$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Efficient Control of THz Transmission of PEDOT:PSS with Resonant Nano-Metamaterials 원문보기

Scientific reports, v.9 no.1, 2019년, pp.17681 -   

Chaudhary, Raghvendra P. ,  Das, Bamadev ,  Oh, Seugn In ,  Kim, Dai-Sik

Abstract AI-Helper 아이콘AI-Helper

AbstractNano-metamaterials designed to operate at a certain resonance frequency enhance the magnitude of terahertz (THz) wave transmission by three orders of magnitude or even more. In this pursuit, controlling magnitude of resonant transmission and tuning the resonance frequency is increasingly imp...

참고문헌 (35)

  1. Nat. Mater. B Ferguson 1 26 2002 10.1038/nmat708 Ferguson, B. & Zhang, X.-C. Materials for terahertz science and technology. Nat. Mater. 1, 26-33 (2002). 

  2. Nat. Photonics M Tonouchi 1 97 2007 10.1038/nphoton.2007.3 Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 1, 97-105 (2007). 

  3. Adv. Opt. Mater. ZW Shi 6 1 2018 Shi, Z. W. et al. Terahertz Modulators Based on Silicon Nanotip Array. Adv. Opt. Mater. 6, 1-8 (2018). 

  4. 10.1088/0268-1242/20/7/018 Federici, J. F. et al. THz imaging and sensing for security applications - Explosives, weapons and drugs. Semicond. Sci. Technol. 20 (2005). 

  5. 10.1063/1.3386413 Federici, J. & Moeller, L. Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 107 (2010). 

  6. Adv. Opt. Mater. H Zhou 6 1 2018 Zhou, H., Zhang, T., Guruswamy, S. & Nahata, A. An Electrically Tunable Terahertz Plasmonic Device Based on Shape Memory Alloys and Liquid Metals. Adv. Opt. Mater. 6, 1-6 (2018). 

  7. 10.1063/1.2177348 Rivas, J. G., Kuttge, M., Kurz, H., Bolivar, P. H. & Sánchez-Gil, J. A. Low-frequency active surface plasmon optics on semiconductors. Appl. Phys. Lett. 88 (2006). 

  8. Nano Lett. Y Zhang 15 3501 2015 10.1021/acs.nanolett.5b00869 Zhang, Y. et al. Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure. Nano Lett. 15, 3501-3506 (2015). 

  9. Opt. Express CW Berry 19 1236 2011 10.1364/OE.19.001236 Berry, C. W., Moore, J. & Jarrahi, M. Design of reconfigurable metallic slits for terahertz beam modulation. Opt. Express 19, 1236 (2011). 

  10. Appl. Phys. Lett. W Xiaojun 103 121112 (5 pp.) 2013 Xiaojun, W., Xuecong, P., Baogang, Q. & Li, W. Optical modulation of terahertz behavior in silicon with structured surfaces. Appl. Phys. Lett. 103, 121112 (5 pp.)-121112 (5 pp.) (2013). 

  11. Nat. Commun. B Sensale-Rodriguez 3 780 2012 10.1038/ncomms1787 Sensale-Rodriguez, B. et al. Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun. 3, 780-787 (2012). 

  12. Nano Lett. W Gao 14 1242 2014 10.1021/nl4041274 Gao, W. et al. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures. Nano Lett. 14, 1242-1248 (2014). 

  13. 10.1002/adom.201600697 Liu, X. et al. Graphene Based Terahertz Light Modulator in Total Internal Reflection Geometry. Adv. Opt. Mater. 5 (2017). 

  14. Am. J. Transl. Res. AJ Yoon 6 580 2014 Yoon, A. J. et al. Active Terahertz Nanoantennas Based on VO2 Phase Transition. Am. J. Transl. Res. 6, 580-92 (2014). 

  15. ACS Appl. Mater. Interfaces Q Shi 3 3523 2011 10.1021/am200734k Shi, Q. et al. Giant phase transition properties at terahertz range in VO2films deposited by sol-gel method. ACS Appl. Mater. Interfaces 3, 3523-3527 (2011). 

  16. Nature M Liu 487 345 2012 10.1038/nature11231 Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345-348 (2012). 

  17. 10.1063/1.4821846 Zhao, Y. et al. Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications. J. Appl. Phys. 114 (2013). 

