiograms. Pattern Recognit 87, 38-54 (2019). 

  8. Vlontzos, A. & Mikolajczyk, K. Deep segmentation and registration in X-ray angiography video. Preprint at, https://arxiv.org/abs/1805.06406 (2018). 

  9. Biomed. Signal Process Control E Nasr-Esfahani 40 240 2018 10.1016/j.bspc.2017.09.012 Nasr-Esfahani, E. et al. Segmentation of vessels in angiograms using convolutional neural networks. Biomed. Signal Process Control 40, 240-251 (2018). 

  10. Au, B. et al. Automated characterization of stenosis in invasive coronary angiography images with convolutional neural networks. Preprint at, https://arxiv.org/abs/1807.10597 (2018). 

  11. IEEE Access K Jo 7 919 2019 10.1109/ACCESS.2018.2886009 Jo, K., Kweon, J., Kim, Y.-H. & Choi, J. Segmentation of the main vessel of the left anterior descending artery using selective feature mapping in coronary angiography. IEEE Access 7, 919-930 (2019). 

  12. 10.1016/j.neunet.2020.05.002 Jun, T. J., Kweon, J., Kim, Y.-H. & Kim, D. T-Net: encoder-decoder in encoder-decoder architecture for the main vessel segmentation in coronary angiography. Preprint at, https://arxiv.org/abs/1905.04197 (2019). 

  13. 10.1007/978-3-319-24574-4_28 Ronneberger, O., Fischer, P. & Brox, T. U-net: convolutional networks for biomedical image segmentation in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention 234-241 (Springer, 2015). 

  14. 10.1016/j.asoc.2018.05.018 Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V. & Garcia-Rodriguez, J. A review on deep learning techniques applied to semantic segmentation. Preprint at, https://arxiv.org/abs/1704.06857 (2017). 

  15. IEEE Trans. Med. Imaging X Li 37 2663 2018 10.1109/TMI.2018.2845918 Li, X. et al. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37, 2663-2674 (2018). 

  16. 10.1007/978-3-319-60964-5_44 Dong, H., Yang, G., Liu, F., Mo, Y. & Guo, Y. Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks In Proceedings of the Annual conference on medical image understanding and analysis 506-517 (Springer, 2017). 

  17. 10.1109/CVPR.2016.90 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 770-778 (IEEE, 2016). 

  18. 10.1109/CVPR.2017.243 Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 4700-4708 (IEEE, 2017). 

  19. 10.1609/aaai.v31i1.11231 Szegedy, C., Ioffe, S., Vanhoucke, V. & Alemi, A. A. Inception-v4, inception-resnet and the impact of residual connections on learning in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence 4278-4284 (2017). 

  20. 10.1007/978-3-319-67558-9_28 Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S. & Cardoso, M. J. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations in Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support 240-248 (Springer, 2017). 

  21. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at, https://arxiv.org/abs/1412.6980 (2014). 

  22. Am. J. Cardiol. JJ Fischer 90 210 2002 10.1016/S0002-9149(02)02456-6 Fischer, J. J. et al. Comparison between visual assessment and quantitative angiography versus fractional flow reserve for native coronary narrowings of moderate severity. Am. J. Cardiol. 90, 210-215 (2002). 

  23. 10.1109/CVPR.2017.660 Zhao, H., Shi, J., Qi, X., Wang, X. & Jia, J. Pyramid scene parsing network in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2881-2890 (IEEE, 2017). 

  24. 10.1007/978-3-030-01234-2_49 Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F. & Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation In Proceedings of the European Conference on Computer Vision 801-818 (Springer, 2018). 

  25. JAMA Intern. Med. H Zhang 178 239 2018 10.1001/jamainternmed.2017.7821 Zhang, H. et al. Comparison of physician visual assessment with quantitative coronary angiography in assessment of stenosis severity in China. JAMA Intern. Med. 178, 239-247 (2018). 

  26. Med. Image Anal. X Zhen 36 184 2017 10.1016/j.media.2016.11.008 Zhen, X. et al. Direct and simultaneous estimation of cardiac four chamber volumes by multioutput sparse regression. Med. Image Anal. 36, 184-196 (2017). 

  27. 10.1007/978-3-030-32245-8_50 Zhang, D. et al. Direct quantification for coronary artery stenosis using multiview learning in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention 449-457 (Springer, 2019). 

  28. Int. J. Cardiovasc. Imaging S Tu 28 1315 2012 10.1007/s10554-012-0016-6 Tu, S. et al. In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography. Int. J. Cardiovasc. Imaging 28, 1315-1327 (2012). 

  29. Eur. Heart J. Cardiovasc. Imaging J Kweon 19 1134 2017 10.1093/ehjci/jex222 Kweon, J. et al. Impact of coronary lumen reconstruction on the estimation of endothelial shear stress: in vivo comparison of three-dimensional quantitative coronary angiography and three-dimensional fusion combining optical coherent tomography. Eur. Heart J. Cardiovasc. Imaging 19, 1134-1141 (2017). 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로