최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Scientific reports, v.9 no.1, 2019년, pp.17681 -
Chaudhary, Raghvendra P. , Das, Bamadev , Oh, Seugn In , Kim, Dai-Sik
AbstractNano-metamaterials designed to operate at a certain resonance frequency enhance the magnitude of terahertz (THz) wave transmission by three orders of magnitude or even more. In this pursuit, controlling magnitude of resonant transmission and tuning the resonance frequency is increasingly imp...
Nat. Mater. B Ferguson 1 26 2002 10.1038/nmat708 Ferguson, B. & Zhang, X.-C. Materials for terahertz science and technology. Nat. Mater. 1, 26-33 (2002).
Nat. Photonics M Tonouchi 1 97 2007 10.1038/nphoton.2007.3 Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 1, 97-105 (2007).
Adv. Opt. Mater. ZW Shi 6 1 2018 Shi, Z. W. et al. Terahertz Modulators Based on Silicon Nanotip Array. Adv. Opt. Mater. 6, 1-8 (2018).
10.1088/0268-1242/20/7/018 Federici, J. F. et al. THz imaging and sensing for security applications - Explosives, weapons and drugs. Semicond. Sci. Technol. 20 (2005).
10.1063/1.3386413 Federici, J. & Moeller, L. Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 107 (2010).
Adv. Opt. Mater. H Zhou 6 1 2018 Zhou, H., Zhang, T., Guruswamy, S. & Nahata, A. An Electrically Tunable Terahertz Plasmonic Device Based on Shape Memory Alloys and Liquid Metals. Adv. Opt. Mater. 6, 1-6 (2018).
10.1063/1.2177348 Rivas, J. G., Kuttge, M., Kurz, H., Bolivar, P. H. & Sánchez-Gil, J. A. Low-frequency active surface plasmon optics on semiconductors. Appl. Phys. Lett. 88 (2006).
Nano Lett. Y Zhang 15 3501 2015 10.1021/acs.nanolett.5b00869 Zhang, Y. et al. Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure. Nano Lett. 15, 3501-3506 (2015).
Opt. Express CW Berry 19 1236 2011 10.1364/OE.19.001236 Berry, C. W., Moore, J. & Jarrahi, M. Design of reconfigurable metallic slits for terahertz beam modulation. Opt. Express 19, 1236 (2011).
Appl. Phys. Lett. W Xiaojun 103 121112 (5 pp.) 2013 Xiaojun, W., Xuecong, P., Baogang, Q. & Li, W. Optical modulation of terahertz behavior in silicon with structured surfaces. Appl. Phys. Lett. 103, 121112 (5 pp.)-121112 (5 pp.) (2013).
Nat. Commun. B Sensale-Rodriguez 3 780 2012 10.1038/ncomms1787 Sensale-Rodriguez, B. et al. Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun. 3, 780-787 (2012).
Nano Lett. W Gao 14 1242 2014 10.1021/nl4041274 Gao, W. et al. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures. Nano Lett. 14, 1242-1248 (2014).
10.1002/adom.201600697 Liu, X. et al. Graphene Based Terahertz Light Modulator in Total Internal Reflection Geometry. Adv. Opt. Mater. 5 (2017).
Am. J. Transl. Res. AJ Yoon 6 580 2014 Yoon, A. J. et al. Active Terahertz Nanoantennas Based on VO2 Phase Transition. Am. J. Transl. Res. 6, 580-92 (2014).
ACS Appl. Mater. Interfaces Q Shi 3 3523 2011 10.1021/am200734k Shi, Q. et al. Giant phase transition properties at terahertz range in VO2films deposited by sol-gel method. ACS Appl. Mater. Interfaces 3, 3523-3527 (2011).
Nature M Liu 487 345 2012 10.1038/nature11231 Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345-348 (2012).
10.1063/1.4821846 Zhao, Y. et al. Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications. J. Appl. Phys. 114 (2013).
Adv. Funct. Mater. J Ouyang 15 203 2005 10.1002/adfm.200400016 Ouyang, J., Chu, C. W., Chen, F. C., Xu, Q. & Yang, Y. High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film and its application in polymer optoelectronic devices. Adv. Funct. Mater. 15, 203-208 (2005).
