$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Surface Chemistry Dependence on Aluminum Doping in Ni-rich LiNi0.8Co0.2−yAlyO2 Cathodes 원문보기

Scientific reports, v.9 no.1, 2019년, pp.17720 -   

Lebens-Higgins, Zachary W. ,  Halat, David M. ,  Faenza, Nicholas V. ,  Wahila, Matthew J. ,  Mascheck, Manfred ,  Wiell, Tomas ,  Eriksson, Susanna K. ,  Palmgren, Paul ,  Rodriguez, Jose ,  Badway, Fadwa ,  Pereira, Nathalie ,  Amatucci, Glenn G. ,  Lee, Tien-Lin ,  Grey, Clare P. ,  Piper, Louis F. J.

Abstract AI-Helper 아이콘AI-Helper

AbstractAluminum is a common dopant across oxide cathodes for improving the bulk and cathode-electrolyte interface (CEI) stability. Aluminum in the bulk is known to enhance structural and thermal stability, yet the exact influence of aluminum at the CEI remains unclear. To address this, we utilized ...

참고문헌 (62)

  1. Nat. Rev. Mater. JW Choi 1 16013 2016 10.1038/natrevmats.2016.13 Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016). 

  2. J. Mater. Chem. A J Xu 5 874 2016 10.1039/C6TA07991A Xu, J., Lin, F., Doeff, M. & Tong, W. A review of Ni-based layered oxides for rechargeable Li-ion batteries. J. Mater. Chem. A 5, 874-901 (2016). 

  3. ACS Energy Lett. ST Myung 2 196 2017 10.1021/acsenergylett.6b00594 Myung, S. T. et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett. 2, 196-223 (2017). 

  4. Adv. Energy Mater. MD Radin 1602888 1 2017 Radin, M. D. et al. Narrowing the gap between theoretical and practical capacities in Li-ion layered oxide cathode materials. Adv. Energy Mater. 1602888, 1-33 (2017). 

  5. Nat. communications F Lin 5 3529 2014 10.1038/ncomms4529 Lin, F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. communications 5, 3529 (2014). 

  6. Appl. Phys. Lett. S Hwang 105 103901 2014 10.1063/1.4895336 Hwang, S., Kim, D. H., Chung, K. Y. & Chang, W. Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries. Appl. Phys. Lett. 105, 103901 (2014). 

  7. Nat. Energy F Lin 1 15004 2016 10.1038/nenergy.2015.4 Lin, F. et al. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries. Nat. Energy 1, 15004 (2016). 

  8. Nano Lett. H Liu 2 3452 2017 10.1021/acs.nanolett.7b00379 Liu, H. et al. Intergranular cracking as a major cause of long-term capacity fading of layered cathodes. Nano Lett. 2, 3452-3457 (2017). 

  9. The J. Phys. Chem. Lett. M Gauthier 6 4653 2015 10.1021/acs.jpclett.5b01727 Gauthier, M. et al. The electrode-electrolyte interface in Li-ion batteries: current understanding and new insights. The J. Phys. Chem. Lett. 6, 4653-4672 (2015). 

  10. J. The Electrochem. Soc. R Jung 164 A1361 2017 10.1149/2.0021707jes Jung, R., Metzger, M., Maglia, F., Stinner, C. & Gasteiger, H. A. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries. J. The Electrochem. Soc. 164, A1361-A1377 (2017). 

  11. Nano Lett. L Mu 18 3241 2018 10.1021/acs.nanolett.8b01036 Mu, L. et al. Oxygen release induced chemomechanical breakdown of layered cathode materials. Nano Lett. 18, 3241-3249 (2018). 

  12. Chem. Mater. S Hwang 26 1084 2014 10.1021/cm403332s Hwang, S. et al. Investigation of changes in the surface structure of LixNi0.8Co0.15Al0.05O2 cathode materials induced by the initial charge. Chem. Mater. 26, 1084-1092 (2014). 

  13. Solid State Ionics G Amatucci 83 167 1996 10.1016/0167-2738(95)00231-6 Amatucci, G., Tarascon, J. M. & Klein, L. C. Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ionics 83, 167-173 (1996). 

  14. J. Power Sources H Zheng 207 134 2012 10.1016/j.jpowsour.2012.01.122 Zheng, H., Sun, Q., Liu, G., Song, X. & Battaglia, V. S. Correlation between dissolution behavior and electrochemical cycling performance for LiNi1=3Co1=3Mn1=3O2-based cells. J. Power Sources 207, 134-140 (2012). 

  15. Appl. Phys. Lett. S Sallis 108 1 2016 10.1063/1.4954800 Sallis, S. et al. Surface degradation of Li1−xNi0.80Co0.15Al0.05O2 cathodes: Correlating charge transfer impedance with surface phase transformations. Appl. Phys. Lett. 108, 1-5 (2016). 