  18. Adv. Funct. Mater. J Ouyang 15 203 2005 10.1002/adfm.200400016 Ouyang, J., Chu, C. W., Chen, F. C., Xu, Q. & Yang, Y. High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film and its application in polymer optoelectronic devices. Adv. Funct. Mater. 15, 203-208 (2005). 

  19. J. Phys. Chem. C F Yan 119 6813 2015 10.1021/acs.jpcc.5b00465 Yan, F., Parrott, E. P. J., Ung, B. S. Y. & Pickwell-Macpherson, E. Solvent doping of PEDOT/PSS: Effect on terahertz optoelectronic properties and utilization in terahertz devices. J. Phys. Chem. C 119, 6813-6818 (2015). 

  20. 10.1063/1.3647574 Yamashita, M., Otani, C., Shimizu, M. & Okuzaki, H. Effect of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/ poly(4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy. Appl. Phys. Lett. 99 (2011). 

  21. J. Mater. Chem. S Kirchmeyer 15 2077 2005 10.1039/b417803n Kirchmeyer, S. & Reuter, K. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J. Mater. Chem. 15, 2077-2088 (2005). 

  22. 10.1002/adfm.201002290 Kim, Y. H. et al. Highly Conductive PEDOT: PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells. 1076-1081, https://doi.org/10.1002/adfm.201002290 (2011). 

  23. Phys. Status Solidi Basic Res. Y Du 255 1 2018 Du, Y. et al. Dielectric Properties of DMSO-Doped-PEDOT:PSS at THz Frequencies. Phys. Status Solidi Basic Res. 255, 1-6 (2018). 

  24. Opt. Lett. F Yan 40 2886 2015 10.1364/OL.40.002886 Yan, F., Parrott, E. P. J., Liu, X. D. & Pickwell-MacPherson, E. Low-cost and broadband terahertz antireflection coatings based on DMSO-doped PEDOT/PSS. Opt. Lett. 40, 2886 (2015). 

  25. J. Mater. Chem. C Y Du 4 4138 2016 10.1039/C6TC00842A Du, Y., Tian, H., Cui, X., Wang, H. & Zhou, Z. X. Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes. J. Mater. Chem. C 4, 4138-4142 (2016). 

  26. Appl. Phys. Lett. WH Kim 80 3844 2002 10.1063/1.1480100 Kim, W. H. et al. Molecular organic light-emitting diodes using highly conducting polymers as anodes. Appl. Phys. Lett. 80, 3844-3846 (2002). 

  27. 10.1364/OE.26.025849 Ang, W. E. I. W., Ongyu, H. J. I., Iu, D. A. L., Iong, L. U. X. & Ou, Y. A. H. Active bidirectional electrically-controlled terahertz device based on dimethyl sulfoxide- doped PEDOT: PSS. 26, 25849-25857 (2018). 

  28. Nat. Photonics MA Seo 3 152 2009 10.1038/nphoton.2009.22 Seo, M. A. et al. Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit. Nat. Photonics 3, 152-156 (2009). 

  29. Adv. Opt. Mater. G Choi 6 1 2018 Choi, G. et al. Enhanced Terahertz Shielding of MXenes with Nano-Metamaterials. Adv. Opt. Mater. 6, 1-6 (2018). 

  30. Nat. Commun. X Chen 4 1 2013 Chen, X. et al. Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves. Nat. Commun. 4, 1-7 (2013). 

  31. Nature M Ghidiu 516 78 2015 10.1038/nature13970 Ghidiu, M., Lukatskaya, M. R., Zhao, M. Q., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78-81 (2015). 

  32. 10.1063/1.4770368 Das, A. et al. Quasi-optical terahertz polarizers enabled by inkjet printing of carbon nanocomposites. Appl. Phys. Lett. 101 (2012). 

  33. Sci. Rep. JH Kim 7 5 2017 10.1038/s41598-017-00037-7 Kim, J. H. et al. Nano metamaterials for ultrasensitive Terahertz biosensing. Sci. Rep. 7, 5-10 (2017). 

  34. Nanophotonics J-H Kang 7 763 2018 10.1515/nanoph-2017-0093 Kang, J.-H., Kim, D.-S. & Seo, M. Terahertz wave interaction with metallic nanostructures. Nanophotonics 7, 763-793 (2018). 

  35. Adv. Opt. Mater. J Jeong 6 1800582 2018 10.1002/adom.201800582 Jeong, J. et al. High Contrast Detection of Water-Filled Terahertz Nanotrenches. Adv. Opt. Mater. 6, 1800582 (2018). 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로