J. Phys. Chem. C F Yan 119 6813 2015 10.1021/acs.jpcc.5b00465 Yan, F., Parrott, E. P. J., Ung, B. S. Y. & Pickwell-Macpherson, E. Solvent doping of PEDOT/PSS: Effect on terahertz optoelectronic properties and utilization in terahertz devices. J. Phys. Chem. C 119, 6813-6818 (2015).
10.1063/1.3647574 Yamashita, M., Otani, C., Shimizu, M. & Okuzaki, H. Effect of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/ poly(4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy. Appl. Phys. Lett. 99 (2011).
J. Mater. Chem. S Kirchmeyer 15 2077 2005 10.1039/b417803n Kirchmeyer, S. & Reuter, K. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J. Mater. Chem. 15, 2077-2088 (2005).
10.1002/adfm.201002290 Kim, Y. H. et al. Highly Conductive PEDOT: PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells. 1076-1081, https://doi.org/10.1002/adfm.201002290 (2011).
Phys. Status Solidi Basic Res. Y Du 255 1 2018 Du, Y. et al. Dielectric Properties of DMSO-Doped-PEDOT:PSS at THz Frequencies. Phys. Status Solidi Basic Res. 255, 1-6 (2018).
Opt. Lett. F Yan 40 2886 2015 10.1364/OL.40.002886 Yan, F., Parrott, E. P. J., Liu, X. D. & Pickwell-MacPherson, E. Low-cost and broadband terahertz antireflection coatings based on DMSO-doped PEDOT/PSS. Opt. Lett. 40, 2886 (2015).
J. Mater. Chem. C Y Du 4 4138 2016 10.1039/C6TC00842A Du, Y., Tian, H., Cui, X., Wang, H. & Zhou, Z. X. Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes. J. Mater. Chem. C 4, 4138-4142 (2016).
Appl. Phys. Lett. WH Kim 80 3844 2002 10.1063/1.1480100 Kim, W. H. et al. Molecular organic light-emitting diodes using highly conducting polymers as anodes. Appl. Phys. Lett. 80, 3844-3846 (2002).
10.1364/OE.26.025849 Ang, W. E. I. W., Ongyu, H. J. I., Iu, D. A. L., Iong, L. U. X. & Ou, Y. A. H. Active bidirectional electrically-controlled terahertz device based on dimethyl sulfoxide- doped PEDOT: PSS. 26, 25849-25857 (2018).
Nat. Photonics MA Seo 3 152 2009 10.1038/nphoton.2009.22 Seo, M. A. et al. Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit. Nat. Photonics 3, 152-156 (2009).
Adv. Opt. Mater. G Choi 6 1 2018 Choi, G. et al. Enhanced Terahertz Shielding of MXenes with Nano-Metamaterials. Adv. Opt. Mater. 6, 1-6 (2018).
Nat. Commun. X Chen 4 1 2013 Chen, X. et al. Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves. Nat. Commun. 4, 1-7 (2013).
Nature M Ghidiu 516 78 2015 10.1038/nature13970 Ghidiu, M., Lukatskaya, M. R., Zhao, M. Q., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78-81 (2015).
10.1063/1.4770368 Das, A. et al. Quasi-optical terahertz polarizers enabled by inkjet printing of carbon nanocomposites. Appl. Phys. Lett. 101 (2012).
Sci. Rep. JH Kim 7 5 2017 10.1038/s41598-017-00037-7 Kim, J. H. et al. Nano metamaterials for ultrasensitive Terahertz biosensing. Sci. Rep. 7, 5-10 (2017).
Nanophotonics J-H Kang 7 763 2018 10.1515/nanoph-2017-0093 Kang, J.-H., Kim, D.-S. & Seo, M. Terahertz wave interaction with metallic nanostructures. Nanophotonics 7, 763-793 (2018).
Adv. Opt. Mater. J Jeong 6 1800582 2018 10.1002/adom.201800582 Jeong, J. et al. High Contrast Detection of Water-Filled Terahertz Nanotrenches. Adv. Opt. Mater. 6, 1800582 (2018).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.