  16. Nat. Mater. YK Sun 8 320 2009 10.1038/nmat2418 Sun, Y. K. et al. High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8, 320-324 (2009). 

  17. J. Mater. Chem. Z Chen 20 7606 2010 10.1039/c0jm00154f Chen, Z., Qin, Y. & Amine, K. Role of surface coating on cathode materials for lithium-ion batteries. J. Mater. Chem. 20, 7606-7612 (2010). 

  18. Nano Lett. ID Scott 11 414 2011 10.1021/nl1030198 Scott, I. D. et al. Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications. Nano Lett. 11, 414-418 (2011). 

  19. The Electrochem. Soc. J Xia 163 2399 2016 10.1149/2.1211610jes Xia, J. et al. A study of Li-ion cells operated to 4.5 V and at 55 °C. J. The Electrochem. Soc. 163, 2399-2406 (2016). 

  20. Chem. Rev. K Xu 104 4303 2004 10.1021/cr030203g Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303-4417 (2004). 

  21. 10.1149/1.2083267 Campion, C. L., Li, W. & Lucht, B. L. Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. J. The Electrochem. Soc. 152, A2327 Note that in the work of Campion et al., a different 19F chemical shift scale is used; to convert to the convention used here, 140 ppm must be added to the shifts in the prior work (2005). 

  22. ACS Appl. Mater. Interfaces JL Tebbe 7 24265 2015 10.1021/acsami.5b07887 Tebbe, J. L., Holder, A. M. & Musgrave, C. B. Mechanisms of LiCoO2 Cathode Degradation by Reaction with HF and Protection by Thin Oxide Coatings. ACS Appl. Mater. Interfaces 7, 24265-24278 (2015). 

  23. Chem. Mater. YC Lu 21 4408 2009 10.1021/cm900862v Lu, Y. C., Mansour, A. N., Yabuuchi, N. & Shao-Horn, Y. Probing the origin of enhanced stability of AlPO4 nanoparticle coated LiCoO2 during cycling to high voltages: Combined XRD and XPS studies. Chem. Mater. 21, 4408-4424 (2009). 

  24. J. The Electrochem. Soc. A Yano 162 A3137 2015 10.1149/2.0131502jes Yano, A. et al. Surface structure and high-voltage charge/discharge characteristics of Al-Oxide coated LiNi1=3Co1=3Mn1=3O2 cathodes. J. The Electrochem. Soc. 162, A3137-A3144 (2015). 

  25. J. The Electrochem. Soc. S Verdier 154 A1088 2007 10.1149/1.2789299 Verdier, S. et al. XPS study on Al2O3- and AlPO4-coated LiCoO2 cathode material for high-capacity Li ion batteries. J. The Electrochem. Soc. 154, A1088 (2007). 

  26. Solid State Ionics ST Myung 139 47 2001 10.1016/S0167-2738(00)00828-6 Myung, S. T., Kumagai, N., Komaba, S. & Chung, H. T. Effects of Al doping on the microstructure of LiCoO2 cathode materials. Solid State Ionics 139, 47-56 (2001). 

  27. J. Power Sources CH Chen 128 278 2004 10.1016/j.jpowsour.2003.10.009 Chen, C. H. et al. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries. J. Power Sources 128, 278-285 (2004). 

  28. Electrochimica Acta L Baggetto 90 135 2013 10.1016/j.electacta.2012.11.120 Baggetto, L., Dudney, N. J. & Veith, G. M. Surface chemistry of metal oxide coated lithium manganese nickel oxide thin film cathodes studied by XPS. Electrochimica Acta 90, 135-147 (2013). 

  29. ECS Transactions ZW Lebens-Higgins 80 197 2017 10.1149/08010.0197ecst Lebens-Higgins, Z. W. et al. Electrochemical and thermal stress of LiNi0.8Co0.15Al0.05O2 electrodes: evolution of aluminum surface environments. ECS Transactions 80, 197-206 (2017). 

  30. Langmuir NV Faenza 33 9333 2017 10.1021/acs.langmuir.7b00863 Faenza, N. V. et al. Electrolyte-induced surface transformation and transition-metal dissolution of fully delithiated LiNi0.8Co0.15Al0.05O2. Langmuir 33, 9333-9353 (2017). 

  31. J. Power Sources N Pereira 338 145 2016 10.1016/j.jpowsour.2016.10.076 Pereira, N., Ruotolo, M. C., Lu, M. Y., Badway, F. & Amatucci, G. G. Elevated temperature performance of high voltage Li1+yMn1.5Ni0.5O4−xFx spinel in window-shifted Li-ion cells. J. Power Sources 338, 145-154 (2016). 

  32. Energy & Fuels T Doi 2 1197 2018 Doi, T. et al. Fluoroalkyl ether-diluted dimethyl carbonate-based electrolyte solutions for high-voltage operation of LiNi0.5Co0.2Mn0.3O2 electrodes in lithium ion batteries. Sustain. Energy & Fuels 2, 1197-1205 (2018). 

  33. J. Power Sources A Du Pasquier 81-82 54 1999 10.1016/S0378-7753(99)00136-6 Du Pasquier, A. et al. An update on the high temperature ageing mechanism in LiMn2O4-based Li-ion cells. J. Power Sources 81-82, 54-59 (1999). 

  34. J. The Electrochem. Soc. T Sonoda 151 A1836 2004 10.1149/1.1802136 Sonoda, T., Okada, S., Gopukumar, S., Yamaki, J.-I. & Hong, E.-S. Thermal stability of electrolytes with mixtures of LiPF6 and LiBF4 used in lithium-ion cells. J. The Electrochem. Soc. 151, A1836-A1840 (2004). 

  35. J. Electrochem. Soc. D-H Cho 161 A920 2014 10.1149/2.042406jes Cho, D.-H. et al. Effect of residual lithium compounds on layer Ni-rich Li[Ni0.7Mn0.3]O2. J. Electrochem. Soc. 161, A920-A926 (2014). 

  36. J. The Electrochem. Soc. NV Faenza 164 A3727 2017 10.1149/2.0921714jes Faenza, N. V. et al. Growth of ambient induced surface impurity species on layered positive electrode materials and impact on electrochemical performance. J. The Electrochem. Soc. 164, A3727-A3741 (2017). 

  37. J. Power Sources R Qiao 360 294 2017 10.1016/j.jpowsour.2017.06.009 Qiao, R. et al. Transition-metal redox evolution in LiNi0.5Mn0.3Co0.2O2 electrodes at high potentials. J. Power Sources 360, 294-300 (2017). 

  38. Chem. Mater. NV Faenza 30 7545 2018 10.1021/acs.chemmater.8b02720 Faenza, N. V. et al. Phase evolution and degradation modes of R3m LixNi1−y−zCoyAlzO2 electrodes cycled near complete delithiation. Chem. Mater. 30, 7545-7574 (2018). 

  39. Chem. Mater. ZW Lebens-Higgins 30 958 2018 10.1021/acs.chemmater.7b04782 Lebens-Higgins, Z. W. et al. Evolution of the electrode-electrolyte interface of LiNi0.8Co0.15Al0.05O2 electrodes due to electrochemical and thermal stress. Chem. Mater. 30, 958-969 (2018). 

  40. The J. Phys. Chem. B E Gaudin 105 8081 2001 10.1021/jp0105948 Gaudin, E. et al. Cobalt (III) effect on 27Al NMR chemical shifts in LiAlxCo1−xO2. The J. Phys. Chem. B 105, 8081-8087 (2001). 

  41. Chem. Mater. NM Trease 28 8170 2016 10.1021/acs.chemmater.6b02797 Trease, N. M. et al. Identifying the distribution of Al 3+ in LiNi0.8Co0.15Al0.05O2. Chem. Mater. 28, 8170-8180 (2016). 

  42. J. Mater. Chem. KJ Rosina 22 20602 2012 10.1039/c2jm34114j Rosina, K. J. et al. Structure of aluminum fluoride coated Li[Li1=9Ni1=3Mn5=9]O2 cathodes for secondary lithium-ion batteries. J. Mater. Chem. 22, 20602-20610 (2012). 

  43. J. Fluor. Chem. R König 131 91 2010 10.1016/j.jfluchem.2009.10.015 König, R. et al. Spectroscopic characterization of crystalline AlF3 phases. J. Fluor. Chem. 131, 91-97 (2010). 

  44. The J. Phys. Chem. B PJ Chupas 107 8327 2003 10.1021/jp0300905 Chupas, P. J., Corbin, D. R., Rao, V. N. M., Hanson, J. C. & Grey, C. P. A combined solid-state NMR and diffraction study of the structures and acidity of fluorinated aluminas: implications for catalysis. The J. Phys. Chem. B 107, 8327-8336 (2003). 

  45. J. Am. Chem. Soc. I Hung 134 1898 2012 10.1021/ja209600m Hung, I., Zhou, L., Pourpoint, F., Grey, C. P. & Gan, Z. Isotropic high field NMR spectra of Li-ion battery materials with anisotropy >1 MHz. J. Am. Chem. Soc. 134, 1898-1901 (2012). 

  46. J. Am. Chem. Soc. AL Michan 138 7918 2016 10.1021/jacs.6b02882 Michan, A. L. et al. Solid electrolyte interphase growth and capacity loss in silicon electrodes. J. Am. Chem. Soc. 138, 7918-7931 (2016). 

  47. Chem. Mater. RJ Clément 30 6945 2018 10.1021/acs.chemmater.8b03794 Clément, R. J., Kitchaev, D., Lee, J. & Ceder, G. Short-range order and unusual modes of nickel redox in a fluorinesubstituted disordered rocksalt oxide lithium-ion cathode. Chem. Mater. 30, 6945-6956 (2018). 

  48. J. Am. Chem. Soc. IG Shenderovich 125 11710 2003 10.1021/ja029183a Shenderovich, I. G. et al. Low-temperature NMR studies of the structure and dynamics of a novel series of acid-base complexes of HF with collidine exhibiting scalar couplings across hydrogen bonds. J. Am. Chem. Soc. 125, 11710-11720 (2003). 

  49. 10.1063/1.5039829 Regoutz, A. et al. A novel laboratory-based hard X-ray photoelectron spectroscopy system. Rev. Sci. Instruments 89 (2018). 

  50. Adv. Energy Mater. J Li 1902731 1902731 2019 10.1002/aenm.201902731 Li, J. & Manthiram, A. A comprehensive analysis of the interphasial and structural evolution over long-term cycling of ultrahigh-nickel cathodes in lithium-ion batteries. Adv. Energy Mater. 1902731, 1902731 (2019). 

  51. 10.1021/acsami.6b04516 Dogan, F., Vaughey, J. T., Iddir, H. & Key, B. Direct observation of lattice aluminum environments in Li ion cathodes LiNi1−y−zCoyAlzO2 and Al-doped LiNixMnyCozO2 via 27Al MAS NMR spectroscopy. ACS Appl. Mater. & Interfaces 8, 167-9=16717 (2016). 

  52. Chem. Mater. S-T Myung 17 3695 2005 10.1021/cm050566s Myung, S.-T., Izumi, K., Komaba, S. & Sun, Y.-K. Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries. Chem. Mater. 17, 3695-3704 (2005). 

  53. J. Power Sources K Kumai 81-82 715 1999 10.1016/S0378-7753(98)00234-1 Kumai, K., Miyashiro, H., Kobayashi, Y., Takei, K. & Ishikawa, R. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell. J. Power Sources 81-82, 715-719 (1999). 

  54. J. The Electrochem. Soc. Y-SS Jung 157 A75 2010 10.1149/1.3258274 Jung, Y.-S. S. et al. Enhanced stability of LiCoO2 cathodes in lithium-ion batteries using surface modification by atomic layer deposition. J. The Electrochem. Soc. 157, A75-A81 (2010). 

  55. J. Power Sources SH Lee 234 201 2013 10.1016/j.jpowsour.2013.01.045 Lee, S. H., Yoon, C. S., Amine, K. & Sun, Y. K. Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating. J. Power Sources 234, 201-207 (2013). 

  56. Nat. Energy E Hu 3 690 2018 10.1038/s41560-018-0207-z Hu, E. et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 3, 690-698 (2018). 

  57. J. Mater. Chem. A H Liu 6 4189 2018 10.1039/C7TA10829J Liu, H. et al. Identifying the chemical and structural irreversibility in LiNi0.8Co0.15Al0.05O2 - a model compound for classical layered intercalation. J. Mater. Chem. A 6, 4189-4198 (2018). 

  58. Surf. Interface Analysis H Shinotsuka 47 871 2015 10.1002/sia.5789 Shinotsuka, H., Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic mean free paths. X. Data for 41 elemental solids over the 50 eV to 200 keV range with the relativistic full Penn algorithm. Surf. Interface Analysis 47, 871-888 (2015). 

  59. Powell, C. J. & Jablonski, A. NIST Electron Inelastic-Mean-Free-Path Database. Version 1.2, SRD 71 (National Institute of Standards and Technology, Gaithersburg, MD, 2010). 

  60. Chem. Mater. AL Michan 28 8149 2016 10.1021/acs.chemmater.6b02282 Michan, A. L. et al. Fluoroethylene carbonate and vinylene carbonate reduction: Understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation. Chem. Mater. 28, 8149-8159 (2016). 

  61. Gullion, T. Modern Magnetic Resonance (Springer, Netherlands: Dordrecht, 2006). 

  62. J. Am. Chem. Soc. CP Grey 117 8232 1995 10.1021/ja00136a022 Grey, C. P. & Vega, A. J. Determination of the quadrupole coupling constant of the invisible aluminum spins in zeolite HY with 1H/27Al TRAPDOR NMR. J. Am. Chem. Soc. 117, 8232-8242 (1995). 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로